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Lyapunov methods are one of the main tools to investigate local and global stability properties of dynamical systems. Even though Lyapunov methods have been studied and applied over many decades to unconstrained systems, extensions to systems with more complicated state constraints have been limited. This paper proposes an extension of classical control Lyapunov functions (CLFs) for differential inclusions by incorporating in particular bounded (nonconvex) state constraints in the form of obstacles in the CLF formulation. We show that the extended CLF formulation, which is called a complete CLF (CCLF) in the following, implies obstacle avoidance and weak stability (or asymptotic controllability) of the equilibrium of the dynamical system. Additionally, the necessity of nonsmooth CCLFs is highlighted. In the last part we construct CCLFs for linear systems, highlighting the difficulties of constructing such functions.

INTRODUCTION

Lyapunov functions (LFs) or control Lyapunov functions (CLFs) are a well studied tool to investigate stability and controllability properties of equilibria of dynamical systems with and without input. While necessary and sufficient conditions for the existence of LFs and CLFs characterizing stability properties of a specific equilibria globally or locally (i.e., by restricting the domain to a sublevel set of the LF/CLF) have been derived, only a few papers concentrate on the extension of classical Lyapunov theory to incorporate more complicated constraints in the Lyapunov formulation to guarantee stability properties and obstacle avoidance simultaneously. A possible reason is the lack of constructive methods to design CLFs for nonlinear systems even in the unconstrained setting. In this paper we propose an extension of classical CLFs, which we call complete CLFs (CCLFs) and which in particular allow us to consider bounded obstacles in the state space in the form of state constraints. We show that the existence of a CCLF guarantees asymptotic stabilizability of the origin for the dynamical system and simultaneous obstacle avoidance. Due to the topological obstruction of bounded obstacles in the state space, discontinuous feedback laws and subsequently nonsmooth CLFs and CCLFs need to be considered to guarantee asymptotic stability and obstacle avoidance simultaneously (Liberzon, 2003, Chapter 4). Related approaches combining Lyapunov func-tions with control barrier functions or methods using socalled artificial potential fields concentrate on smooth representations and consequently do not consider discontinuous feedback laws. Control barrier functions in the context of dynamical systems were introduced in Wieland and Allgöwer (2007) as a certificate to ensure obstacle avoidance, or equivalently to ensure that a given set of unsafe states is never entered. Since in general control barrier functions are assumed to be smooth, articles combining ideas of Lyapunov functions and control barrier functions (such as [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF], [START_REF] Ngo | Integrator backstepping using barrier functions for systems with multiple state constraints[END_REF] or Tee et al. (2009)) cannot be used for controller design guaranteeing obstacle avoidance of bounded obstacles and asymptotic stability. Artificial potential fields in the robotics literature date back to the work in [START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF], [START_REF] Khatib | Real-Time Obstacle Avoidance for Manipulators and Mobile Robots[END_REF], and with a recent relevant contribution in [START_REF] Paternain | Navigation functions for convex potentials in a space with convex obstacles[END_REF]. Artificial potential fields define smooth Lyapunov-like functions whose gradient is used to ensure obstacle avoidance and asymptotic stability. However, due to the assumption of a smooth function, it is well known and acknowledged in the literature that avoidance and stability can at best be guaranteed for sets excluding a set of measure zero in the state space but not for every initial value. Additionally, artificial potential fields are generally constructed for fully actuated systems. Underactuated systems where it is only possible to manipulate the dynamics in the direction of subspaces of R n are only partially covered. The contributions of this paper are as follows. In Section 2.2 nonsmooth CCLFs as an extension of CLFs are intro-duced providing the possibility to incorporate (bounded) obstacles in the formulation of dynamical systems. Additionally, we show that the existence of a CCLF implies obstacle avoidance and asymptotic stability of the dynamical system before we discuss the necessity of nonsmooth CCLFs via several examples. In Section 3 we propose a possible form of a CCLF by combining several smooth functions. Additionally we show under which conditions this construction leads to a CCLF for linear systems but also highlight the difficulties in the design process. We use the following notation. For x, x ∈ R n we define |x| = n i=1 x n i and |x| x = |x -x|. B r (x) = {y ∈ R n : |y| x < r}, r > 0, denotes an open ball and B r (x) denotes its closure. K, K ∞ and KL are the standard notations for comparision functions and P denotes the class of positive definite functions (see Braun et al. (2018a), for example).

