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Abstract 

Plant responses to drought occur across many time-scales, with stomatal closure typically considered 
to be a critical short-term response. Recent theories of optimal stomatal conductance linked to plant 
hydraulic transport have shown promise, but it is not known if stomata update their hydraulic “shadow 
price” of water use (marginal increase in carbon cost with a marginal drop in water potential) over 
days, seasons, or in response to recent drought. Here, I estimate the hydraulic shadow price in five 
species – two semi-arid gymnosperms, one temperate and two tropical angiosperms – at daily timescales 
and in wet and dry periods. I tested whether the shadow prices varies predictably as a function of 
current and/or lagged drought conditions. Diurnal estimates of the hydraulic shadow price estimated 
from observed stomatal conductance, while variable, did not vary predictably with environmental 
variables. Seasonal variation in shadow price was observed in the gymnosperm species, but not the 
angiosperm species, and did not meaningfully influence prediction accuracy of stomatal conductance. 
The lack of systematic variation in shadow price and high predictive ability of stomatal conductance 
when using a single set of parameters further emphasizes the potential of hydraulic-based stomatal 
optimization theories.  
 

Introduction 
Stomatal response to environmental variation has a major influence on ecosystem carbon, water, and energy 

fluxes, and thus is important for global carbon and water cycles (Berry et al., 2010). Human-caused climate change is 
expected to intensify the hydrological cycle, which will greatly affect ecosystems in the 21st century (Field et al., 2014). 
Plant stomatal conductance is a central physiological process that will mediate plant responses to changes in climate 
mean and extremes (Farquhar & Sharkey, 1982; Field et al., 1995; Franks et al., 2013; Keenan et al., 2013). Thus, 
stomatal behavior is likely to influence ecosystem response to climate change and also carbon cycle feedbacks of the 
terrestrial biosphere (Berry et al., 2010; Franks et al., 2013; Swann et al., 2016).  

Stomatal response to drought – some combination of increasing atmospheric water demand through vapor 
pressure deficit (VPD) or decreasing soil water availability through falling soil water potential (ψs) – is a key component 
of plant drought responses (Tuzet et al., 2003; Sperry et al., 2016; Martin-StPaul et al., 2017). Stomatal closure is a 
critical way in which plants curtail water loss to avoid damage at shorter time-scales of seconds to days (Martin-StPaul 
et al., 2017). However, stomatal responses occur alongside a suite of longer time-scale responses, including canopy area 
adjustment (e.g. leaf shedding) (Wolfe et al., 2016), carbon allocation to increase root water uptake (Ledo et al., 2018), 
osmotic adjustment to tolerate lower water potentials (Bartlett et al., 2014), gene regulation and hormonal responses 
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(Xu et al., 2010; Brodribb et al., 2014, 2016), and plastic changes in xylem anatomy over multiple years (Corcuera et 
al., 2004; Anderegg, 2015). Because stomatal conductance is influenced by a suite of whole-plant traits and signals, for 
example leaf water potential that is mediated by hydraulic transport from roots to leaves (e.g. Sperry et al., 2016), longer-
term changes in plant drought responses have the potential to alter stomatal sensitivity to the environment. Thus, stomata 
have the opportunity to behave in a “Bayesian” manner by updating their behavior (e.g. water potentials at which 
stomatal closure begins) based on previous environmental conditions the plant has experienced, likely mediated by these 
longer-term plant responses such as biosynthesis of the hormone ABA (Brodribb & McAdam, 2017)  

The vast majority of ecosystem models use empirical algorithms of stomatal conductance (Ball et al., 1987; 
Leuning, 1995; Sellers et al., 1996). Such models show reasonable predictive skill over the training conditions but may 
not be appropriate or skillful in prediction of stomatal conductance in changing and novel environmental conditions. In 
particular, many empirical models do not capture drought responses with high fidelity, likely due to a lack of 
representation of soil water potential and its impact on leaf water potential (Anderegg et al., 2017). Furthermore, it is 
not well-known how often or in what conditions the parameters of empirical models – for example, the slope of stomatal 
response to relative humidity or vapor pressure deficit – might vary, mediated by some of the well-documented processes 
described above, and thus would need to be “updated” in an ecosystem model to maintain predictive ability.  

