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Abstract: Lyapunov methods are one of the main tools to investigate local and global stability
properties of dynamical systems. Even though Lyapunov methods have been studied and applied
over many decades to unconstrained systems, extensions to systems with more complicated state
constraints have been limited. This paper proposes an extension of classical control Lyapunov
functions (CLFs) for differential inclusions by incorporating in particular bounded (nonconvex)
state constraints in the form of obstacles in the CLF formulation. We show that the extended
CLF formulation, which is called a complete CLF (CCLF) in the following, implies obstacle
avoidance and weak stability (or asymptotic controllability) of the equilibrium of the dynamical
system. Additionally, the necessity of nonsmooth CCLFs is highlighted. In the last part we
construct CCLFs for linear systems, highlighting the difficulties of constructing such functions.

Keywords: (nonsmooth) control Lyapunov functions; asymptotic controllability; obstacle
avoidance; nonsmooth controller design.

1. INTRODUCTION

Lyapunov functions (LFs) or control Lyapunov functions
(CLFs) are a well studied tool to investigate stability
and controllability properties of equilibria of dynamical
systems with and without input. While necessary and
sufficient conditions for the existence of LFs and CLFs
characterizing stability properties of a specific equilibria
globally or locally (i.e., by restricting the domain to a
sublevel set of the LF/CLF) have been derived, only a few
papers concentrate on the extension of classical Lyapunov
theory to incorporate more complicated constraints in the
Lyapunov formulation to guarantee stability properties
and obstacle avoidance simultaneously. A possible reason
is the lack of constructive methods to design CLFs for
nonlinear systems even in the unconstrained setting.
In this paper we propose an extension of classical CLFs,
which we call complete CLFs (CCLFs) and which in par-
ticular allow us to consider bounded obstacles in the state
space in the form of state constraints. We show that the
existence of a CCLF guarantees asymptotic stabilizability
of the origin for the dynamical system and simultaneous
obstacle avoidance. Due to the topological obstruction of
bounded obstacles in the state space, discontinuous feed-
back laws and subsequently nonsmooth CLFs and CCLFs
need to be considered to guarantee asymptotic stability
and obstacle avoidance simultaneously (Liberzon, 2003,
Chapter 4). Related approaches combining Lyapunov func-
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tions with control barrier functions or methods using so-
called artificial potential fields concentrate on smooth rep-
resentations and consequently do not consider discontinu-
ous feedback laws.
Control barrier functions in the context of dynamical sys-
tems were introduced in Wieland and Allgöwer (2007) as
a certificate to ensure obstacle avoidance, or equivalently
to ensure that a given set of unsafe states is never entered.
Since in general control barrier functions are assumed to
be smooth, articles combining ideas of Lyapunov functions
and control barrier functions (such as Ames et al. (2017),
Ngo et al. (2005) or Tee et al. (2009)) cannot be used
for controller design guaranteeing obstacle avoidance of
bounded obstacles and asymptotic stability. Artificial po-
tential fields in the robotics literature date back to the
work in Khatib (1985), Khatib (1990), and with a recent
relevant contribution in Paternain et al. (2018). Artifi-
cial potential fields define smooth Lyapunov-like functions
whose gradient is used to ensure obstacle avoidance and
asymptotic stability. However, due to the assumption of
a smooth function, it is well known and acknowledged in
the literature that avoidance and stability can at best be
guaranteed for sets excluding a set of measure zero in the
state space but not for every initial value. Additionally,
artificial potential fields are generally constructed for fully
actuated systems. Underactuated systems where it is only
possible to manipulate the dynamics in the direction of
subspaces of Rn are only partially covered.
The contributions of this paper are as follows. In Section
2.2 nonsmooth CCLFs as an extension of CLFs are intro-



duced providing the possibility to incorporate (bounded)
obstacles in the formulation of dynamical systems. Ad-
ditionally, we show that the existence of a CCLF implies
obstacle avoidance and asymptotic stability of the dynam-
ical system before we discuss the necessity of nonsmooth
CCLFs via several examples. In Section 3 we propose a
possible form of a CCLF by combining several smooth
functions. Additionally we show under which conditions
this construction leads to a CCLF for linear systems but
also highlight the difficulties in the design process.
We use the following notation. For x, x̂ ∈ Rn we define
|x| =

√∑n
i=1 x

n
i and |x|x̂ = |x − x̂|. Br(x) = {y ∈ Rn :

|y|x < r}, r > 0, denotes an open ball and Br(x) denotes
its closure. K, K∞ and KL are the standard notations for
comparision functions and P denotes the class of positive
definite functions (see Braun et al. (2018a), for example).