NONSMOOTH COMPLETE CONTROL

LYAPUNOV FUNCTIONS

Mathematical setting

We consider differential inclusions ẋ ∈ F (x)

(1) where F : R n ⇒ R n . An absolutely continuous function

x : R ≥0 → R n is a solution of the differential inclusion (1) from initial condition x(0) ∈ R n if ẋ(t) ∈ F (x(t)) for almost all t ∈ R ≥0 .
In a common abuse of notation, we use x and x(•) to denote points in R n and solutions to (1). Additionally, S(x) denotes the set of solutions starting at x = x(0). To ensure existence of solutions of (1) we make the following standard assumptions. Assumption 1. Consider the set-valued map F : R n ⇒ R n with 0 ∈ F (0). We impose the following conditions on F : (i) (Regularity) F has nonempty, compact, and convex values on R n , and is upper semicontinuous, i.e., for all ε > 0 there exists a δ > 0 such that ξ ∈ B δ (x) implies F (ξ) ⊂ F (x) + B ε (0). (ii) (Local boundedness) For each r > 0 there exists

M > 0 such that |x| < r implies sup w∈F (x) |w| ≤ M . (iii) (Local Lipschitz continuity) For each x ∈ R n \{0}
there exists a constant L > 0 and a neighborhood

x ∈ O ⊂ R n such that F (x 1 ) ⊂ F (x 2 ) + B L|x1-x2| (0) for all x 1 , x 2 ∈ O.
Assumption 1(i) ensures that the set of solutions S(x) is nonempty. Since we will discuss nonsmooth functions in the following, we use the (lower right) Dini derivative to extend the directional derivative to nondifferentiable functions. For a Lipschitz continuous function ϕ :

R n → R the Dini derivative in direction v ∈ R n , is defined as dϕ(x; v) = lim inf t 0 1 t (ϕ(x + tv) -ϕ(x)). If ϕ : R n → R is continuously differentiable on a neigh- borhood containing x ∈ R n , then dϕ(x; v) = ∇ϕ(x), v .
holds. A Lipschitz continuous function is continuously differentiable almost everywhere due to Rademacher's theorem. It was shown in [START_REF] Sontag | A Lyapunov-like characterization of asymptotic controllability[END_REF] that weak KL-stability (phrased as an asymptotic controllability property of a controlled differential equation) is equivalent to the existence of a continuous CLF. Subsequently, and independently, [START_REF] Rifford | Existence of Lipschitz and semiconcave control-Lyapunov functions[END_REF] and [START_REF] Kellett | Uniform asymptotic controllability to a set implies locally Lipschitz control-Lyapunov function[END_REF] (see also [START_REF] Kellett | Weak converse Lyapunov theorems and control Lyapunov functions[END_REF]) demonstrated the equivalence of weak KL-stability and the existence of a locally Lipschitz CLF. Definition 1. The differential inclusion (1) is weakly KLstable with respect to the origin if there exists β ∈ KL such that, for each x(0) = ξ ∈ R n , there exists x(•) ∈ S(ξ) so that |x(t)| ≤ β(|ξ|, t) for all t ≥ 0. Theorem 1. (Nonsmooth CLFs). Suppose F satisfies Assumption 1. Then the differential inclusion (1) is weakly KL-stable with respect to the origin if and only if there exists a Lipschitz continuous CLF V : R n → R ≥0 , α 1 , α 2 ∈ K ∞ , and ρ ∈ P such that

α 1 (|x|) ≤ V (x) ≤ α 2 (|x|), ∀ x ∈ R n
(2) and for each x ∈ R n there exists w ∈ F (x) such that dV (x; w) ≤ -ρ(|x|).