Optimal stomatal theories show promise for predicting stomatal conductance in future climates based on linking 
physiological processes with an evolutionary optimization to maximize plant fitness in varying environments (Medlyn 
et al., 2011; Prentice et al., 2014; Buckley et al., 2017; Anderegg et al., 2018; but see Franks et al., 2018). A recent 
“carbon maximization” (CM) optimization has been proposed (Wolf et al., 2016) that posits that plants maximize carbon 
gain (AN) minus the risk of hydraulic damage driven by low plant water potential (Q(ψ)). This “risk of hydraulic 
damage” term may encompass a number of potential physiological mechanisms and is expected to increase sharply as 
water potentials decline. It is likely an integrated risk term, and thus is not tied to the probability or damage of a single 
event/outcome, but instead captures a suite of carbon costs that are likely to occur as hydraulic damage progresses. 
These may include the carbon costs of refilling embolized xylem (Broderson and McElrone, 2013), rebuilding new 
xylem to restore water transport after embolism (Brodribb and Cochard, 2009), direct damage of photosynthesis by low 
water potentials (Flexas et al., 2002), impaired phloem transport at low water potentials (Huang et al., 2018), and 
increased risk of drought-induced mortality at low water potentials (Anderegg et al., 2016; Martin-StPaul et al., 2017), 
among others.  

This CM optimization (also called the “gain-risk” algorithm in Sperry et al. 2017) shows similar responses to 
environment as classic empirical models (Wolf et al., 2016; Sperry et al., 2017), reproduced hydraulic and gas exchange 
responses to a controlled drought experiment in Populus tremuloides with high accuracy (Venturas et al., 2018), and 
provided a major improvement in predictive ability (increase in R2 of 0.11-0.25) over the classic marginal water use 
efficiency optimization (Cowan & Farquhar, 1977) when tested against a dataset of 34 woody plant species spanning 
global biomes (Anderegg et al., 2018). Because plant hydraulic algorithms are increasingly being incorporated into 
ecosystem and land surface models (Bonan et al., 2014; Xu et al., 2016; Fisher et al., 2018), this CM optimization has 
strong promise to link key components of plant drought physiology such as hydraulic traits and differences across 
species with gas exchange in a consistent framework that improves model prediction in novel climates (Anderegg et al., 
2018).  

Several key unresolved questions remain, however, concerning the CM optimization at longer time-scales and 
in varying environments. In particular, do these optimal stomatal parameters vary either 1) directly in response to 
drought drivers (i.e. VPD and/or ψs) and/or 2) in lagged response to drought drivers? This allows the examination of an 
interesting question: are stomata Bayesian in that they update their hydraulic risk “shadow price” (in the CM 
optimization, this shadow price is the marginal increase in carbon cost with a marginal drop in water potential – the 
partial derivative of the cost function; dQ(ψ) in Eq. 6) as a function of previous climate? In addition, do these optimal 
stomatal parameters vary seasonally, such as between the wet and dry season in highly seasonal environments? The 
answers to these questions can both provide insight into the linkages between stomatal behavior and other longer-term 
plant drought responses and into the applicability of a single set of CM parameters in a large-scale ecosystem model 
over longer timescales.  
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Materials and Methods 
Datasets 