2. NONSMOOTH COMPLETE CONTROL
LYAPUNOV FUNCTIONS

2.1 Mathematical setting

We consider differential inclusions

ẋ ∈ F (x) (1)

where F : Rn ⇒ Rn. An absolutely continuous function
x : R≥0 → Rn is a solution of the differential inclusion (1)
from initial condition x(0) ∈ Rn if ẋ(t) ∈ F (x(t)) for
almost all t ∈ R≥0. In a common abuse of notation, we
use x and x(·) to denote points in Rn and solutions to (1).
Additionally, S(x) denotes the set of solutions starting at
x = x(0). To ensure existence of solutions of (1) we make
the following standard assumptions.

Assumption 1. Consider the set-valued map F : Rn ⇒ Rn
with 0 ∈ F (0). We impose the following conditions on F :

(i) (Regularity) F has nonempty, compact, and convex
values on Rn, and is upper semicontinuous, i.e., for
all ε > 0 there exists a δ > 0 such that ξ ∈ Bδ(x)
implies F (ξ) ⊂ F (x) +Bε(0).

(ii) (Local boundedness) For each r > 0 there exists
M > 0 such that |x| < r implies supw∈F (x) |w| ≤M .

(iii) (Local Lipschitz continuity) For each x ∈ Rn\{0}
there exists a constant L > 0 and a neighborhood
x ∈ O ⊂ Rn such that F (x1) ⊂ F (x2) +BL|x1−x2|(0)
for all x1, x2 ∈ O. y

Assumption 1(i) ensures that the set of solutions S(x)
is nonempty. Since we will discuss nonsmooth functions
in the following, we use the (lower right) Dini derivative
to extend the directional derivative to nondifferentiable
functions. For a Lipschitz continuous function ϕ : Rn → R
the Dini derivative in direction v ∈ Rn, is defined as

dϕ(x; v) = lim inf
t↘0

1
t (ϕ(x+ tv)− ϕ(x)).

If ϕ : Rn → R is continuously differentiable on a neigh-
borhood containing x ∈ Rn, then dϕ(x; v) = 〈∇ϕ(x), v〉.
holds. A Lipschitz continuous function is continuously dif-
ferentiable almost everywhere due to Rademacher’s theo-
rem. It was shown in Sontag (1983) that weak KL-stability
(phrased as an asymptotic controllability property of a
controlled differential equation) is equivalent to the ex-
istence of a continuous CLF. Subsequently, and indepen-
dently, Rifford (2000) and Kellett and Teel (2000) (see also

Kellett and Teel (2004)) demonstrated the equivalence of
weak KL-stability and the existence of a locally Lipschitz
CLF.

Definition 1. The differential inclusion (1) is weakly KL-
stable with respect to the origin if there exists β ∈ KL
such that, for each x(0) = ξ ∈ Rn, there exists x(·) ∈ S(ξ)
so that |x(t)| ≤ β(|ξ|, t) for all t ≥ 0. y
Theorem 1. (Nonsmooth CLFs). Suppose F satisfies As-
sumption 1. Then the differential inclusion (1) is weakly
KL-stable with respect to the origin if and only if there
exists a Lipschitz continuous CLF V : Rn → R≥0, α1, α2 ∈
K∞, and ρ ∈ P such that

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀ x ∈ Rn (2)

and for each x ∈ Rn there exists w ∈ F (x) such that

dV (x;w) ≤ −ρ(|x|). (3)

2.2 Complete control Lyapunov functions

In this subsection we extend Definition 1 to incorporate
avoidance properties in the stability definition.

Definition 2. LetO ⊂ Rn, 0 /∈ O, be open. The differential
inclusion (1) is weakly KL-stable with respect to the origin
with avoidance property with respect to O, if there exists
β ∈ KL such that, for each ξ ∈ Rn\O, there exists
x(·) ∈ S(ξ) so that

|x(t)| ≤ β(|ξ|, t) and x(t) /∈ O ∀ t ≥ 0. y

Though not stated explicitly here, we assume that O is
nonempty. In the case whereO = ∅, Definition 2 reduces to
Definition 1. Since weak KL-stability can be equivalently
concluded from the existence of a CLF, we consider an
extension of CLFs appropriate for Definition 2.

Definition 3. (CCLF). Suppose that F satisfies Assump-
tion 1. For i ∈ [1 : N ], N ∈ N, let Oi ⊂ Rn be open sets
and let VC : Rn → R be a Lipschitz continuous function.
Assume there exist α1, α2 ∈ K∞ and ρ ∈ P such that the
following properties are satisfied:

(i) For all i = [1 : N ], there exist ci ∈ R such that

VC(x) = ci ∀x ∈ ∂Oi and ci ≤ min
x∈Oi

VC(x) (4)

(ii) VC is positive definite and radially unbounded, i.e.,

α1(|x|) ≤ VC(x) ≤ α2(|x|). (5)

(iii) For each x ∈ Rn\
(
∪Ni=1Oi

)
there exists w ∈ F (x)

such that

dVC(x;w)) ≤ −ρ(x). (6)

Then VC is called a Complete Control Lyapunov Function
(CCLF). y

Without loss of generality, we assume that ci > 0 for all
i ∈ [1 : N ]. If ci = 0 for some i ∈ [1 : N ], then the radial
unboundedness of VC implies that ∂Oi = {0} or ∂Oi = ∅
and thus Oi = Rn\{0} or Oi = Rn. In both cases, the
assumptions on the functions involved in Definition 2 and
3 can be trivially satisfied.

