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This paper deals with the analysis of an unsteady evaporating droplet, in connection with combustion 

instabilities in rocket engines. We first present a bibliographic survey. We then obtain an analytical solution 

in the frequency domain using the Heidmann analogy of a spherical droplet of constant volume, which 

represents a mean droplet at a fixed place in a chamber, in the steady regime. For the case of a moderate 

characteristic time of liquid thermal conduction compared to the droplet lifetime, we show that, for small 

perturbations, the knowledge of the response factor makes it possible to determine exactly the amplification 

zone in the frequency domain. We first consider the simplification of Heidmann and Wieber, for which the 

droplet has a uniform temperature. We then present a new analysis, in which the finite thermal diffusivity of 

the liquid is taken into account. We find strong differences compared to the results of the preceding model. 

For the purpose of implementation in a numerical code, we derive a thermal transfer model with n discrete 

layers. For the case n=2 we verify that this model can be optimized by adjusting the volumetric ratios 

between layers. Finally, the quasi-steady equations of the gas phase are presented in the appendix. 

 

 

Nomenclature 
 

A, B  = coefficients in the transfer function 





ccb

ba

,,

,,
 = coefficients defined in Appendix 

MT BB ,   = Spalding coefficients for heat and mass transfer 

c   = chamber (conditions at infinity) 

cp, cL  = heat capacity of the gas at constant pressure, heat  

  capacity of the liquid 

D  = mass diffusion coefficient 

   F  = droplet constituent 

f  = arbitrary quantity 

h  = height 

i  = time index during navigation 

j  = index of chemical species 

k  = heat conductivity 

l   = latent heat per unit mass 

L  = liquid phase 
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M = mass of a droplet 

M  = vaporization rate of an evaporating droplet 

N = response factor 

p = pressure 

Q  = heat flux  

r = radius 

T = temperature in K 

t = time 

u = reduced frequency v  

Y = mass fraction 

Z = transfer function 









,

,,
= coefficients defined in Appendix 

β = heat exchange coefficient 

  = volume ratio in the 2-layer model 

  = time ratio Tv  ~/  

κ = heat diffusivity  

  = density 

v  = average residence time of a Heidmann droplet 

TT  ~,  = heat transfer characteristic times 

  = phase difference 

ω = pulsation of a wave 

I. Introduction 

 

The thermal exchanges inside propellant droplets have an important effect on their transient evaporation 

behavior and eventually on engine stability. In rocket engines, they occur in particular in the following 

cases: 

1. After injection, fuel or oxidizer liquid droplets are not stabilized. Liquid droplets are generally injected 

into a gaseous environment having a different temperature, pressure and velocity. A relaxation time is 

then necessary for a droplet to reach a stabilized situation. At the end of this relaxation period, the 

velocities of gas and liquid are equal, and the droplets reach a uniform temperature equal to the 

temperature of saturated vapor at the liquid surface.  

Sometimes, the droplet lifetime is too short to reach these stabilized conditions. It is thus possible for 

them to remain in a transient situation for temperature or/and for velocity.  

2. Even for stabilized droplets, acoustic waves generated by the engine may cause departure from the 

stabilized state. The subsequent vaporization and combustion dynamics can contribute to a high frequency 

instability of the whole chamber. Indeed, high frequency combustion instability in liquid propellant rocket 

engines results from a coupling between the combustion processes and the chamber acoustics. It has been 

shown in previous studies [1, 2] that in liquid rocket engines, the acoustic periods of the chamber modes 

(about 10-4 to 10-3 s) may be of the same order of magnitude as the characteristic times of vaporization 

and combustion, whereas the primary and secondary atomization phenomena intervene at smaller time 

scales. Many papers about this subject have been published. Let us cite Bhatia & Sirignano [3], 

Delplanque & Sirignano [4,4], DiCicco & Buckmaster [6], Dubois et al. [7], Duvur et al. [8]; Fachini [9]; 

Heidmann & Wieber [10], Heidmann [11], Laroche et al. [12], Sirignano et al. [1]; Tong & Sirignano 

[13], Wieber & Mickelsen [14], Williams [15].  

We consider the case of a velocity-stabilized and uniform temperature spherical droplet in an infinite 

atmosphere. The effect of a non uniform internal temperature has only a minor influence on droplet 

dynamics (we have verified this fact by an investigation which is not presented in this paper). 
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Following the well-known Rayleigh criterion [16], unsteady droplet evaporation and burning could be 

one possible driving mechanism of instability [17,18]. To investigate this possibility, we will look for the 

response factor, defined as the ratio of evaporating mass flow rate perturbation to the pressure or velocity 

perturbation.    

Of course, the complete prediction of the effect of an acoustic excitation on a burning spray of 

propellant droplets will need to model properly combustion dynamics. In this study, we will be concerned 

only with vaporization dynamics. In this study, we will be concerned only with vaporization dynamics. 

The influence of combustion will be limited to imposing a stationary composition and temperature at 

infinity. The combined effects of vaporization dynamics and combustion kinetics, and their eventual 

retroaction on ambient pressure will not be analyzed here.   

We will consider an evaporating droplet submitted to an acoustic field with two main objectives:  

1) to build a reference analytical linear model for small perturbations (which we will call the “continuous 

model”), and 2) to build discrete models aimed at treating linear or nonlinear situations in codes for 

computational fluid dynamics and turbulent combustion. 