(3)

Complete control Lyapunov functions

In this subsection we extend Definition 1 to incorporate avoidance properties in the stability definition. 1) is weakly KL-stable with respect to the origin with avoidance property with respect to O, if there exists β ∈ KL such that, for each ξ ∈ R n \O, there exists

Definition 2. Let O ⊂ R n , 0 / ∈ O, be open. The differential inclusion (
x(•) ∈ S(ξ) so that |x(t)| ≤ β(|ξ|, t) and x(t) / ∈ O ∀ t ≥ 0.
Though not stated explicitly here, we assume that O is nonempty. In the case where O = ∅, Definition 2 reduces to Definition 1. Since weak KL-stability can be equivalently concluded from the existence of a CLF, we consider an extension of CLFs appropriate for Definition 2. Definition 3. (CCLF). Suppose that F satisfies Assumption 1.

For i ∈ [1 : N ], N ∈ N, let O i ⊂ R n be
open sets and let V C : R n → R be a Lipschitz continuous function.

Assume there exist α 1 , α 2 ∈ K ∞ and ρ ∈ P such that the following properties are satisfied:

(i) For all i = [1 : N ], there exist c i ∈ R such that V C (x) = c i ∀x ∈ ∂O i and c i ≤ min x∈Oi V C (x) (4) (ii) V C is positive definite and radially unbounded, i.e., α 1 (|x|) ≤ V C (x) ≤ α 2 (|x|). ( 5 
) (iii) For each x ∈ R n \ ∪ N i=1 O i there exists w ∈ F (x) such that dV C (x; w)) ≤ -ρ(x). (6) Then V C is called a Complete Control Lyapunov Function (CCLF).
Without loss of generality, we assume that

c i > 0 for all i ∈ [1 : N ]. If c i = 0 for some i ∈ [1 : N ], then the radial unboundedness of V C implies that ∂O i = {0} or ∂O i = ∅ and thus O i = R n \{0} or O i = R n .
In both cases, the assumptions on the functions involved in Definition 2 and 3 can be trivially satisfied. Theorem 2. Consider the differential inclusion (1) satisfying Assumption 1. Additionally, let

O i , i ∈ [1 : N ], N ∈ N,
be open sets and let V C : R n → R be a CCLF according to Definition 3. Then the differential inclusion ( 1) is weakly KL-stable with respect to the origin and has the avoidance property with respect to

O = ∪ N i=1 O i .
The proof of Theorem 2 can be obtained by making minimal changes to the proofs of (Braun et al., 2018a, Thm. 4.11 and Thm. 4.12). For completeness, we report the proof of Theorem 2 in Appendix A. Theorem 2 provides the opportunity to incorporate constraints in the Lyapunov framework. In particular if the state space is constrained and contains unsafe states or obstacles D ⊂ R n which need to be avoided, CCLFs provide a tool to ensure the existence of a solution x(•) ∈ S(x) of system (1) such that x( 

Necessity of nonsmooth CCLFs

In the case of bounded obstacles, i.e., bounded sets O i , i ∈ [1 : N ], the use of nonsmooth functions V C is essential. This point will be made more precise in this section, before we propose a particular form of candidate CCLFs.