Theorem 2. Consider the differential inclusion (1) satisfy-
ing Assumption 1. Additionally, let Oi, i ∈ [1 : N ], N ∈ N,
be open sets and let VC : Rn → R be a CCLF according to
Definition 3. Then the differential inclusion (1) is weakly
KL-stable with respect to the origin and has the avoidance
property with respect to O = ∪Ni=1Oi. y



The proof of Theorem 2 can be obtained by making
minimal changes to the proofs of (Braun et al., 2018a,
Thm. 4.11 and Thm. 4.12). For completeness, we report
the proof of Theorem 2 in Appendix A. Theorem 2
provides the opportunity to incorporate constraints in the
Lyapunov framework. In particular if the state space is
constrained and contains unsafe states or obstacles D ⊂
Rn which need to be avoided, CCLFs provide a tool to
ensure the existence of a solution x(·) ∈ S(x) of system
(1) such that x(·) converges to the target (the origin)
while avoiding the obstacles or unsafe states D ⊂ O for
an appropriately chosen set O. While the set of unsafe
states D is given, the open set O can be used as a
design parameter. If D ⊂ O holds and if avoidance and
convergence according to Definition 2 is satisfied for all
initial values x ∈ Rn\O, then it is also ensured that
the set D is never entered. An immediate application
of CCLFs is obtained by considering level sets of CLFs.
Let D ⊂ Rn\{0} be an arbitrary closed set and let V
be a CLF satisfying the assumptions of Theorem 1 (i.e.,
with respect to the unconstrained setting). Since, D is
closed and 0 /∈ D by assumption, there exists c > 0
such that {x ∈ Rn|V (x) ≤ c} ∩ D = ∅. Thus we can
define the open set O = Rn\{x ∈ Rn|V (x) ≤ c}, which
clearly satisfies D ⊂ O and due to the properties of a
CLF, V is a CCLF with respect to the open set O. This
common practice of restricting the domain of a LF or
CLF to a sublevel set, and thus a forward invariant set, is
quite straightforward. However, the definition of CCLFs in
Definition 3 is more general and capable through nontrivial
constructions, discussed in the next sections, to handle
bounded open sets O.

2.3 Necessity of nonsmooth CCLFs

In the case of bounded obstacles, i.e., bounded sets Oi,
i ∈ [1 : N ], the use of nonsmooth functions VC is essential.
This point will be made more precise in this section, before
we propose a particular form of candidate CCLFs.

Lemma 1. Let Oi ⊂ Rn, i ∈ [1 : N ], N ∈ N be open.
Assume that VC is a CCLF according to Definition 3 and
assume that there exists i ∈ [1 : N ] such that Oi is
bounded. Then there exists x ∈ Rn\

(
∪Ni=1Oi ∪ {0}

)
such

that the gradient ∇VC(x) is not defined. y

The result is an immediate consequence of (Braun and
Kellett, 2018, Thm. 1) which shows that a smooth function
VC satisfying (4) and (5) needs to have a critical point
x ∈ Rn\

(
∪Ni=1Oi ∪ {0}

)
with ∇VC(x) = 0 and thus

condition (6) cannot be satisfied. The necessity of a
nonsmooth function due to topological obstructions is also
discussed in (Liberzon, 2003, Chapter 4) in the necessity
of discontinuous feedback laws. To illustrate this problem
consider the function V : Rn → R, V (x) = |x|2 as a
candidate CLF and an obstacle D = {x̂} consisting of
a single point x̂ ∈ Rn\B√π(0). Define the function

CD(x) =

{
1
2

(
1 + cos(|x|2x̂)

)
, for |x|2x̂ ≤ π

0, for |x|2x̂ > π

which is continuously differentiable and has a global max-
imum CD(x̂) = 1. With λ > 0, the linear combination

VC(x) = V (x) + λCD(x), (7)

satisfies the properties (4) and (5). The set O1 can be
defined as an open neighborhood around x̂. Since VC is
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Fig. 1. Visualization of the continuously differentiable function
VC defined in (7) with a saddle point x on the x1-axis. The
boundary of a potential open set O1 is visualized in red.

continuously differentiable, the function VC has a critical
point in Rn\ (O1 ∪ {0}), where the gradient of V and the
gradient of λCD cancel each other (see (Braun and Kellett,
2018, Thm. 1)). Thus condition (6) cannot be satisfied.
In Figure 1 the level sets of function (7) for λ = 20 and
x̂ = (

√
π, 0)T are visualized. For the differential inclusion

ẋ ∈ F (x) = B|x|(0), (6) is satisfied for almost all x ∈ R2.