We will assume that the gas phase is in the quasisteady regime, as was done in many previous 

investigations of the transient behavior of spherical droplets (see for example Crespo & Liñan [19], 

Lefebvre [20], Strahle [21]). This supposes that the gas phase has a very short response time, whereas for 

the liquid phase, unsteady evolutions must be considered. 
 

II. Hypotheses of Heidmann and Wieber  
 

A. Droplet Continuously Fed by a Steady Flow 

In a liquid propellant rocket combustion chamber, the fuel and the oxidizer are usually injected in the 

form of droplets with a convenient mass flow rate. These droplets then vaporize and the gaseous fuel 

burns in contact with the gaseous oxidizer. The study of the evolution of moving droplets submitted to an 

acoustic field during their residence time in the chamber is a complex problem. We therefore adopt a 

simplified approach, to establish an analytical model in the frequency domain for an isolated droplet. This 

simplified model can help the comprehension of physical phenomena, and will also be the basis for 

validating discrete computation fluid dynamics (CFD) models. Following Heidmann and Wieber [10] and 

Heidmann [11], we adopt the analogy of a constant volume evaporating droplet (at rest with respect to the 

mean flow, in a first approach), continuously fed by a steady flow. This droplet represents a mean droplet 

at a specified location in the combustion chamber. In the steady chamber regime, there is a continuous 

flow of fuel droplets through the combustion chamber. At a given location the mean droplet diameter can 

be considered as being independent of time, because the droplets are continuously replaced.  

The considered evaporating droplet has a constant average radius sr , and is continuously supplied by a 

stationary mass flow-rate M (Fig.1).  The droplet can be fed at different places by fuel at the average 

temperature ST , with the average mass flow rate M .  The total mass balance of the droplet is: 

 

 MMdtdM  −=/  (1) 

In steady state, one has: MMdtdMMM == ,0/, .  If the thermal conductivity of the droplet is 

infinite, the droplet has a uniform temperature equal to its surface temperature 
ST , independent of the 

manner in which the droplet is fed.  

 For case of a finite conductivity the situation is different. In this case two characteristic times 

intervene: a residence time in the droplet MMv
/=  (which replaces notion of droplet life time in the 

present situation of constant diameter) and a transfer time for thermal diffusion 
LST r  /

2

= , where the 

thermal diffusivity of the liquid is 
LLLL ck  /= . One can estimate that the conduction mode will 

dominate if 
vT   . The case of infinite thermal conductivity of the drop is the limiting case for this 
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configuration, and leads to 
Sl TT  .  On the contrary, for 

vT    the convection of fuel will be dominant. 

The two modes will coexist for vT   . We will define the timescale ratio 
Tv  /9=  (the coefficient 9 

permits to obtain later a simple expression of the transfer function). 
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Fig. 1 a) Boundary conditions of a vaporizing droplet. The subscript C  designates the conditions at infinity (i.e.  the 

combustion chamber.)  b) Droplet of radius rS, continuously supplied by a mass flow rate of liquid fuel M . 

 

B. Response Factor 

Heidmann and Wieber [10] considered a droplet submitted to a pressure perturbation. The response is 

then the resulting heat or mass perturbation. The reduced pressure perturbation is defined as 

( ) ppp'p −= , and the resulting reduced heat or mass perturbation is ( ) qqq'q −= .  

The response factor N is defined as: 

 ( ) ( ) ( )( ) V,',','
,

2

,

ddttVpdVdttVptVqN
tVtV

=  (2) 

For sinusoidal oscillations, ( ) cosˆˆ pqN = , where pq ˆ,ˆ  are the moduli and   is the phase 

difference between q’ and p’.  An example of a droplet submitted to periodic oscillations is the following: 

the droplet is located at a velocity node and pressure and temperature anti-node of a standing wave in a 

closed cavity. In this case there is no external flow near the droplet. But the case of a velocity anti-node 

corresponds to a possible situation and may also be considered. 
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C. The droplet with Uniform Temperature 

 

The most extreme simplification consists in assuming an infinite thermal conductivity (i.e. 0=T ), 

which leads to a droplet temperature that is uniform, but variable in time. We then have (cf. Heidmann 

and Wieber [10], Chin & Lefebvre [22]), 

 
L

S

L Q
td

Td
cM =        (3) 

where 

 

cL
is the specific heat of the liquid.  

Consider now small acoustic perturbations, writing fff +=  where f  is a flow parameter, f  is 

the absolute perturbation, and ff'f =  is the corresponding relative perturbation.  

We suppose that the evaporation at the surface is always at equilibrium. However, because the 

temperature is variable, the partial pressure of species F varies with time, and thus the concentration FSY  

adapts itself to the temperature variations. The linearized equation for the heat absorbed by the liquid is 

simply  

 
LSSL QdtdTTcM =/'  (4) 

For harmonic perturbations of the form ( ) tierff ˆ'= , the last equation becomes  

 
SSLL

T̂iTcMQ̂  =  (5) 

Eliminating LQ̂ and ST̂  between the last equation and the equations for the gas [Eqs. (A.7) and 

(A.8)], given in the appendix, one obtains the following transfer function:  

 
iuB

iuA

iu

iu

p

M
Z

C +

−

+
==

1ˆ

ˆ
1

1




   (6) 

       

with 
v

u 3= , ( ) 
SL

Tc,µB,µbaA ==−=  33  (the parameters a , b , µ  and   are defined in 

the appendix). The real part of 
1Z  and its phase 

1  may be written in an explicit form: 

( ) ( )( )22222

1 1// uBuuBAABuN ++−++= ,   ( ) ( ) ( )BuuAu /arctanarctan/arctan2/1 −−−+= . Fig. 2 

shows the transfer function given by equation (6). The cut-off frequency (corresponding to 01 =N ) is 

given by: BAABuc ++=2

1 . 

