
A Dataset of Head and Eye Movements for 360◦ Videos
Erwan J. David

LS2N UMR CNRS 6004
Université de Nantes

Nantes, France
erwan.david@univ-nantes.fr

Jesús Gutiérrez
LS2N UMR CNRS 6004
Université de Nantes

Nantes, France
jesus.gutierrez@univ-nantes.fr

Antoine Coutrot
LS2N UMR CNRS 6004
Université de Nantes

Nantes, France
antoine.coutrot@ls2n.fr

Matthieu Perreira Da Silva
LS2N UMR CNRS 6004
Université de Nantes

Nantes, France
matthieu.perreiradasilva@

univ-nantes.fr

Patrick Le Callet
LS2N UMR CNRS 6004
Université de Nantes

Nantes, France
patrick.lecallet@univ-nantes.fr

ABSTRACT
Research on visual attention in 360◦ content is crucial to understand
how people perceive and interact with this immersive type of con-
tent and to develop efficient techniques for processing, encoding,
delivering and rendering, to offer a high quality of experience to
end users. The availability of public datasets is essential to support
and facilitate research activities of the community. Recently, some
studies have been presented analyzing exploration behaviors of
people watching 360◦ videos, and a few datasets have been pub-
lished. However, the majority of these works only consider head
movements as proxy for gaze data, despite the importance of eye
movements in the exploration of omnidirectional content. Thus,
this paper presents a novel dataset of 360◦ videos with associated
eye and head movement data, which is a follow-up to our previ-
ous dataset for still images [13]. Head and eye tracking data was
obtained from 57 participants during a free-viewing experiment
with 19 videos. In addition, guidelines on how to obtain saliency
maps and scanpaths from raw data are provided. Also, some sta-
tistics related to exploration behaviors are presented, such as the
impact of the longitudinal starting position when watching omni-
directional videos was investigated in this test. This dataset and its
associated code are made publicly available to support research on
visual attention for 360◦ content.
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1 INTRODUCTION
Virtual Reality and 360◦ content (among other emerging immer-
sive media technologies, such as augmented reality or light field
imaging) is providing users with new interactive experiences and
more freedom to explore the represented scenes. These new pos-
sibilities entail a great change on how users interact with media
technologies, since they can look wherever they want and are no
longer limited, as in traditional media, to passively look at what
they are shown.

In this sense, these novelties should be taken into account to
design and develop appropriate immersive media systems, such as
efficient encoding, transmission and rendering techniques to pro-
vide the best quality to the end users. With this aim, understanding
how people observe and explore 360◦ is crucial.

In fact, some works have already been presented dealing with
the study of visual attention in VR and 360◦ content. For example, a
preliminary study was carried out by Marmitt and Duchowski [10]
analyzing head and eye movements to investigate visual scanpaths
in VR environments. This work has been recently picked up tak-
ing advantage of new and improved VR devices to analyze ex-
ploring behaviors of users when watching 360◦ images, recording
head and eye movements with eye-trackers embedded in VR head-
sets [13][19]. While eye movements analysis has proved to provide
an important added value to visual attention modeling in VR [15],
gaze data is not always easily accessible. Thus, head movements
could be considered as a valuable proxy [23][21]. Studies have been
presented analyzing head movements during 360◦ images explo-
ration [4].

The way people watch 360◦ images may substantially differ from
how they explore omnidirectional videos, where their attention can
be more guided by the dynamic content. Therefore, some studies
have already focused on analyzing visual attention in 360◦ dynamic
content. For instance, Serrano et al. used head and eye tracking
data for movie editing and segmentation [18]. Nevertheless, the
aforementioned difficulty to gather eye tracking data has caused the
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majority of studies in this topic to only consider head movements.
For example, Su et al. [20] used head movements for automatic
cinematography in 360◦ videos. Also, Corbillon et al. studied the ap-
plication of head movements for efficient delivery of 360◦ video [2].
Similarly, Wu et al. analyzed exploring behaviors based on head
tracking data for video streaming of omnidirectional video [22],
also releasing a dataset.