However, on the x1-axis there exists a point x ∈ R2 where
∇VC(x) = 0 and thus a decrease cannot be obtained. This
problem is closely related to the intuitive fact that on the
x1-axis behind the set O1, a decision needs to be taken to
avoid O1 from above or from below. In (7), the goal is to
define V so that it is a CLF for the differential inclusion
without obstacles, whereas CD is designed to contain the
obstacle in its superlevel sets. As also observed in the
literature on artificial potential fields, V and CD cannot
be constructed independently and highly depend on each
other to avoid the existence of local minima in the function
VC . For example if the function V (x) = |x|2 is replaced by
V (x) = x21 + 4x22, due to the shape of V and CD, a local
minimum (and not just a saddle point) is created on the
x1-axis.

3. NONSMOOTH CANDIDATE CCLFS

In this section we propose a possible form of a nonsmooth
candidate CCLF. The critical condition for a function
to be a CCLF is condition (6), which is discussed in
Section 4 below for linear systems. For the construction
we use ideas from the papers Braun et al. (2018b,c), which
propose hybrid avoidance control laws for linear systems.
As in Braun et al. (2018b,c), the construction is based
on avoidance points x̂ ∈ Rn\{0}. The open set O around
the unsafe point then represents the obstacle that should
be avoided. Here, we concentrate on a single avoidance
point, (i.e., N = 1 in Definition 3) but observe that the
considerations in this section carry over to the case with
multiple unsafe points (obstacles).
Following Braun et al. (2018b), given the unsafe point
x̂ ∈ Rn\{0}, a parameter δµ > 0, and a direction d ∈ Rn,
|d| = 1, we define the two shifted points

cp = x̂− pδµd, for p ∈ {−1, 1}. (8)

The direction d will be discussed in the subsequent section
(see (20)). Consider the functions

C1(x) = −η1|x|2c1 + η2, C−1(x) = −η1|x|2c−1
+ η2,

where η1, η2 ∈ R>0, and V (x) = |x|2, and combine them
to form the candidate CCLF

VC(x) = max{V (x),min{C1(x), C−1(x)}}. (9)

We assume that η1 and η2 are chosen such that

VC(0) = 0 and VC(x̂) > V (x̂) (10)
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Fig. 2. Visualization of the function VC defined in (9) for the
parameters x̂ = (1.5, 0)T , δµ = 0.4, d = (0, 1)T , η1 = 5 and
η2 = 7. The black lines indicate its nonsmooth domains. The
boundary of a potential open set O is visualized in red.

are satisfied. This is always possible for large enough η1
and η2. Because of the “max” in (9), this guarantees
that 0 is a strict global minimum and x̂ is a strict local
maximum of VC . In Figure 2 an example of the function
(9) with x̂ = (1.5, 0)T , δµ = 0.4, d = (0, 1)T , η1 = 5 and,
η2 = 7 is visualized. The function in (9) is continuously
differentiable almost everywhere. As compared to the
continuously differentiable function visualized in Figure 1,
the function in Figure 2 does not have a saddle point and
thus (under the additional assumption that the right-hand
side F (x) allows for it) provides the possibility to take a
decision on the x1-axis using the Dini derivative as in (6).
To compute the set where the gradient does not exist, we
derive in the next lemma a second representation of the
function VC defined in (9).

Lemma 2. Consider the function VC defined in (9) with
η2 > η1

1+η1
|cp|2, p ∈ {−1, 1}. Additionally consider the

scaled points

c∗p := η1
1+η1

cp, p ∈ {−1, 1} (11)

and the radius

r∗ :=
√
− η1

(1+η1)2
cTp cp + η2

1+η1
. (12)

Then r∗ > 0 and the function VC can be rewritten as

VC(x) =

{
Cp(x), if x ∈ C∗p , p ∈ {−1, 1}
V (x), if x ∈ V, (13)

where

C∗p = {x ∈ Br∗(c∗p)|p(x− x̂)T d ≥ 0}, p ∈ {−1, 1}, (14a)

V = Rn\(C∗1 ∪ C∗−1). (14b)

Proof. To establish the statements in the lemma we first
compute the sets where the functions C1, C−1 and, V have
the same value.
Case 1 (C1(x) = C−1(x)): Since the constants cancel, we

are left with the condition |x|2c1 = |x|2c−1
. With the

definition of cp, p ∈ {−1, 1}, in (8), the left and the right-
hand sides can be expanded to

(x− cp)T (x− cp) = (x− x̂+ pδµd)T (x− x̂+ pδµd)

= (x− x̂)T (x− x̂) + 2pδµ(x− x̂)T d+ 2δ2µ

from which |x|2c1 = |x|2c−1
yields 2δµ(x− x̂)T d = −2δµ(x−

x̂)T d. Therefore, since δµ > 0,

(x− x̂)T d = 0, (15)

representing a hyperplane in Rn orthogonal to d.
Case 2 (V (x) = Cp(x) for p ∈ {−1, 1}): By definition, this

set is characterized by

xTx = −η1(x− cp)T (x− cp) + η2
which is equivalent to

(1 + η1)xTx− 2η1x
T cp = η2 − η1cTp cp.