Remark 1: If A>0 and B>0, which is true for all practical cases we have encountered until now, we can 

deduce that: 

1) For the case 1=


SL Tc
 , corresponding to a large value of the liquid heat capacity compared 

to the latent heat, 


ba
BAuc

32

1 =+  will have a small positive value, and thus usual frequencies will 

have the same effect as very high frequencies, so we will have 11 −Z , meaning that evaporation has a 

damping effect; 

2) In the opposite case <<1, ABuc 2

1  will be proportional to 
2− , and thus have a large positive 

value; as a consequence for usual frequencies, we will have 0)Re( 1 Z , meaning that the evaporation 

mechanism will have an amplifying effect. 
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 As a synthesis, we remark that in the case of an infinite internal conductivity, the only coupling 

mechanism related to the droplet heating is controlled by the ratio 


SL Tc
=  of the heat capacity to the 

latent heat. For example, a small value of the heat capacity in comparison to the latent heat will tend to 

enlarge the amplification range in the frequency domain.  

Remark 2: In their analysis, Heidmann & Wieber [10] suppose that the variations of the latent heat of 

evaporation   with perturbations to the drop temperature are negligible (corresponding to the equation 

'
2

' S

S

T
cT

c
l

−
−= , given in the appendix, with c=0). They adopt a Sherwood number Sh proportional to 

 

rs pC( )
1

2 , because they consider the presence of an external flow (in the present case we have Sh=2). Their 

expression for the mass flow rate is obtained for equal molar masses 

 

MA = MF
 and for a zero 

concentration of fuel at infinity, 

 

YFC = XFC = 0. The Lewis number is taken equal to unity. With these 

hypotheses, if we substitute the following relations into our equations presented above and in the 

Appendix: 

 

1+ BM = pL pC − pL( ), 

 

 = pL pC − pL( )  ln pC pC − pL( ) , and 

 

 =1+ B M = p L p C − p L( ) (Cf. the Appendix for the definitions of 
MB , α  and  ), we recover the 

results of Heidmann and Wieber [10].  

 

  

a)  

 

b) 
 

Fig. 2 Oxygen in water vapor at 10 bar and 3200 K, YAC=0.9, A=6.786, B=319.81, =4.5067: 

 a) Z1 function (Eq. 6).  b) Real part of Z1 as a function of reduced frequency u.  
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III. Continuous model with a finite thermal diffusivity  

 

Let us recall that our first objective is to build an analytical linear reference model for small 

perturbations. To assess the influence of the thermal wave inside the droplet on the unsteady evaporation 

mechanism, we abandon the Heidmann & Wieber [10] hypothesis of infinite liquid conductivity. 

Studying the thermal exchanges inside the droplet and considering a feeding at the center of the droplet, 

in the general case the effect of internal convection should be taken into account. However, in order to 

establish an analytical solution in the frequency domain, we will suppose that the thermal diffusion time 

is sufficiently small compared to the residence time (or equivalently that the parameter   defined in § 

II.A must be sufficiently high), that we can neglect the convective term in the energy equation of the 

droplet. 

 

A.  Energy Conservation Equation 

The temperature of the liquid is a function of space and time and verifies the equations 

 
( )

0
2

2

=



−




+





r

Tr

r

k

r

T
vc

t

T
c lLl

rLL
l

LL 

 ( ) 0,,,4 0

2 =



==




=r

l

SSlLr

l

LS
r

T
TtrTQ

r

T
kr

S
  

The central injection velocity is
24 r

M
cv

L

LLr





= , which leads to: 

( ) ( )
0

3
2

2

=











−




+





r

Tr

r

T

r

r
k

t

rT lls
L

l


, where we will neglect the convective term, because we 

have assumed that 1/9/9 2 == TvSvL r  . 

We thus have: 
( ) ( ) 040

0

2

2

2

=



==




=




−





=r

l

SSlLr

l

LS

lLl

LL r

T
,Tt,rT,Q

r

T
kr,

r

Tr

r

k

t

T
c

S

  (7) 

 

The temperature profiles in a spherical drop were previously obtained numerically or by series expansion, 

see Law & Sirignano [23]. Here we need a simple analytical model, and we will use the linearized 

continuity equations for small perturbations.  