Lemma 1. Let O i ⊂ R n , i ∈ [1 : N ], N ∈ N be open.
Assume that V C is a CCLF according to Definition 3 and assume that there exists i ∈

[1 : N ] such that O i is bounded. Then there exists x ∈ R n \ ∪ N i=1 O i ∪ {0} such that the gradient ∇V C (x) is not defined.
The result is an immediate consequence of (Braun and Kellett, 2018, Thm. 1) which shows that a smooth function V C satisfying (4) and ( 5) needs to have a critical point

x ∈ R n \ ∪ N i=1 O i ∪ {0}
with ∇V C (x) = 0 and thus condition ( 6) cannot be satisfied. The necessity of a nonsmooth function due to topological obstructions is also discussed in (Liberzon, 2003, Chapter 4) in the necessity of discontinuous feedback laws. To illustrate this problem consider the function V : R n → R, V (x) = |x| 2 as a candidate CLF and an obstacle D = {x} consisting of a single point x ∈ R n \B √ π (0). Define the function

C D (x) = 1 2 1 + cos(|x| 2 x) , for |x| 2 x ≤ π 0,
for |x| 2 x > π which is continuously differentiable and has a global maximum C D (x) = 1. With λ > 0, the linear combination continuously differentiable, the function

V C (x) = V (x) + λC D (x), ( 7 
V C has a critical point in R n \ (O 1 ∪ {0})
, where the gradient of V and the gradient of λC D cancel each other (see (Braun and Kellett, 2018, Thm. 1)). Thus condition (6) cannot be satisfied.

In Figure 1 the level sets of function ( 7) for λ = 20 and x = ( √ π, 0) T are visualized. For the differential inclusion ẋ ∈ F (x) = B |x| (0), ( 6) is satisfied for almost all x ∈ R 2 . However, on the x 1 -axis there exists a point x ∈ R 2 where ∇V C (x) = 0 and thus a decrease cannot be obtained. This problem is closely related to the intuitive fact that on the x 1 -axis behind the set O 1 , a decision needs to be taken to avoid O 1 from above or from below. In ( 7), the goal is to define V so that it is a CLF for the differential inclusion without obstacles, whereas C D is designed to contain the obstacle in its superlevel sets. As also observed in the literature on artificial potential fields, V and C D cannot be constructed independently and highly depend on each other to avoid the existence of local minima in the function

V C . For example if the function V (x) = |x| 2 is replaced by V (x) = x 2
1 + 4x 2 2 , due to the shape of V and C D , a local minimum (and not just a saddle point) is created on the x 1 -axis.

NONSMOOTH CANDIDATE CCLFS

In this section we propose a possible form of a nonsmooth candidate CCLF. The critical condition for a function to be a CCLF is condition (6), which is discussed in Section 4 below for linear systems. For the construction we use ideas from the papers Braun et al. (2018b,c), which propose hybrid avoidance control laws for linear systems.

As in Braun et al. (2018b,c), the construction is based on avoidance points x ∈ R n \{0}. The open set O around the unsafe point then represents the obstacle that should be avoided. Here, we concentrate on a single avoidance point, (i.e., N = 1 in Definition 3) but observe that the considerations in this section carry over to the case with multiple unsafe points (obstacles). Following [START_REF] Braun | Explicit construction of robust avoidance controllers for linear systems[END_REF], given the unsafe point x ∈ R n \{0}, a parameter δ µ > 0, and a direction d ∈ R n , |d| = 1, we define the two shifted points c p = x -pδ µ d, for p ∈ {-1, 1}. (8) The direction d will be discussed in the subsequent section (see ( 20)). Consider the functions

C 1 (x) = -η 1 |x| 2 c1 + η 2 , C -1 (x) = -η 1 |x| 2 c-1 + η 2 ,
where η 1 , η 2 ∈ R >0 , and V (x) = |x| 2 , and combine them to form the candidate CCLF V C (x) = max{V (x), min{C 1 (x), C -1 (x)}}. (9) We assume that η 1 and η 2 are chosen such that V C (0) = 0 and are satisfied. This is always possible for large enough η 1 and η 2 . Because of the "max" in ( 9), this guarantees that 0 is a strict global minimum and x is a strict local maximum of V C . In Figure 2 an example of the function ( 9) with x = (1.5, 0) T , δ µ = 0.4, d = (0, 1) T , η 1 = 5 and, η 2 = 7 is visualized. The function in ( 9) is continuously differentiable almost everywhere. As compared to the continuously differentiable function visualized in Figure 1, the function in Figure 2 does not have a saddle point and thus (under the additional assumption that the right-hand side F (x) allows for it) provides the possibility to take a decision on the x 1 -axis using the Dini derivative as in (6).