Dividing by 1 + η1 > 0 and reordering the terms leads to

xTx− 2xT c∗p = η2
1+η1

− cTp c∗p
with c∗p defined in (11). Adding |c∗p|2 to both sides we get(

x− c∗p
)T (

x− c∗p
)

= |c∗p|2 +
η2

1 + η1
− cTp c∗p (16)

= − η1
(1+η1)2

cTp cp + η2
1+η1

= (r∗)2,

which is positive by the condition on η1 and η2 and can
always be achieved by selecting η2 large enough. �

Note that (16) describes a sphere with center c∗p = η1
1+η1

cp
for p ∈ {−1, 1}. Based on Lemma 2, consider the strict
inequality of the right bound (10) and the representation
of VC in Lemma 2, which implies that x̂ is in the interior
of C∗−1 ∪ C∗1 , and there exists r ∈ (0, r∗) such that the sets

Cp = {x ∈ Br(cp)|p(x− x̂)T d ≥ 0}, (17)

for p ∈ {−1, 1} satisfy Cp ⊂ C∗p .
We may select O = int(C1∪C−1) because for all x ∈ ∂O we
have (using p = 1 if (x− x̂)T d ≥ 0 and p = −1 otherwise)

VC(x) = Cp(x) = η2 − η1r2 =: c

as required by (4).
Since radial unboundedness of VC follows trivially from
(9) and radial unboundedness of V , we have that VC
is a candidate CCLF by satisfying items (i) and (ii) of
Definition 3. Since item (iii) depends on the right-hand
side F (x), in the next section we concentrate on item (iii)
for a special class of differential inclusions.

4. CCLFS FOR LINEAR SYSTEMS

Linear control systems

ẋ = Ax+Bu, x(0) ∈ Rn (18)

with A ∈ Rn×n, B ∈ Rn×m represent a special class of
differential inclusions (1) where F (·) is defined by

F (x) = conv({ξ ∈ Rn|ξ = Ax+Bu, u ∈ U(x)})
for all x ∈ Rn and for U(x) ⊂ Rm for all x. If the set of
inputs U(x) is convex and compact for all x ∈ Rn, then F
satisfies Assumption 1.
Assume first that the linear system (18) is fully actuated,
i.e., B ∈ Rn×n has full rank. Since in this case, it is possible
to move in any direction with an appropriate input u (large
enough but bounded), VC defined in (7) satisfies item (iii)
of Definition 3 if it does not have local minima other than
the origin. Expression (13) and the gradients of V and Cp,
p ∈ {−1, 1} reveal that no such local minimum can exist
and thus VC is a CCLF.
In a more challenging setting, consider a stabilizable lin-
ear system (18) with one-dimensional input u ∈ R, i.e.,
B ∈ Rn×1. Additionally, assume that V (x) = xTx is a
Lyapunov function for the uncontrolled system and hence
that matrix AT + A is Hurwitz. This assumption is not
restrictive as argued in Braun et al. (2018b), because
through an appropriate coordinate transformation and by
redefining the input this condition can always be achieved
for a stabilizable linear system.
We derive conditions guaranteeing that the candidate



CCLF defined in (9) is a CCLF for the linear system (18)
and a neighborhood O around a given point x̂ ∈ Rn.

Theorem 3. Consider a stabilizable linear system (18)
with one-dimensional input u ∈ R and assume that V (x) =
xTx is a Lyapunov function for the unconstrained and
uncontrolled system. Let

x̂ ∈ Rn\ span(B) (19)

and define the projection and the corresponding direction

Px̂ = I − 1
x̂T x̂

x̂x̂T , d = Px̂B
|Px̂B| . (20)

Then there exist parameters δµ, η1, η2 ∈ R>0 such that the
control law

u(x) = − 〈x−c
∗
p,Ax〉

〈x−c∗p,B〉
(21)

is well-defined for all x ∈ V ∩ C∗p , p ∈ {−1, 1}. If
additionally

0 > max
x∈V∩C∗p

dVC

(
x;− 〈x−c

∗
p,Ax〉

〈x−c∗p,B〉

)
(22)

for p ∈ {−1, 1} then VC defined in Lemma (13) is a
CCLF according to Definition 3 for O ⊂ Rn defined as
a neighborhood around x̂. y

The direction d defines the orientation of the hyperplane
(15) and, by construction, x̂T d = 0 which simplifies the
representation of (15) to {x ∈ Rn|xT d = 0} and similarly
the expressions of Cp, C∗p , p ∈ {−1, 1}, in (14) and (17).
Moreover, d is aligned with the projection of B on the
hyperplane Px̂x for x ∈ Rn. For suitable non-controllable
(but stabilizable) systems, it can be shown that condition
(19) is necessary for the existence of a CCLF. Condition
(22) guarantees that VC decreases along trajectories in
V ∩ C∗p , p ∈ {−1, 1}, if the control law (21) is used. A
more explicit condition for (22) is given in Remark 1 after
the proof of Theorem 3. A simplification of this condition
is a goal of future research.