The importance of public datasets containing stimuli and eye-
tracking information is crucial for the research community to evolve
in the development of efficient techniques for coding, transmitting,
and rendering 360◦ content. A good example was the publication
of the dataset of head and eye movements for omnidirectional
images by Rai et al. [13], for the “Salient360!" Grand Challenge
at ICME’17 promoting the research on models for saliency and
scanpath prediction for 360◦ images, and resulting in the publication
of several valuable models [16]. In addition, other datasets have
been published recently with 360◦ videos and solely headmovement
data, such as the 360◦ video head movement dataset from Corbillon
et al. [1] (five videos from Youtube, duration of 70 seconds, watched
by 59 users), the 360◦ video viewing dataset in head-mounted VR,
by Lo et al. [9] (ten videos from Youtube, duration of one minute,
watched by 50 users), and the dataset for emotion induction research
by Li et al. [8] containing head movement data and corresponding
ratings of arousal and valence (73 videos from Youtube, durations
from 29 to 668 seconds, watched by 95 users).

Taking this into account, and complementing previous works on
datasets of head movements in video and head and eye movements
in still images, this paper presents a dataset of videos containing
head and eye tracking data for research on exploring behaviors with
360◦ dynamic content. The dataset contains 19 videos in equirect-
angular format with associated data of head and eye movements
collected from a free-viewing experiment with 57 observers wear-
ing a VR headset with an integrated eye-tracker. In addition, we
analyze users’ exploring behavior such as the impact of starting
longitudinal positions on 360◦ content exploration, and the relation
between head and eye movement data.

The rest of the paper is organized as follows. Section 2 presents
the subjective experiment carried out to create the datasets, as
well as the details about gathered data. Then, Section 3, describes
how raw gaze data obtained from the subjective experiment were
processed to generate visual attention data. Section 4 presents sta-
tistical results related to the exploration of 360◦ content. Finally,
some conclusions are provided in Section 5.

2 DATASET & SUBJECTIVE EXPERIMENT
2.1 Video stimuli
This dataset is composed of 19 videos gathered from Youtube (Fig. 1).
All videos are 4K in resolution (3840x1920 pixels), equirectangu-
lar format, their main properties are shown in Table ??. In par-
ticular, the category indicates some high-level attributes (e.g, in-
door/outdoor, rural/natural, containing people faces, etc.). In ad-
dition, the Spatial perceptual Information (SI) and the Temporal
perceptual Information (TI) [6] were computed for all videos in
equirectangular format (using an SI filter of 13x13 pixels [12]). In
addition to the objective of covering a wide range of these features,
these videos were also selected taking into account their license

Figure 1: Examples of frame extracted from 12 of the 19
equirectangular videos.

of use (Creative Commons), and their duration with uninterrupted
content (no camera cuts). Specifically, a duration, albeit short, of 20
seconds was considered to abide by these last two constraints.

2.2 Equipment
360◦ videos were displayed in a VR headset (HTC VIVE, HTC,
Valve corporation) equipped with an SMI eye-tracker (SensoMotoric
Instrument). The HTC VIVE headset allows sampling of scenes
by approximately 110◦ horizontal by 110◦ vertical field of view
(1080x1200 pixels) monocularly at 90 frames per second. The eye-
tracker samples gaze data at 250Hz with a precision of 0.2◦. A
custom Unity3D (Unity Engine, CA, USA) scene was created to
display videos. Equirectangular content was projected unto a virtual
sphere with a shader program to compute the equirectangular-to-
sphere projection on the GPU. A process independent from the
Unity Engine process was used to write HMD and eye-tracker data
to disk at the speed of the eye-tracker sampling rate. The experiment
was running on a computer with an NVIDIA GTX1080 GPU.

2.3 Observers
57 participants were recruited (25 women; age 19 to 44, mean:
25.7), normal or corrected-to-normal vision was verified with the
Monoyer test, acceptable color perception was tested as well with
the Ishihara test. Dominant eye of all observers was checked. Par-
ticipants received monetary compensation for their time. All 19
videos were observed by all observers for their entire duration (20
seconds).

2.4 Viewing procedure
Observers were told to freely explore 360◦ videos as naturally as
possible while wearing a VR headset. Videos were played without
audio.