I used a subset of five species from a recently published dataset that compiled concurrent measurements of leaf-
level gas exchange and plant water potentials (Anderegg et al., 2018). Two of the species were conifers (Pinus edulis 
and Juniperus monospermsa) from a semi-arid woodland in the southwestern United States (Limousin et al., 2013). 
Three of the species were angiosperms, including a temperate oak species (Quercus douglasii; (Xu & Baldocchi, 2003)) 
from California, USA and two tropical species (Alphitonia excelsa and Brachychiton australis; (Choat et al., 2006)) 
from Australia (Table S1). These species were selected from the broader dataset because they had enough data to 
estimate stomatal model parameters at daily and/or seasonal time-scales. Briefly, these datasets contain concurrent 
measurements of stomatal conductance (gs) and the key environmental variables needed to drive the plant model: 
photosynthetically active radiation (PAR), leaf-to-air vapor pressure deficit (VPD), carbon dioxide concentration at the 
leaf surface (Ca), predawn and midday leaf water potentials. In addition, the critical plant traits of the stem hydraulic 
vulnerability curve and the maximum carboxylation capacity (Vcmax) of leaves is known for these species and presented 
either in the original study (e.g. Limousin et al., 2013) or in the literature (Table S1 and see compilation in Anderegg et 
al., 2018).  

 

Plant model with optimal stomatal behavior 

To quantify the daily and seasonal shadow price (dQ(ψ)), I used the plant model published in Anderegg et al. 
(2018) that couples hydraulic transport of water from the soil to the atmosphere with photosynthesis via the CM 
optimization. The model uses four equations that describe the dynamics of water transport and photosynthesis and a 
fifth equation from the CM optimization that allows solving for stomatal conductance at a given time-point with a given 
set of environmental conditions (for full details of the model, see Anderegg et al., 2018). Briefly, the model uses the C3 
biochemical photosynthesis model described by Farquhar et al. (1980), where assimilation (A) is the smallest of two 
limiting rates: wc (CO2/rubisco limitation) and wj (light limitation):  

 

A" 	= 	min(𝑤*,𝑤,)	–	𝑅0	 (1) 

𝑤* =
𝑉*234	(𝐶6 − Γ∗)

𝐶6 + 𝐾*	(1 +
𝑂6
𝐾>
)
	 

𝑤, =	
𝐽	(	𝐶6 −	Γ∗)
4	(	𝐶6 + 2Γ∗)

 

where, Ci is the internal leaf CO2 concentration, Γ* is the CO2 compensation point, Kc and Ko are Michaelis-Menten 
coefficients of the carboxylation and oxidation reactions performed by rubisco, Oi is the internal partial pressure of 
oxygen, J is the potential maximum rate of electron transport, calculated as in Medlyn et al. (2002), and Rd is the rate 
of dark respiration calculated using a Q10 functional form. I used the standard implementation of the photosynthetic 
model presented in the freely available R package “plantecophys” (Duursma, 2015).  

For the second equation, the model uses a simplified version of Fick’s Law: 

𝐴" =	𝑔D(𝐶3 − 𝐶6) 1.6⁄   (2) 

where gs is stomatal conductance of the leaf to water vapor (mol m-2 s-1), 1.6 accounts for the difference in diffusion 
coefficients between water vapor and CO2, and Ca is the partial pressure of CO2 in the atmosphere. These equations 
assume that cuticular conductance is negligible and boundary layer and mesophyll conductances are much larger than 
stomatal conductance, which is likely reasonable for these species and environmental conditions (see Anderegg et al., 
2018for additional assessment of these assumptions).  

The third and fourth equations describe the water transport through the hydraulic continuum from soil to leaf 
and the water lost through stomatal conductance (transpiration): 
𝐸 = 	𝑔D(𝑒D − 𝑒3) (3) 

where E is transpiration, ea is the vapor pressure of water in the atmosphere at ambient temperature and relative humidity, 
and es is the vapor pressure of the saturated air space inside the leaf. Steady-state E is found by integrating the 
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conductance function K(Y) from soil water potential (here, measured plant pre-dawn water potential) to the leaf water 
potential (Sperry et al., 1998) : 

𝐸 = ∫ 𝐾(𝜓)𝑑𝜓MN
MO

	 (4) 

where ψs and ψL are the soil and leaf water potentials (MPa), respectively, and K(Y) is the conductance function of the 
xylem, treated here as a Weibull with three parameters – scale and shape parameters that describe the hydraulic 
vulnerability curve – and Kmax, which was determined for each species by using the measured VPD, stomatal 
conductance, and predawn leaf water potential and finding the Kmax that best allowed prediction of midday leaf water 
potential using Equations (3) and (4).  