Proof. As a first step, we show that the control law (21)
is well-defined and provide a motivation for the selection
of u. For the sphere S∗ := {x ∈ Rn| |x|c∗p = r∗}, Braun

et al. (2018b) proposed the control law (21) based on the
condition d

dt |x(t)|2c∗p = 0. For x(0) ∈ S∗, by construction,

the input u in (21) ensures that x(t) ∈ S∗ for all t ≥ 0, if
〈x− c∗p, b〉 6= 0 is satisfied.
For (21) to be well-defined, it is sufficient if 〈x− c∗p, b〉 6= 0
holds for all x ∈ C∗p , which can be achieved by making
the intersection of the ball Br∗(c∗p) and the half-space

p · xT d ≥ 0 small. To this end we define

x̂∗ = 1
2

(
c∗1 + c∗−1

)
= 1

2
η1

1+η1
(c1 + c−1) = η1

1+η1
x̂.

which is a linear combination of x̂ and x̂∗ /∈ span(B). In
the same way as δµ defines the distance from cp to x̂ (and
thus to the hyperplane xT d = 0), we can define

δ∗µ = |x̂∗ − c∗p| =
(

η1
1+η1

)
δµ (23)

as the distance from c∗p to the hyperplane xT d = 0. Then,
as visualized in Figure 3, for (21) to be well-defined in C∗p ,
p ∈ {−1, 1}, it is sufficient that

δ∗µ
r∗ >

∣∣∣ 〈x̂,B〉|x̂||B|

∣∣∣ (24)

0

α

αα β

γ

Bd

x̂∗

δ̂∗µ

r∗

Fig. 3. Visualization of the relation between the angle γ and the
angle α. To ensure that 〈x − c∗p, B〉 6= 0 for all x ∈ C∗p it is
sufficient that α < γ holds.

be satisfied. To see this, observe that α := arccos
(
δ∗µ/r

∗)
defines the maximal angle of a tangent vector of x ∈ C∗p
and x− c∗p, and

γ := arccos
(∣∣∣ 〈x̂∗,B〉
|x̂∗||B|

∣∣∣) = arccos
(∣∣∣ 〈x̂,B〉|x̂||B|

∣∣∣)
defines the angle between x̂ and B. Thus α < γ is
equivalent to condition (24) and ensures that C∗p does not
contain points x such that x−c∗p and B are perpendicular.
Note that r∗ can be made arbitrarily small by increasing
η2 for fixed η1. This implies that r∗ − δ∗µ > 0 can be
made arbitrarily small and therefore (24) can be achieved
through an appropriate selection of δµ, η1 and η2.
In Section 3 we have shown that item (i) and (ii) of Defin-
tion 3 are satisfied for VC defined in (9) and appropriate
parameters η1, η2 and here we have shown that addition-
ally condition (24) can be satisfied. Thus, we concentrate
on the decrease condition (6) in item (iii) of Definition 3
in the following. For the proof, we use the representation
of VC in (13) and in particular the definition of the sets
(14) to verify (6) for all x ∈ Rn.

Case 1 (x ∈ V): Since AT +A is Hurwitz by assumption,

the input u = 0 satisfies dVC(x,Ax) = xT (AT + A)x < 0
for all x ∈ V. This implies that an appropriate function
ρ ∈ P can be defined.
Case 2 (x ∈ V ∩ C∗p , p ∈ {−1, 1}): If condition (24) is sat-

isfied, the control law (21) is well-defined on C∗p and (22)
ensures a decrease.
Case 3 (x ∈ C∗p\(V ∪ C∗−p), p ∈ {−1, 1}): Due to the selec-

tion of r ∈ (0, r∗) to define Cp in (17) and due the definition
of δ?µ in (23) and property (24), the estimate

δµ
r >

δ∗µ
r∗ >

∣∣∣ 〈x̂,B〉|x̂||B|

∣∣∣ (25)

holds. Similar to control law (21), we define

u(x) =
1−〈x−cp,Ax〉
〈x−cp,B〉 . (26)

based on the condition d
dt |x(t)|2cp = 2, i.e., u(x) is defined

such that the distance to cp increases, and thus VC(x(t)) =
Cp(x(t)) decreases along trajectories x(t) ∈ C∗p\(V ∪ C∗−p).
Inequality (25) ensures that the control law is well-defined
for all x(t) ∈ C∗p .
Case 4 (x ∈ C∗−1 ∩ C∗1 ): On C∗−1 ∩ C∗1 , the function VC is

concave (and thus, in particular, semiconcave, see (Clarke,
2011, Sec. 5)) as the minimum of two concave functions
C−1(x) and C1(x). Thus, the control law (26) for p ∈
{1,−1} arbitrary ensures that (6) is satisfied on (C∗−1 ∩
C∗1 )\x̂ which concludes the proof. 2
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Fig. 4. Visualization of the function VC defined in (13) on the
right. On the left, boundaries of the of the sets (14) (black),
boundaries of potential sets Oi, i = 1, 2, 3, (red) and the
subspace span(B) (blue) are visualized.