V C (x) > V (x) (10) 
To compute the set where the gradient does not exist, we derive in the next lemma a second representation of the function V C defined in (9). Lemma 2. Consider the function V C defined in (9) with

η 2 > η1 1+η1 |c p | 2 , p ∈ {-1, 1}. Additionally consider the scaled points c * p := η1 1+η1 c p , p ∈ {-1, 1} (11) 
and the radius

r * := -η1 (1+η1) 2 c T p c p + η2 1+η1 . ( 12 
)
Then r * > 0 and the function V C can be rewritten as

V C (x) = C p (x), if x ∈ C * p , p ∈ {-1, 1} V (x), if x ∈ V, (13) 
where

C * p = {x ∈ B r * (c * p )|p(x -x) T d ≥ 0}, p ∈ {-1, 1}, (14a) V = R n \(C * 1 ∪ C * -1 ). ( 14b 
)
Proof. To establish the statements in the lemma we first compute the sets where the functions C 1 , C -1 and, V have the same value.

Case 1 (C 1 (x) = C -1 (x)): Since the constants cancel, we are left with the condition |x| 2 c1 = |x| 2 c-1 . With the definition of c p , p ∈ {-1, 1}, in (8), the left and the righthand sides can be expanded to

(x -c p ) T (x -c p ) = (x -x + pδ µ d) T (x -x + pδ µ d) = (x -x) T (x -x) + 2pδ µ (x -x) T d + 2δ 2 µ from which |x| 2 c1 = |x| 2 c-1 yields 2δ µ (x -x) T d = -2δ µ (x - x) T d. Therefore, since δ µ > 0, (x -x) T d = 0, (15) representing a hyperplane in R n orthogonal to d. Case 2 (V (x) = C p (x) for p ∈ {-1, 1}): By definition, this set is characterized by x T x = -η 1 (x -c p ) T (x -c p ) + η 2 which is equivalent to (1 + η 1 )x T x -2η 1 x T c p = η 2 -η 1 c T p c p .
Dividing by 1 + η 1 > 0 and reordering the terms leads to

x T x -2x T c * p = η2 1+η1 -c T p c * p with c * p defined in (11). Adding |c * p | 2 to both sides we get x -c * p T x -c * p = |c * p | 2 + η 2 1 + η 1 -c T p c * p (16) = -η1 (1+η1) 2 c T p c p + η2 1+η1 = (r * ) 2
, which is positive by the condition on η 1 and η 2 and can always be achieved by selecting η 2 large enough.

Note that ( 16) describes a sphere with center c * p = η1 1+η1 c p for p ∈ {-1, 1}. Based on Lemma 2, consider the strict inequality of the right bound ( 10) and the representation of V C in Lemma 2, which implies that x is in the interior of C * -1 ∪ C * 1 , and there exists r ∈ (0, r * ) such that the sets

C p = {x ∈ B r (c p )|p(x -x) T d ≥ 0}, ( 17 
) for p ∈ {-1, 1} satisfy C p ⊂ C * p . We may select O = int(C 1 ∪C -1 ) because for all x ∈ ∂O we have (using p = 1 if (x -x) T d ≥ 0 and p = -1 otherwise) V C (x) = C p (x) = η 2 -η 1 r 2 =: c as required by (4).
Since radial unboundedness of V C follows trivially from ( 9) and radial unboundedness of V , we have that V C is a candidate CCLF by satisfying items (i) and (ii) of Definition 3. Since item (iii) depends on the right-hand side F (x), in the next section we concentrate on item (iii) for a special class of differential inclusions.