The fifth and final equation in the model is the optimality equation that allows solving the system of equations 
to find a predicted stomatal conductance:  
PQR
PST

= 	 PU
PST

 (5) 

where (𝜕Θ/𝜕gs) was fit as the following function of leaf water potential: 
PU
PST

= 	 PU
PMO

PMO
PST

= 	 PMO
PST

	(𝑎𝜓X + 𝑏) (6) 

where a and b are the key parameters to be fit. Critically, as shown in Wolf et al. (2016) and Anderegg et al. (2018), the 
a parameter is the slope of the marginal cost function and is thus the “shadow price” that I aim to estimate here.  
 

Markov Chain Monte Carlo to find the shadow price 

I used a Markov Chain Monte Carlo (MCMC) process to find the shadow price (parameter a in Eqn. 6) in the 
CM optimization for different species and time periods. This MCMC estimated the parameters a and b that provide the 
best fit between modelled stomatal conductance and measured stomatal conductance. First, for a given dataset, an initial 
guess of a and b was made. Initial guesses of a=0.1, and b=0 were selected as the initial guess as they are the closest to 
uninformative priors that still place a non-zero carbon price on drops in water potential. Next, for a given measurement 
(i.e. measurement of gs and environmental drivers at a given time-point), an initial gs of 0.010 mol m-2 s-1 was guessed. 
At that guess of gs, the photosynthetic rate was then solved for using Equations 1-2 and the leaf water potential was 
solved for using Equations 3-4. The initial gs was incremented slightly (+0.001 mol m-2 s-1) and the new AN and ψL were 
found, allowing the calculation of the right hand side of Equation 5. Equation 6 is then solved with the current guesses 
of parameters a and b. Finally, a Newton-Raphson solver was implemented to find the stomatal conductance that solves 
Equation 5 – the predicted stomatal conductance by the model for that measurement. This process was repeated for all 
measurements within a given dataset and the sum of squared errors (SSE) was calculated between the predicted and 
observed gs.  

The MCMC was implemented to minimize the SSE between predicted and observed gs. After preliminary testing 
to find the ideal step size (typically 0.1-1 depending on species) in guesses of parameters a and b that led to a ~50% 
acceptance probability, I initiated three chains of 5,000 steps for every dataset and compared chains to ensure rapid 
mixing by testing that the ratio of inter-chain to intra-chain variances was close to 1. I then discarded the first 1,000 
steps to avoid initial conditions and thinned the chains by a factor of ~10 to remove effects of autocorrelation before 
calculating the mean and confidence intervals for parameter a for each dataset.  

 

Analyses  

To examine diurnal changes in the shadow price, I performed the MCMC on each day for the three species with 
adequate daily data (>8 measurements within a day). I extracted the maximum likelihood (lowest SSE) parameter a 
from the MCMC output and I performed ordinary least squares regression of the shadow price against mean VPD and 
mean predawn leaf water potential, which can be assumed to be approximately Ys if plant water potential has 
equilibrated with the soil (e.g. minimal nighttime transpiration) (Donovan et al., 2001).  