 

B.  Linearized Equations of the Continuous Model 

For small perturbations, the equations of energy conservation can be written  

 
( )

( ) 0
'

,',',
'

4,0
''

0

2

2

2

=



==




=




−


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=r

l

SSlLr

l

SLS

lLl

LL
r

T
TtrTQ

r

T
Tkr

r

Tr

r

k

t

T
c

S
  (8) 

Introducing: ( ) tierff ˆ'= , we find a solution of the form  ( )rsrs

l
eeCT̂r 00

−
−= , with ( ) Lis  2/10 +=  

and )/(ˆ 00 SS rsrs

SS eeTrC
−

−= . Thus, we have 

 
SSLSL

T̂ETkrQ̂  4−=  (9)

  

where ( )SS rsrsE 00 coth1−= , with ( ) TvSvLS ruirs  /9/9,2/31 2

0 ==+= .  
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C.  Transfer Function of the Continuous model  

 Eliminating 
S

T̂  between Eqs. (9), (A.7) and (A.8), we obtain an expression for the complex transfer 

function CpMZ ˆ/
ˆ

=   

 ( ) ( )
( )uEB
uEA

ui
ui

u,Z




−
+

+
=

1
    (10)

  

where u, A and B have the same definition as in Eq. (6). In the limit of infinitely high values of  , one 

has ( ) uirsE
S

−=− 3
2

0
 and so 

1)()1/()( ZuiBuiuiAuiZ =++− , the transfer function 

already found in Sec. II.C for the case of a liquid with infinite thermal conductivity.  

 In the low frequency limit 00 →→ Z,u  and ( ) 0→= ZReN  , and in the high frequency limit 

( )1−→→ Z,u  and ( ) ( )1−→= ZReN  . 

The effect of arbitrarily changing the reduced exchange coefficient , is shown in Fig. 3.  
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Fig. 3 Influence of the reduced exchange coefficient   on the reduced response factor N/=Re(Z) of the 

continuous model in the case of  a LOX droplet in a O2/H2O mixture, TC=550K, pC=10b, YAC=0. 9, A=10.80, 

B=96.09, 0=10.23, =1.790 

 

The curves of Fig. 3 show that for each value of the thermal exchange coefficient, the response factor 

starts from zero at zero frequency, presents a maximum and goes through zero at a cut-off frequency c u . 

Between u=0 and u=uc, the response factor is positive and the evaporation mechanism has a destabilizing 

influence. For u>uc the response factor is negative and evaporation has a stabilizing influence. The cut-off 

frequency uc is a function of . The value of   has a significant influence on the extension of the 

amplification domain. In the case of a liquid oxygen (LOX) droplet in a mixture of gaseous oxygen and 

water vapor at TC=550K, pC=10b, YAC=0. 9 (Cf. Fig.3), an increase of  (proportional to the thermal 

conductivity of the liquid) tends to increase uc.  

Remark 1: for  → ∞, one finds again for uc the result obtained in section II.C for a droplet with 

uniform temperature (Fig. 2b).  

Remark 2: the conditions of Fig. 3 have been chosen different from the conditions of Fig. 2, thus the 

values of the cut-off frequency can not be compared. The reason of this choice was the need to make the 
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reduced exchange coefficient  sufficiently high, so as to ensure that the hypotheses of the continuous 

linearized model are valid.  

Remark 3: whereas in the case of infinite conductivity the extension of the amplification range is 

mainly determined by the parameter  in the general case   intervenes as a complementary parameter.  

Remark 4: the above-mentioned results are in accordance with the feeling that increasing the 

dissipative phenomena inside the droplet will have a stabilizing effect, in comparison to the non-

dissipative case ( → ∞). Moreover, they confirm the need to model adequately the nonstationary heat 

transfer inside the droplet. 
 

IV. Multi layer model 

Our second objective is to build a discrete multi-layer model (called n-layer model) which can be 

implemented in a CFD code. Indeed, the continuous analytical model, presented above, can only be used 

in the limit of small perturbations, for 1θ , and in the framework of frequency domain calculations. 

We will now look for a linearized form of the n-layer model to validate it by comparison with the 

continuous model. However, we intend to use it finally in a non linearized form in a CFD code, in order 

to be able to treat strong perturbations leading to nonlinear responses. Moreover, let us clarify that we 

intend to implement the n-layer model into a CFD code without the hypothesis of constant diameter. 

A.  n-layer model 

The assumptions of the n-layer model are the following: 1) n layers of homogeneous temperature, and 2) 

Uniform internal conductivity inside the droplet.  
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Fig. 4 Heat exchanges in the n-layer model.  

 

1.  Balance equations 

The equations of the model are (Fig.4) 
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 (11) 

 

The fluxes 1, −jjQ  can be written: 
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 (12) 

The exchange coefficients j  can be evaluated. The concept of exchange coefficient consists in 

simplifying the definition of the heat flux through the surface, by writing that it is proportional to the 

difference in temperature between the considered surface and another more or less distant surface. It is 

possible to evaluate the heat exchange coefficient by means of some assumptions. For the exchange 

between the kernel at 
0T  and the first layer at 

1T , we easily obtain ( )01

2

010 /3 rrrrL −=  .  For the other 

coefficients, it is possible to compare the approximation of an exchange coefficient with the continuous 

purely conductive profile in the layer between jr  and 1+jr . The thermal profiles are, for :1+ jj rrr  

( )  ( )
jjjjjjjjjj rrrTTrrrTrTT −−−−= +++++ 11111 //  )(/)()/( 111 jjjjjjrr

rrrTTrdrdT
j

−−=→ +++

+

=
.   