CCLFS FOR LINEAR SYSTEMS

Linear control systems ẋ = Ax + Bu, x(0) ∈ R n (18) with A ∈ R n×n , B ∈ R n×m represent a special class of differential inclusions (1) where F (•) is defined by F (x) = conv({ξ ∈ R n |ξ = Ax + Bu, u ∈ U(x)}
) for all x ∈ R n and for U(x) ⊂ R m for all x. If the set of inputs U(x) is convex and compact for all x ∈ R n , then F satisfies Assumption 1. Assume first that the linear system (18) is fully actuated, i.e., B ∈ R n×n has full rank. Since in this case, it is possible to move in any direction with an appropriate input u (large enough but bounded), V C defined in (7) satisfies item (iii) of Definition 3 if it does not have local minima other than the origin. Expression (13) and the gradients of V and C p , p ∈ {-1, 1} reveal that no such local minimum can exist and thus V C is a CCLF. In a more challenging setting, consider a stabilizable linear system (18) with one-dimensional input u ∈ R, i.e., B ∈ R n×1 . Additionally, assume that V (x) = x T x is a Lyapunov function for the uncontrolled system and hence that matrix A T + A is Hurwitz. This assumption is not restrictive as argued in [START_REF] Braun | Explicit construction of robust avoidance controllers for linear systems[END_REF], because through an appropriate coordinate transformation and by redefining the input this condition can always be achieved for a stabilizable linear system. We derive conditions guaranteeing that the candidate CCLF defined in ( 9) is a CCLF for the linear system (18) and a neighborhood O around a given point x ∈ R n .

Theorem 3. Consider a stabilizable linear system (18) with one-dimensional input u ∈ R and assume that V (x) = x T x is a Lyapunov function for the unconstrained and uncontrolled system. Let

x ∈ R n \ span(B) (19) and define the projection and the corresponding direction

P x = I -1 xT x xx T , d = P x B |P x B| . (20) 
Then there exist parameters δ µ , η 1 , η 2 ∈ R >0 such that the control law

u(x) = - x-c * p ,Ax x-c * p ,B (21) 
is well-defined for all

x ∈ V ∩ C * p , p ∈ {-1, 1}. If additionally 0 > max x∈V∩C * p dV C x; - x-c * p ,Ax x-c * p ,B (22) 
for p ∈ {-1, 1} then V C defined in Lemma ( 13) is a CCLF according to Definition 3 for O ⊂ R n defined as a neighborhood around x.

The direction d defines the orientation of the hyperplane (15) and, by construction, xT d = 0 which simplifies the representation of ( 15) to {x ∈ R n |x T d = 0} and similarly the expressions of C p , C * p , p ∈ {-1, 1}, in ( 14) and ( 17). Moreover, d is aligned with the projection of B on the hyperplane P xx for x ∈ R n . For suitable non-controllable (but stabilizable) systems, it can be shown that condition 

= arccos

x,B |x||B| defines the angle between x and B. Thus α < γ is equivalent to condition (24) and ensures that C * p does not contain points x such that x -c * p and B are perpendicular. Note that r * can be made arbitrarily small by increasing η 2 for fixed η 1 . This implies that r * -δ * µ > 0 can be made arbitrarily small and therefore (24) can be achieved through an appropriate selection of δ µ , η 1 and η 2 . In Section 3 we have shown that item (i) and (ii) of Defintion 3 are satisfied for V C defined in (9) and appropriate parameters η 1 , η 2 and here we have shown that additionally condition (24) can be satisfied. Thus, we concentrate on the decrease condition (6) in item (iii) of Definition 3 in the following. For the proof, we use the representation of V C in (13) and in particular the definition of the sets (14) to verify (6) for all x ∈ R n .

Case 1 (x ∈ V): Since A T + A is Hurwitz by assumption, the input u = 0 satisfies dV C (x, Ax) = x T (A T + A)x < 0 for all x ∈ V. This implies that an appropriate function ρ ∈ P can be defined. 