Remark 1. Due to the properties of the control law (21),
it holds that

dVC

(
x;− 〈x−c

∗
p,Ax〉

〈x−c∗p,b〉

)
= dV

(
x;− 〈x−c

∗
p,Ax〉

〈x−c∗p,b〉

)
, ∀ x ∈ V ∩ C∗p .

From the proof of Theorem 3 it follows that well-
definedness of (21) in V ∩ C∗p implies well-definedness of
(21) in C∗p . Thus, for (22) to be true, it is sufficient that

0 > max
x∈C∗p

dV
(
x;− 〈x−c

∗
p,Ax〉

〈x−c∗p,B〉

)
(27)

= max
x∈C∗p

xT (AT +A)x− 2xTB
〈x−c∗p,Ax〉
〈x−c∗p,B〉

(28)

be satisfied. y

5. NUMERICAL EXAMPLE

Consider the linear system

ẋ =

[
−1 0
−1 −1

]
x+

[
0
1

]
u

with three obstacles x̂1 = (1, 0)T , x̂2 = (−1, 1)T and
x̂3 = (−0.5,−1)T . The matrix AT +A has the eigenvalues
−1 and −3, i.e, the origin of the uncontrolled system is
stable and V (x) = xTx is a CLF. We define the CCLF
(7) through the parameters η1 = 35, η2 = 30 for all three
obstacles, and δµ,1 = 0.2, δµ,2 = 0.7 and δµ,3 = 0.85.
Condition (24) for the three obstacles is satisfied through

δ∗µ,1
r∗1

= 0.2167,
δ∗µ,2
r∗2

= 0.775,
δ∗µ,3
r∗3

= 0.9357

and∣∣∣ 〈x̂1,B〉
|x̂1||B|

∣∣∣ = 0,
∣∣∣ 〈x̂2,B〉
|x̂2||B|

∣∣∣ = 0.7071,
∣∣∣ 〈x̂3,B〉
|x̂3||B|

∣∣∣ = 0.8944.

The smaller the angle between the reference points x̂ and
the direction B, the smaller the open domain O needs to
be. Condition (22) is verified by solving the optimization
problem (28) using fmincon in Matlab and we can conclude
that the function VC is a CCLF. The function VC is
visualized in Figure 4 on the right. On the left, the
boundaries of the sets defined in (14) are highlighted in
black. Possible boundaries of the sets O are shown in red
and the blue line visualizes the subspace span(B) in (19).

6. CONCLUSIONS

In this paper we discuss an extension of classical Lyapunov
theory to incorporate bounded obstacles in the formulation
of CLFs. Our constructions for linear systems, in particu-
lar due to the consideration of nonsmooth functions, show
the difficulties in the verification of candidate CCLFs.
Future work will thus concentrate on constructive methods
in the CCLF design for more general classes of systems.
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Braun, P., Grüne, L., and Kellett, C.M. (2018a). Com-
plete instability of differential inclusions using Lyapunov
methods. In Proc. of the 57th IEEE Conference on
Decision and Control, 718–724.

Braun, P. and Kellett, C.M. (2018). On (the exis-
tence of) control Lyapunov barrier functions. Preprint,
http://www.nonlinearcontrol.org/NOLCOS2019/.

Braun, P., Kellett, C.M., and Zaccarian, L. (2018b).
Explicit construction of robust avoidance controllers
for linear systems. Preprint, https://hal.archives-
ouvertes.fr/hal-01893027/.

Braun, P., Kellett, C.M., and Zaccarian, L. (2018c). Unsafe
point avoidance in linear state feedback. In Proc. of the
57th IEEE Conference on Decision and Control, 2372–
2377.

Clarke, F. (2011). Lyapunov functions and discontinuous
stabilizing feedback. Annual Reviews in Control, 35(1),
13–33.

Clarke, F.H., Ledyaev, Y.S., and Stern, R.J. (1998).
Asymptotic stability and smooth Lyapunov functions.
Journal of Differential Equations, 149, 69–114.

Kellett, C.M. and Teel, A.R. (2000). Uniform asymptotic
controllability to a set implies locally Lipschitz control-
Lyapunov function. In Proc. of the 39th IEEE Confer-
ence on Decision and Control, volume 4, 3994–3999.