For Pinus edulis and Juniperus monosperma, which had enough daily data to perform model selection and 
multi-variate models and almost identical measurement dates and frequencies (Table S2), I further calculated a number 
of climate and plant stress metrics for that day (which includes measurements from several trees): 1) minimum midday 
leaf water potential recorded for any tree, 2) maximum midday leaf water potential recorded for any tree, 3) minimum 
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leaf predawn water potential recorded for any tree, 4) mean leaf predawn water potential of all trees, 5) maximum leaf 
predawn water potential recorded for any tree, 6) minimum VPD, 7) mean VPD, 8) maximum VPD, 9) number of 
measurements made that day, and 10) date. As a subsequent analysis to assess the role of lagged drought stress and 
stomatal response, I added the minimum and maximum VPD and leaf predawn and midday water potentials of the 
previous measurement date to the above current-measurement variables for model selection. Measurements on these 
species typically came in 2-3 day periods spaced about a month apart over the growing season (Table S2).  

To determine which variables best predicted daily shadow price variation, I performed a model selection 
procedure with two sets of variables: 1) current-day variables only and 2) current and lagged variables together. Because 
model selection can be adversely affected by strongly collinear predictor variables, I first removed collinear predictor 
variables using a standard procedure (Anderegg et al., 2013; Dahlin et al., 2013). I constructed a correlation matrix of 
the pairwise correlations between all predictor variables. Whenever any two variables were strongly correlated (r>0.7), 
the correlation between each of those variables and the dependent variable (shadow price parameter a) was calculated. 
The variable with a lower correlation with the dependent variable was dropped. Once a set of non-collinear variables 
was generated, I then performed stepwise model selection, both forward and backward, using the Akaike Information 
Criterion. This yields the most parsimonious model that minimizes the information loss and also penalizes models for 
each additional predictor. All analyses were performed in the R statistical environment. Model selection was performed 
using the stepAIC function in the MASS library (Ripley et al., 2013). 

To assess if the shadow price varied between wet and dry periods (a seasonal analysis), I performed the MCMC 
to estimate parameter a for each species on the driest and wettest half of the data, stratified by predawn leaf water 
potential. For the tropical species and temperate oak species, this roughly corresponded to “wet” and “dry” seasons 
(Choat et al., 2006). For the temperate conifers, this stratified the data by relatively wet and benign winter or late-
summer monsoon periods versus hot and dry spring and early summer periods (Limousin et al., 2013).  

 

Results 
Daily estimates of the slope of the cost function (a) did not vary predictably as a function of VPD or ψs (p>0.05 

for all regressions; Fig. 1, Fig. 2) in the three species with adequate data to estimate daily parameters. There was 
substantial variation in the slope across days and larger variation in the range of slopes across species, but this variation 
was unrelated to increasing water stress. The marginal cost increased slightly but insignificantly at higher VPDs in all 
species and increased slightly but insignificantly as soil water potential declined in two of three species (Fig. 1, Fig. 2).  

 

 

Figure 1: Stomatal cost function slope compared to vapor pressure deficit.  
The slope of the stomatal cost function is uncorrelated with vapor pressure deficit (VPD; kPa) across the tree species Pinus edulis  
(a), Juniperus monosperma (b), and Quercus douglasii (c). Each point is a day and the color of points is the predawn leaf (e.g. soil) 
water potential percentile (color bar) for that day and redder colors indicate more negative water potentials. Lines are the OLS best 
fit and are not statistically significant.  
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Figure 2: Stomatal cost function slope compared to predawn water potential.  
The slope of the stomatal cost function is uncorrelated with predawn leaf water potential (Ypd; MPa ) across the tree species Pinus 
edulis (a), Juniperus monosperma (b), and Quercus douglasii (c). Each point is a day and the color of points is the vapor pressure 
deficit (color bar) for that day and redder colors indicate higher VPD values. Lines are the OLS best fit and are not statistically 
significant. 