Thus ( ) )/(4 111,1 jjjjjjLjj rrTTrrkQ −−= ++++  .  Let us calculate j . We have 

( ) ( )
jjjLLjjjjLjjjj TTcrrTTcMQ −−=−= +−++ 1

3

1

3

1,1 )()3/4(  . By comparison between these two 

expressions, one deduces ( )
jjjjjjLj rrrrrr −−= +−+ 1

3

1

3

1 )/(3 .  Setting 0,0 1 == −jrj , one finds again the 

expression for .0  

 

2.  Case of layers of equal volumes 

 For the case in which the n layers have the same volume, one can write: 

 

 
( )

( ) ( )2,13,22,1
2

0,11,2
10,10

,

...,,

−−−−−−
− −=−=

−==

nnL

L

S
nnnn

L

n

LL

QQ
Mc

n

dt

dT
QQ

Mc

n

dt

dT

QQ
Mc

n

dt

dT

Mc

Qn

dt

dT

 (13) 

 

with 10
1 3

1

, −






 +
= njforr

n

j
r snj

.  

We model the interface fluxes in this way: 

            ( )
jjLnjjj TTc

n

M
Q −= ++ 1,,1                 (14)  

and then sum up these fluxes, which leads to  

 

( ) ( ) ( )...../,/ 01,012,1101,00 TTTTdtdTTTdtdT nnn −−−=−=   

 and  

( ) ( ) LL

n

oj

jSnnnnnnnnnn McQndtdTTTTTTTdtdT //,with/
1

132,321,22 ==−−−= 
−

=

−−−−−−−−  . 

 

The previously defined heat exchange coefficients lead to the dimensionless relation  

( ) ( ) vnjnjnj jjn  ,,

313132

, 3,]21/[ =+−+=
−−

, with TvSvL r  ~//9 2 ==  as defined in 

Eq. (9). 

 

3.   Linearized equations of the n-layers model 
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For small perturbations, we can write: 

 

( ) ( ) ( ) ( )

( ) 
−

=

−−−−

−−−−

==−−

−=−−−=−=

1

132,3

21,2201,012,1101,00

/')/(,''with''

''/'...,''''/',''/'

n

oj

jSLLSnnnnn

nnnnnnnn

dtdTTnMcQTTTT

TTdtdTTTTTdtdTTTdtdT





 (15) 

 

The linear character of the equations induces the following form: '

,2,0

1

0

),,...,( Snnnn

n

j

j TuT −

−

=

=  . 

We calculate  
1

1

1111 11 −

−

−−−− +=+= nn

T

nn

T

nn eMX  using the matrix   
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( )
( )









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−

nnnnnn

nnnnnnnn
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nnnn
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n
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M

,2,3,3

,3,3,4,4

,2,2,1,1

,1,1,0,0

,0,0

,1
1

00

0

.....................

00

00

00...0

1

 
 

where      100,111,'/''/''/' 112101
 === −−−−

T

n

T

nSnSS

T
eTTTTTTX

n
.  

Setting ( ) tierf̂'f =  we find 

 

( ) ( ) ( )

( ) ( ) 
−

=

−−+ =−−−=

−−−=−=

1

0

1,11,

01,012,1101,00

ˆˆ,,ˆˆˆˆˆ

,ˆˆˆˆˆ,ˆˆˆ

n

j

jS
L

Ljjnjjjnjj

nnn

TiT
n

Mc
QTTTTTi

TTTTTiTTTi









 (16) 

 

 

4.  Transfer function of the Linearized n-Layer Model 

The transfer function Zn has been obtained in the general case [25] and calculated up to n=30. From 

Appendix AII [Eqs. (A.7) and (A.8)] and from Eq. (13) one deduces  

 

 

n
iuB

n
iuA

iu

iu

p

M
Z

n

n

C

n 




+

−

+
==

1ˆ

ˆ
1 

 , (17) 

where  is given by Eq. (A.5).  

We verify that the cut-off frequency of the n-layer model with equal volumes converges towards that of 

the continuous model when the number of layers increases, as shown in Fig. 5. 
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Fig. 5 Convergence of the n-layer model towards the continuous model for an increasing number of layers 

 (LOX droplet in a O2/H2O mixture, TC=550K, pC=10b, YAC=0. 9) 

 

It can be seen that satisfactory results are obtained only with a relatively high number of layers (about 

10), and that the convergence rate slows down with increasing n. Nevertheless, it is possible to improve 

convergence by considering layers of different volumes and optimizing the relative volumes. Note that 

the conditions of this convergence test have been chosen so as to make the reduced exchange coefficient  

sufficiently high, which guarantees that the linearized continuous model can be used as a reference model. 
 

B.  Two-Layer model 

The two-layer model is a particular case of the n-layer model with non equal volumes. We envisage 

this very simplified model for the purpose of low-cost calculations. The geometry of the two-layer model 

consists of two concentric spheres (Fig. 6). In the first one, of radius r0, the temperature is supposed to be 

uniform and equal to T0. Between the spheres of radii r0 and r1=rS the temperature is also uniform and 

equal to TS. Temperatures T0 and TS depend on time. Fig. 6 highlights the various heat exchanges. The 

equations of the problem are 

 
LS

S
LSSL QQ
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0 ,     (18) 

with  
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 (19) 

where L  is the liquid density. The heat exchange coefficient is  

 
( ) ( )

3

0

31322

0

2

0
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
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=
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=
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r
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
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
   (20) 

 

we thus obtain  

  ( ) ( )
( )

( )SC

T

T

LS

S
S

S TT
B

B

cM

M
TT

dt

dT
TT

dt

dT
−




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


−

+
+−

−
−=−= 1

1ln

1
, 0000

0




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


  (21) 
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Fig. 6 Heat exchanges in the two-layer model 

 

 

We evaluate the exchange coefficient 0 , as previously. Using Eq. (20) we can then obtain a relation 

between the approximate dimensionless exchange coefficient v03=  and the volume ratio: 

 ( )  =− 3132 1  (22) 

 used in the linearized theory below. 