(x) = 1-x-cp,Ax x-cp,B . (26) 
based on the condition d dt |x(t)| 2 cp = 2, i.e., u(x) is defined such that the distance to c p increases, and thus V C (x(t)) = C p (x(t)) decreases along trajectories x(t) ∈ C * p \(V ∪ C * -p ). Inequality (25) ensures that the control law is well-defined for all x(t) ∈ C * p . Case 4 (x ∈ C * -1 ∩ C * 1 ): On C * -1 ∩ C * 1 , the function V C is concave (and thus, in particular, semiconcave, see (Clarke, 2011, Sec. 5)) as the minimum of two concave functions C -1 (x) and C 1 (x). Thus, the control law (26) for p ∈ {1, -1} arbitrary ensures that ( 6) is satisfied on (C * -1 ∩ C * 1 )\x which concludes the proof. 2 

= max

x∈C * p x T (A T + A)x -2x T B x-c * p ,Ax x-c * p ,B (28) 
be satisfied.

NUMERICAL EXAMPLE Consider the linear system ẋ =

-1 0 -1 -1

x + 0 1 u with three obstacles x1 = (1, 0) T , x2 = (-1, 1) T and x3 = (-0.5, -1) T . The matrix A T + A has the eigenvalues -1 and -3, i.e, the origin of the uncontrolled system is stable and V (x) = x T x is a CLF. We define the CCLF (7) through the parameters η 1 = 35, η 2 = 30 for all three obstacles, and δ µ,1 = 0.2, δ µ,2 = 0.7 and δ µ,3 = 0.85. Condition (24) for the three obstacles is satisfied through 

CONCLUSIONS

In this paper we discuss an extension of classical Lyapunov theory to incorporate bounded obstacles in the formulation of CLFs. Our constructions for linear systems, in particular due to the consideration of nonsmooth functions, show the difficulties in the verification of candidate CCLFs. Future work will thus concentrate on constructive methods in the CCLF design for more general classes of systems.

Fig. 1 .

 1 Fig. 1. Visualization of the continuously differentiable function V C defined in (7) with a saddle point x on the x 1 -axis. The boundary of a potential open set O 1 is visualized in red.

Fig. 2 .

 2 Fig. 2. Visualization of the function V C defined in (9) for the parameters x = (1.5, 0) T , δµ = 0.4, d = (0, 1) T , η 1 = 5 and η 2 = 7. The black lines indicate its nonsmooth domains. The boundary of a potential open set O is visualized in red.

Fig. 3 .

 3 Fig. 3. Visualization of the relation between the angle γ and the angle α. To ensure that x -c * p , B = 0 for all x ∈ C * p it is sufficient that α < γ holds.be satisfied. To see this, observe that α := arccos δ * µ /r * defines the maximal angle of a tangent vector of x ∈ C * p

  Case 2 (x ∈ V ∩ C * p , p ∈ {-1, 1}): If condition (24) is satisfied, the control law (21) is well-defined on C * p and (22) ensures a decrease. Case 3 (x ∈ C * p \(V ∪ C * -p ), p ∈ {-1, 1}): Due to the selection of r ∈ (0, r * ) to define C p in (17) and due the definition of δ µ in (23) and property (24), the estimate to control law (21), we define u

Fig. 4 .,

 4 Fig. 4. Visualization of the function V C defined in (13) on the right. On the left, boundaries of the of the sets (14) (black), boundaries of potential sets O i , i = 1, 2, 3, (red) and the subspace span(B) (blue) are visualized.Remark 1. Due to the properties of the control law (21), it holds thatdV C x; -x-c * p ,Ax x-c * p ,b = dV x; -x-c * p ,Ax x-c * p ,b , ∀ x ∈ V ∩ C * p .From the proof of Theorem 3 it follows that welldefinedness of (21) in V ∩ C * p implies well-definedness of (21) in C * p . Thus, for (22) to be true, it is sufficient that 0 > max x∈C * p

  angle between the reference points x and the direction B, the smaller the open domain O needs to be. Condition (22) is verified by solving the optimization problem (28) using fmincon in Matlab and we can conclude that the function V C is a CCLF. The function V C is visualized in Figure 4 on the right. On the left, the boundaries of the sets defined in (14) are highlighted in black. Possible boundaries of the sets O are shown in red and the blue line visualizes the subspace span(B) in (19).