While the predictive ability of the slope of the cost function was fairly low overall in both species with a 
multitude of daily data (P. edulis and J. monosperma), lagged drought indicators improved predicting cost functions 
(Table 1). For P. edulis, the best fitting and most parsimonious model selected by AIC with non-lagged variables 
explained 17% of the variation (p=0.04) and contained the highest leaf water potential recorded during that day, the 
number of stomatal conductance measurements, and the date. Considering lagged variables, model selection yielded the 
same three current-day predictor variables and also the previous date’s lowest measured leaf water potential, and the 
variance explained rose to 25% (p=0.03, DAIC>2) (Table 1). For J. monosperma, the best current-day model explained 
only 12% of the variation and was marginally significant (p=0.1). This model included the variables highest leaf water 
potential recorded during that day and the date (Table 1). Considering lagged variables as well, the most parsimonious 
model included the two above variables and also the maximum VPD of the previous measurement date. The variance 
explained in this model rose to 23% (p=0.01; DAIC>2) (Table 1).  

Table 1 : Model selection of predicting the shadow price of stomatal behavior. 
Species Variable group Variable Model R2 Model p value 

P. edulis Current 
LWPhigh 

0.17 0.04 
N measurements 
Date 

Current+lag 
LWPhigh 

0.25 0.03 
N measurements 
Date 
LagLWPlow 

J. monosperma Current 
LWPhigh 

0.12 0.1 
Date 

Current+lag 
LWPhigh 

0.23 0.01 
Date 
LagVPDmax 

Model selection results for predicting the shadow price (parameter a in Eqn. 6) from environmental variables of current or 
current+lagged variables. 
 

Examining seasonal variation in cost functions, I observed moderate seasonal differences in cost functions in 
the two gymnosperm species (p<0.01), but not in the three angiosperm species (Fig. 3). Uncertainty in cost functions 
was somewhat larger in the wetter periods than drier periods, especially in the tropical angiosperm species (Fig. 3). A 
sensitivity analysis with an alternate vulnerability curve for Q. douglasii (Skelton et al., 2017) showed predicted gs 
values that were very similar to the ones presented here (R2=0.99). One potential reason for the detection of seasonal 
differences in the gymnosperm species may be due to biome-level differences in climate, whereby the gymnosperm 
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species experienced a much larger variation of water potential and much greater declines in water potential during the 
drier periods (Fig. 4).   

Despite slight seasonal differences in the gymnosperm species, the predictive ability of a single set of CM 
parameters at a species level was quite similar to the model allowing for seasonal differences in CM parameters 
(R2

species=0.48; R2
seas=0.50; Fig. 5). Indeed, the predictive differences between the models was minimal; the root mean 

squared error difference to the models was 0.002 mol m-2 sec-1 (RMSEspecies=0.077; RMSEseas=0.075). Predictive ability 
was strongest in the two gymnosperm and the temperate oak species and substantially lower in the two tropical species. 

  

Figure 3: Seasonal estimates of the stomatal cost function slope parameter.  
Seasonal estimates of the stomatal cost function slope parameter in the wet (blue) and dry (red) periods for Juniperus monosperma 
(JUMO; N=576), Pinus edulis (PIED; N=511), Quercus douglasii (QUDO; N=166), Alphitonia excelsa (ALEX; N=173) and 
Brachychiton australis (BRAU; N=100). Black line is the median; boxes the interquartile range, and error bars show the highest 
and lowest value of the data excluding outliers. Stars indicate statistical significance (i.e. 95% confidence intervals do not overlap) 

 

Figure 4: Range in predawn leaf water potential for all species.  
Range in predawn leaf water potential for all species in the wet (blue) and dry (red) periods for Juniperus monosperma (JUMO; 
N=576), Pinus edulis (PIED; N=511), Quercus douglasii (QUDO; N=166), Alphitonia excelsa (ALEX; N=173) and Brachychiton 
australis (BRAU; N=100). Black line is the median; boxes the interquartile range, and error bars show the highest and lowest value 
of the data excluding outliers. 
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Figure 5: Observed versus predicted stomatal conductance from the CM optimization.  
Observed versus predicted stomatal conductance (gs; mol m-2 sec-1) for all five species where a separate set of parameters are used 
for wet and dry periods for each species (left) or a single set of parameters is used for each species (right). Colors show the density 
of points with gray and blue as low density and red to yellow as highest density. Red line is the ordinary least squares regression 
best fit and black line is the 1:1 line.  
 