In steady mode of pure conduction and for constant radii 0r and Sr , the temperature can be written 

( )  ( )00000 // rrrrrTTrTrTT SSSSS −−+−= )(/)()/( 000 rrrTTrdrdT SSSrr S

−−=→
=

.  

With ( )0

2

010 4 TTrhQ S −=  , one deduces ( )00/ rrrkrh SLS −= , ( ) )/(4 00010 rrrrTTkQ SSSL −−=  .   

With ( ) ( )00

3

000010 )3/4( TTcrTTcMQ SLLSL −=−=  , one deduces ( )0

2

00 /3 rrrr SSL −=  . Since, in 

addition, TvSvL r  ~//9 2 ==  and ( )0

2

0

3

.0 /3 rrrr SSv −==  , with ( )3

0 / Srr= , we finally 

obtain equation (22). 

 

1.  Linearized equations of the 2-layer model 

For small temperature perturbations, the above equations can be linearized and lead to: 

 ( ) ( ) L
S

SLS Q
dt

Td

dt

Td
TcMTT

dt

Td
=








−+−=

'
1

'
,''

' 0
00

0   (23) 

where 0  can be expressed as a function of  and  . Setting: ( ) tierff ˆ'= , we find 

 

( ) ( )( )SSLLS TTiTcMQTTTi ˆ1ˆˆ,ˆˆˆ
0000  −+=−=   

 

2.  Transfer function of the two-layer model  

The transfer function for the two-layer model is given by  

 
( )( )
( )( ) 2

2

2
1ˆ

ˆ
1

uiuBiu

uiuAiu

iu

iu

p

M
Z

C 



 +++

−−+

+
==


 (24) 

where ,,, BA  are the constant coefficients defined previously. The index of Z indicates the number of 

layers in the discrete model for thermal exchanges inside the liquid droplet. 
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As a first step, we will consider ,,, BA  as independent parameters [i.e., without Eq. (22)] for the case 

of a liquid Nusselt number equal to 2. The liquid Nusselt number Nu characterizes the degree of agitation 

inside the liquid droplet, which may be induced by a small velocity difference between droplet and gas, or 

by a non-homogeneous temperature at the droplet surface which can generate a Marangoni effect. For 

0=  (one layer, r0=0), we obtain again Z2=Z0. The cut-off frequency is thus 0cu . 

For 0,10 =  and , in this case there are two layers without any heat exchange, therefore: 

( )
( )

( ) ( ) 
( ) ( ) 2222

222

2

12 11

1
1
1

1 






−++

−−+−++
=

−+
−−

+
=

uBu

uBABAABuN
,Z

iuB
iuA

iu
iuZ  

 

and the reduced cut-off frequency becomes: ( ) ( ) 2

1

22

2 1/][ cc uBABAABu −+−++=  . 

Thus, for a given droplet radius, the absence of heat exchange between the two layers leads to an 

extension of the amplification domain. The limiting case 1=  corresponds to one layer without heat 

exchange. In this case, there is no cut-off frequency. In the general case of the two-layer model, we have 

10  .  

Taking now into account the relation (22) between   and , we obtain the results given in Fig. 7 for 

several values of  . From a qualitative point of view, the results are similar to those of Fig. 3 obtained 

with the continuous model. However, the stabilizing effect of thermal dissipation inside the droplet is 

under-estimated in comparison to the continuous model. 
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Fig. 7 Influence of the reduced exchange coefficient  on the response factor of the 2-layer model ( =0.6), for the same 

system as Fig. 3 (LOX droplet in a O2/H2O mixture, TC=550K, pC=10 bar, YAC=0.9,  0=10.23).  

 

To obtain results in good agreement with those of the continuous model, we have performed an 

optimization of the parameter . We can notice that we are in the same mathematical situation as the n-

layer model with layers of different volumes. 
 

3.  Optimization of the Volume Ratio in the Two-Layer Model 

The goal of the optimization of the 2-layer model is to obtain, for any set of conditions, a behavior 

comparable to the one of the continuous model by choosing the size of the accumulation nucleus. The 

optimization parameter is the volume ratio.  