Kellett, C.M. and Teel, A.R. (2004). Weak converse
Lyapunov theorems and control Lyapunov functions.
SIAM Journal on Control and Optimization, 42(6),
1934–1959.

Khatib, O. (1985). Real-time obstacle avoidance for
manipulators and mobile robots. In Proc. of the IEEE
International Conference on Robotics and Automation,
500–505.

Khatib, O. (1990). Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots, 396–404. Springer
New York.

Lakshmikantham, V. and Leela, S. (1969). Differential and
Integral Inequalities: Theory and Applications: Volume
I: Ordinary Differential Equations. Academic Press.

Liberzon, D. (2003). Switching in Systems and Control.
Birkhäuser.
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Wieland, P. and Allgöwer, F. (2007). Constructive safety
using control barrier functions. IFAC Proceedings Vol-
umes, 40(12), 462–467.

Appendix A. PROOF OF THEOREM 2

We adapt the proofs given in (Braun et al., 2018a, Thm.
4.11, Thm. 4.12). The proofs in Braun et al. (2018a)
themselves rely on arguments used in Clarke et al. (1998)
and Lakshmikantham and Leela (1969). Additionally, we
use the notation φ(·, x) : R≥0 → Rn to denote a solution
φ(·, x) ∈ S(x) of the differential inclusion (1).

Proof. We define the set-valued map H : R≥0 ⇒ Rn,

H(v) = {x ∈ Rn|VC(x) = v}, (A.1)

and the function γ : R≥0 → R≥0
γ̃(v) = min{ρ(|x|)|x ∈ H(v)\{∪Ni=1Oi}}. (A.2)

Since ρ ∈ P and VC(x) > 0 for all x 6= 0 it holds that
γ̃(|x|) > 0 for all x 6= 0 and γ̃(0) = 0. We define γ ∈ P such
that γ(v) ≤ γ̃(v) for all v ∈ R≥0 (where γ ∈ P implies that
γ is continuous). Since VC is locally Lipschitz, VC(φ(·, x))
is absolutely continuous. For x ∈ Rn\∪Ni=1Oi assume there
exists φ(·;x) ∈ S(x) such that
d
dtVC(φ(t;x)) = 〈∇VC(φ(t, x)), φ̇(t;x)〉

≤ − 1
4ρ(|φ(t;x)|) ≤ − 1

4γ(VC(φ(t;x)) (A.3)

for almost all t ∈ R≥0. We apply the comparison principle
(see (Sontag and Wang, 2000, Lemma A.4), for example)
which provides a function β ∈ KL such that VC(φ(t;x)) ≤
β(VC(x); t) and

|φ(t;x)| ≤ α−11 ◦ β(α2(|x|), t) = β̃(|x|, t)
with β̃ ∈ KL.

To complete the proof, we need to show that the pointwise
condition (6) ensures that for all x ∈ Rn there exists
φ(·;x) ∈ S(x) such that the estimate (A.3) is satisfied
for almost all t ∈ R≥0. We assume to the contrary, that
there exists an x ∈ Rn\ ∪Ni=1 Oi and a Γ > 0 such that all
solutions φ(·;x) ∈ S(x) satisfy

d
dtVC(φ(t;x)) > − 1

4ρ(|φ(t;x)|) (A.4)

for all t in a set of non-zero measure contained in [0,Γ].

We choose an ε > 0 such that 1
2ρ(y) < ρ(|x|) for all

y ∈ Bε(x)\ ∪Ni=1 Oi. Due to condition (6), there exists
w̃ ∈ F (x) such that

dVC(x; w̃) ≤ −ρ(|x|). (A.5)

Since F is Lipschitz continuous there exists a Lipschitz
continuous function w : [0,Γ] → Rn such that φ(·;x) ∈
S(x), φ̇(t;x) = w(t) for almost all t ∈ [0,Γ] and w(0) =
w̃ (and w(t) ∈ F (φ(t;x))). Note that φ(·;x) is Lips-
chitz continuous. From the assumed condition (A.4) and
1
2ρ(|φ(t;x)|) < ρ(|x|), we obtain the condition

1
2 (VC(φ(t;x))− VC(φ(0;x)) ≥ − 1

2ρ(x)

for all t ∈ (0,Γ) such that φ(t;x) ∈ Bε(x)\ ∪Ni=1 Oi. Since
the left-hand side is Lipschitz continuous, we can take the
limit inferior for t → 0 on both sides, which contradicts
(A.5) and thus the assumption (A.4) was wrong.

This implies that for all x ∈ Rn\ ∪Ni=1 Oi there exists a
φ(·;x) ∈ S(x) such that the decrease condition (A.3) is
satisfied for all t ∈ [0,Γ] where Γ > 0. Since this argument
can be applied iteratively to the initial value φ(Γ;x), there
exists a solution φ(·, x) ∈ S(x) such that (A.3) is satisfied
for all t ≥ 0. 2