  •) converges to the target (the origin) while avoiding the obstacles or unsafe states D ⊂ O for an appropriately chosen set O. While the set of unsafe states D is given, the open set O can be used as a design parameter. If D ⊂ O holds and if avoidance and convergence according to Definition 2 is satisfied for all initial values x ∈ R n \O, then it is also ensured that the set D is never entered. An immediate application of CCLFs is obtained by considering level sets of CLFs. Let D ⊂ R n \{0} be an arbitrary closed set and let V be a CLF satisfying the assumptions of Theorem 1 (i.e., with respect to the unconstrained setting). Since, D is closed and 0 / ∈ D by assumption, there exists c > 0 such that {x ∈ R n |V (x) ≤ c} ∩ D = ∅. Thus we can define the open set O = R n \{x ∈ R n |V (x) ≤ c}, which clearly satisfies D ⊂ O and due to the properties of a CLF, V is a CCLF with respect to the open set O. This common practice of restricting the domain of a LF or CLF to a sublevel set, and thus a forward invariant set, is quite straightforward. However, the definition of CCLFs in Definition 3 is more general and capable through nontrivial constructions, discussed in the next sections, to handle bounded open sets O.
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Appendix A. PROOF OF THEOREM 2

We adapt the proofs given in (Braun et al., 2018a, Thm. 4.11, Thm. 4.12). The proofs in Braun et al. (2018a) themselves rely on arguments used in [START_REF] Clarke | Asymptotic stability and smooth Lyapunov functions[END_REF] and [START_REF] Lakshmikantham | Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations[END_REF]. Additionally, we use the notation φ(•, x) : R ≥0 → R n to denote a solution φ(•, x) ∈ S(x) of the differential inclusion (1).

Proof. We define the set-valued map

Since ρ ∈ P and V C (x) > 0 for all x = 0 it holds that γ(|x|) > 0 for all x = 0 and γ(0) = 0. We define

3) for almost all t ∈ R ≥0 . We apply the comparison principle (see (Sontag and Wang, 2000, Lemma A.4), for example) which provides a function β ∈ KL such that V C (φ(t; x)) ≤ β(V C (x); t) and

To complete the proof, we need to show that the pointwise condition (6) ensures that for all x ∈ R n there exists φ(•; x) ∈ S(x) such that the estimate (A.3) is satisfied for almost all t ∈ R ≥0 . We assume to the contrary, that there exists an x ∈ R n \ ∪ N i=1 O i and a Γ > 0 such that all solutions φ(•; x) ∈ S(x) satisfy

for almost all t ∈ [0, Γ] and w(0) = w (and w(t) ∈ F (φ(t; x))). Note that φ(•; x) is Lipschitz continuous. From the assumed condition (A.4) and 1 2 ρ(|φ(t; x)|) < ρ(|x|), we obtain the condition

Since the left-hand side is Lipschitz continuous, we can take the limit inferior for t → 0 on both sides, which contradicts (A.5) and thus the assumption (A.4) was wrong. This implies that for all x ∈ R n \ ∪ N i=1 O i there exists a φ(•; x) ∈ S(x) such that the decrease condition (A.3) is satisfied for all t ∈ [0, Γ] where Γ > 0. Since this argument can be applied iteratively to the initial value φ(Γ; x), there exists a solution φ(•, x) ∈ S(x) such that (A.3) is satisfied for all t ≥ 0.

2