We need to define a criterion to identify the best agreement with the continuous model. As a first 

criterion, it is important to find the best approximation for the cut-off frequency of the real part of the 
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transfer function, so as to correctly predict the frequency range of amplifying or damping effect of 

unsteady vaporization. A second criterion is the response in the complex plane, including both amplitude 

and phase response. A comparison of the responses is presented in Fig. 8, which shows that in our 

validation case, evaluated for a LOX droplet, the best approximation with the 2-layer model is obtained 

for a volume ratio between 0.5 and 0.7, whereas a model with 15 layers leads to a response much closer to 

the continuous model.  We estimate the distance in the complex plane between the response of the 2-layer 

model and of the continuous model, in the range of interest [0; usup], by a normalized mean quadratic error 

( )( ) ( )( )( )

100

1/1/
1

/

99

0

2

supsup2

max

max


=

=

+−+

=

j

j

juZjuZ

R
RErr , where maxR is the maximum value of the real part 

of the transfer function of the continuous model. By means of this distance, we can check if the discrete 

model properly restitutes the global effect in this frequency range. We used a hybrid algorithm combining 

both criteria to manage eventual multiple solutions by the first criterion. Figure. 9 shows an example of 

result (optimized volume ratio and precision) obtained by the optimized 2-layer model, respectively with 

the distance criterion and the hybrid algorithm, in comparison to the n-layer model. This comparison is 

done by observing the sensitivity to the internal conductivity. The reference case for this sensitivity 

analysis is the one of a LOX droplet in an atmosphere at 10 bar and 550 K. It can be seen that, in this 

case, the distance criterion and the hybrid criterion give very similar results, with acceptable error levels 

on the cut-off frequency but higher error levels on the normalized distance. However, the intrinsic 

drawback of the 2-layer model is that the optimization has to be performed for each set of chamber and 

propellants conditions. Concerning the n-layer model, tested here with 15 layers of equal volumes, we 

observe that its response is an order of magnitude closer to the continuous model, compared to the 

optimized 2-layer model. Moreover, this model does not need a systematic optimization, which is an 

important advantage. 

 

 

 
 

Fig. 8 Comparison in the complex plane of the responses of the different models (LOX droplet in a O2/H2O quiescent 

atmosphere, TC=550K, pC=10 bar, YAC=0. 9, reduced frequency range [0; 2 uc]). 
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Fig. 9 Comparison of the precision of the optimized 2-layer model and the n-layer model – Influence of the internal 

conductivity (Reference case k=k0: LOX droplet in a O2/H2O mixture, TC=550 K, pC=10b, YAC=0. 9)  

 

 

V. Conclusions 

An investigation of the unsteady evaporation of a propellant droplet submitted to an acoustic 

excitation, undertaken in the framework of liquid propellant rocket engines high frequency stability 

analysis, shows the importance of internal thermal exchanges. A continuous analytical model has been 

established in the frame of the Heidmann analogy, which represents a “mean droplet” at a fixed chamber 

location in the established regime. We have then developed a discrete n-layer model for implementation 

in a CFD code. This discrete model has been validated by comparison with the continuous model which 

can be considered as a reference in the limit of small perturbations and when the characteristic time of 

thermal conduction is much smaller than the droplet lifetime. We assume that the results of this validation 

remain valid outside the linear domain. 

The model with n layers of equal volumes is sufficiently precise for 10n , but the CPU cost will be 

relatively high. In order to obtain a better trade-off between precision and cost, we have considered a n-

layer model with a reduced number of layers in which the volume of each layer has to be optimized. This 

method has been tested with the 2-layer model.   

 This model of a droplet with two layers of optimized volume ratio reproduces the droplet response to a 

pressure perturbation in a reasonably realistic way, with a low CPU cost. However, the volume 

optimization has to be carried out for each situation, taking into account the flow conditions, the thermal 

properties of the propellants, chamber thermodynamics and chemistry, and atomization. 

 In the future, we intend to implement the multi-layer model (in a nonlinear form) into a CFD code and 

work on other aspects of the modeling in order to validate and optimize tools for an enlarged range of 

conditions. Specific aspects include 1) the influence of external convection, 2) the case where the 

characteristic time for thermal conduction is comparable to the droplet lifetime, and 3) the case of a 

velocity perturbation (an acoustic pressure node). 
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Appendix - Linearized Equations of the Gas Phase in the Context of Quasisteady Assumptions 

  

I.  Gas Phase Equations for Evaporation  

Let us consider the gas phase around a vaporizing droplet. The classical quasi-steady-state hypothesis 

can be extended to droplet vaporization in the presence of an external flow, with exchanges of mass, 

momentum and energy between the droplet and the external flow, as was done by Abramzon and 

Sirignano in [26]. The gas phase equations are modified to account for these exchanges. We suppose an 

ideal mixture of perfect gases.  

 This is nearly the classical problem ([27-29]) but with heat exchange between the gas and the liquid 

droplet. In the gas field, the solution of the diffusion equation is the same as the one without heat-up of 

the droplet, and gives for the mass flow rate of the droplet: 

 ( )MS BShrDM += 1ln*2   , with )1/()( FSFCFSM YYYB −−=  (A .1) 

where   is the gas density, D the mass diffusion coefficient, Sh* the Sherwood number introduced by 

Abramzon and Sirignano [26] in an extended film model, Yj the mass fraction of species j. The subscripts 

F, S, and C, represent respectively the fuel, the droplet surface and the conditions far from the droplet.  