 

Discussion 
Predicting stomatal conductance across multiple time-scales is a central aim of many vegetation models and 

may be informed by optimal stomatal models. I analyzed the parameters of an optimal stomatal model at multiple time-
scales and reached three central conclusions. First, the key parameter of the CM optimal stomatal model – the marginal 
cost of water potential – does not change predictably in response to VPD and ψs in the species analyzed here. Second, 
there is some evidence for the influence of lagged variables on stomatal model parameters, indicating stomata might be 
behaving in a somewhat Bayesian manner, though the evidence is not strong. Finally, while slight seasonal changes in 
parameters were detected in two of five species, a single set of species-level parameters worked nearly as well for 
prediction of stomatal conductance across all time-scales.  

The longest and most detailed datasets of the two conifer species revealed that including previous date’s lowest 
leaf water potential (P. edulis) or the previous date’s maximum VPD (J. monosperma) improved prediction of the current 
date’s cost function slope. Previous research has documented changes in gas exchange and stomatal conductance 
following severe droughts, even if leaf water potential recovers (Resco et al., 2009) and, indeed, lingering effects of 
canopy area, hydraulic conductance, or hormonal adjustment (e.g. ABA) would likely influence stomatal conductance 
responses to environment (Brodribb et al., 2016; Skelton et al., 2017). Given that substantial canopy area adjustment 
was not observed during the measurement record and that measurements were typically ~1 month apart (Table S2) 
(Limousin et al., 2013), the lingering effects of previous measurements are more likely changes in tissue allocation or 
damage (e.g. embolism) or potentially signaling related. It is notable, however, that there was large diurnal variation in 
these cost function parameters at daily timescales, which is likely due to small number of data points per day.  

In the CM optimization, the cost that stomata aim to avoid is formulated as an instantaneous carbon cost, but 
most likely includes multiple aspects of hydraulic “risk” that could play out over longer time periods (Wolf et al., 2016; 
Sperry et al., 2017; Anderegg et al., 2018). Sperry et al., (2017) use species’ hydraulic vulnerability curves as the 
risk/cost function, which drives stomata to close in order to avoid loss of hydraulic conductivity due to embolism. Much 
more research is needed to understand the physiology underpinning specific hydraulic risks. There are multiple potential 
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physiological mechanisms underpinning how the hydraulic risk/cost function could increase as water potentials fall. 
These include direct impairment of photosynthesis (Flexas & Medrano, 2002), phloem loading limitations due to 
decreased carbon sink activity (Nikinmaa et al., 2013), leaf or xylem structural damage (including embolism), energetic 
costs of maintaining osmotic regulation (Hinckley et al., 1980; Bartlett et al., 2014), and shadow prices of future losses 
in photosynthesis due to hydraulic damage and risk of mortality (Anderegg et al., 2018).  

The CM optimization shows substantial promise for inclusion into next-generation ecosystem models because 
plant hydraulic transport provides a mechanistic way to simulate drought stress on plants from easily measurable traits 
and because the CM optimization showed the highest predictive ability of stomatal conductance in previous analyses 
(Anderegg et al. 2018). The findings here that seasonal differences in parameters are minimal and do not greatly affect 
accuracy of prediction of leaf-level stomatal conductance lend further support. Intra-specific variation and plasticity in 
plant drought responses and hydraulic transport are likely to be important in many contexts and may not be captured in 
the relatively short (1-2 year) datasets included here. Plasticity or variation can be incorporated hydraulic-enabled 
ecosystem models through hydraulic trait variation, which will allow the CM optimization to flexibly predict stomatal 
conductance in a wide array of environments.   
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