On the other hand, solution of the conduction equation is modified because of the change of the 

boundary condition at the droplet surface. We introduce the heat flux 
LQ  which characterizes the heat 

given to the drop, in addition to that necessary for evaporation, and a Nusselt number Nu* (Note that, in 

the following, the Nusselt and Sherwood numbers will be both taken equal to 2). The mass flow rate is 

then given by  

 ( )TS

p

Bln*Nur
c

k
M += 12 , with ( ) )/( MQTTcB LSCpT

 +−=  (A .2) 

from which we can deduce ( ) ( )  /,1/ 00 SCpTTTL TTcBBBMQ −=−= . The Spalding parameters 
TB  

and 0TB  (noted so because is corresponds to the case 0QL= ) depend on the droplet temperature ST , on the 

temperature at infinity CT , on the gas specific heat at constant pressure pc , and on the latent heat per unit 

mass  . k is the heat conductivity of the gas, which can be replaced by an effective thermal conductivity 

as in [26]. The mass flow rate is related to the droplet mass M by  

 dtdMM −= , 
LSrM  3

3

4
=  (A .3) 

where t is the time and rS the droplet radius.  

The Spalding parameter for heat exchange
TB , defined by (A.2), is connected to the Spalding 

parameter for mass exchange
MB , defined by (A.1), by the following equation:  

 ( ) ( )MSTS

p

Bln*ShrDBln*Nur
c

k
M +=+= 1412       (A .4) 

which is derived from (A.1) and (A.2). So BT is a function of BM, which depends on the gaseous fuel mass 

fraction at the droplet surface (for a droplet and its surrounding atmosphere at rest, and if the Lewis 

number Le is equal to unity, we have
MT BB = ). This mass fraction is connected to temperature TS by the 

equilibrium relation between molar free energies of the liquid and the gas respectively: FL  = . When 

L  is function of T only, and for an ideal gas mixture, this leads to ( )SsatFS TpXp = , where p is the 

pressure, Xj is the molar fraction of species j in the mixture and where the saturated vapor pressure can be 

written [22] : ( ) ( ))/(exp cTbaTp SSsat −−= ,  with a, b and c constant coefficients. 

Then, we can relate 
FSY  to the surface molar fraction XFS, thus the surface mass fraction YFS appears as 

a function of surface temperature TS and total pressure p, which is assumed uniform and constant: 

( )pTfY SFS ,= . Thus BT and BM are function of TS only.  
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The latent heat itself is function of temperature and concentration at the surface. Indeed, from the 

Clapeyron relation, one has per mole of pure substance: ( )( )
sat

dTdppTRL 2= . This relation, applied here 

to the unit mass, and replacing the pressure by the partial pressure, gives  

( )2

2

cTM

TRb

SF

S

−
=  

where Mj is the molar mass of species j and A a diluted species (the gaseous mixture is made of A and F, 

the droplet is made of pure liquid F). As temperature and concentrations are not constant in the 

environment of the droplet, the averaged properties cp, k are evaluated at a reference temperature and 

composition ( )SCrS TTATT −+= , ( )FSFCrFSF YYAYY −+= , where 31=rA  is generally chosen. 

 

II.   Small Perturbation Equations of the Gas Phase 

Consider now small acoustic perturbations, writing fff +=  where f  is a flow parameter, f  is 

the absolute perturbation, and ff'f =  is the corresponding relative perturbation.  

We assume Heidmann’s configuration, i.e. a mean droplet fed by liquid F with a mass flow rate M  in 

the stabilized regime (Fig.1). The Eq. (A.3) is then replaced by Eq. (1). The velocity perturbation is 

assumed equal to zero and we look for the relation between the imposed chamber perturbation p’ and the 

resulting mass flow rate perturbation 'M . To do this, we have to write the equations of both the gas phase 

and the liquid. Here we derive the equations for the gas phase. The equations for the liquid phase where 

given in Sec. III. 

From: ( )MS BrDM += 1ln4  , with  

FS

FCFS
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−
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1
, 

we obtain 
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−
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The quantity
LQ , the heat flux for heating-up the droplet, is zero for the stabilized reference state. This 

precludes the use of a relative perturbation 'LQ , and it is necessary to keep the absolute perturbation
LQ . 

From: 22 )(/,]1/)([ cTMTRbllBTTclMQ SFSTSCpL −=−−=  , one deduces  
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Eliminating the intermediate parameters, one deduces 

 







−=+

dt

dp

dt

dT
b

M

dt

Md CS

v

''

3

''





 (A .5) 

with  

( ) ( ) ( ) ASAFSF

F

FCFSAS

FSAC

MM

M

XXYYY

YY

BlnB

B

MM

M

+−++
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M

M

+
==

1ln3
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


 

and 

 

 ( )'' ScL TµpaMQ −=   (A .6) 

with  


SL Tc

=  

 b
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TT
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SSC

S +
−

−
−

=
2

 

( )
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cT

T
b

S

S

2
−

=  





+

−

−
=

1
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C

TT

T
a  
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( )

( ) ( ) ASAFSF

F

FCFSAS

FSAC
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M

Le
MM

XXYYY

YY

B

B

Le

B

MM

M

+−
−+

+
=

−

11

1
1

1
1

 .  

For a Lewis number equal to 1 we have  

( ) ASAFSF

F

FCFSAS

FSAC

XXYYY

YY

MM

M

+−
= . 

For the case of harmonic perturbations one has: 
tief̂'f =  for any relative small perturbation and: 

ti

LL eQQ ˆ=  for the absolute heat flux perturbation. Consequently, the two equations of the gas phase 

become:  

 ( )
CS

p̂T̂b
iu

iuM
ˆ

−
+

=
1

  (A .7)  

with  vu 3=   

and  

 ( )
SCL

T̂µp̂aMQ̂ −=  . (A .8) 
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