In order to let participants safely explore the full 360◦ field of
view, we chose to have them seat in a rolling chair. The fact that
participants are not aware of their surroundings while wearing
a HMD is hazardous (e.g. colliding with furnitures, falling over).
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Title Frame-rate Category
Camera
traveling

Fixations
(H+E data) SI TI

Abbottsford 30 Indoor, Urban, People No 3,143 84.336 1.422
Bar 25 Indoor, Urban, People Yes 3,157 119.810 27.578

Cockpit 25 Indoor, Urban, People Yes 2,689 53.487 26.371
Cows 24 Outdoor, Rural No 2,908 48.125 2.059
Diner 30 Indoor, Urban, People No 2,844 60.663 2.425

DroneFlight 25 Outdoor, Urban No 3,027 48.350 13.254
GazaFishermen 25 Outdoor, Urban, People No 3,434 92.732 1.246

Fountain 30 Outdoor, Urban No 3,153 67.346 14.665
MattSwift 30 Indoor, Urban, People No 3,210 84.675 3.361

Ocean 30 Outdoor, Water, People No 2,846 25.885 11.103
PlanEnergyBioLab 25 Indoor, Urban, People No 3,077 65.181 4.012

PortoRiverside 25 Outdoor, Urban, People No 3,196 52.655 3.201
Sofa 24 Indoor, Urban, People No 3,421 83.546 1.069

Touvet 30 Outdoor, Urban Yes 3,466 59.520 4.897
Turtle 30 Outdoor, Rural, People No 2,498 32.351 9.531

TeatroRegioTorino 30 Indoor, Urban, People No 2,916 63.064 5.983
UnderwaterPark 30 Outdoor, Natural Yes 2,889 42.082 9.793

Warship 25 Indoor, Urban, People No 3,331 49.939 5.359
Waterpark 30 Outdoor, Urban, People Yes 3,077 57.625 27.022

Table 1: Main properties of the omnidirectional video dataset.

Additionally, the HMD’s cable is an inconvenience when standing
and exploring a 360◦ scene.

To study the impact of starting longitudinal positions on con-
tent exploration, we added a between-subjects condition where
participants could start exploring omnidirectional contents either
from an implicit longitudinal center (0◦ and center of the equirect-
angular projection) or from the opposite longitude (180◦). Videos
were observed in both rotation modalities by at least 28 partici-
pants each. We controlled observers starting longitudinal position
in the scene by offsetting the content longitudinal position at stim-
uli onset, making sure participants start exploring 360◦ scenes at
exactly 0◦, or 180◦ of longitude according to the modality. Video
order and starting position modalities were cross-randomized for
all participants.

Observers started the experimentation by an eye-tracker cali-
bration, repeated every 5 videos to make sure that eye-tracker’s
accuracy does not degrade. the total duration of the test was less
than 20 minutes.

2.5 Dataset structure
Organization of the dataset into folder is illustrated in Fig. 2. The
video dataset is found in the "Stimuli" folder, arranged in no partic-
ular order.

Visual attention data is organized in folders according to their
data type: whether if they come from Head-only (H) or head and
eye movements (H+E). For both cases, saliency maps are stored in a
folder named "SalMaps". It contains one saliency map per stimulus
as a compressed binary file; filenames provides information under
the following convention: title_WxHxFc_Enc.tar.gz where title is
the stimuli name, H and W saliency map’s height and width in
pixels, Fc is the frame count, Enc is float precision. A python script

named readBinarySalmap.py is provided as an example on how to
read uncompressed saliency map binary files.

The Scanpaths directory contains a CSV text file for each stimu-
lus. CSV files contain all identified fixations for one video, ordered
temporally for each observer one after the other in the file. The
first data column reports fixation indexes for each participants,
this value is incremented with each new fixation until reaching
the end of an observer’s trial, after which indexing starts over at
0 for the next observer. Next two columns are gaze positions in
longitudes and latitudes, normalized between 0 and 1; longitudes
should be multiplied by 2π and latitudes by π to obtain positions
on the sphere. To display fixation positions in an equirectangular
map, multiply the same normalized longitudes and latitudes respec-
tively by the desired width and height of the equirectangular map.
Next two columns encode starting time and duration of fixations
(in msec.). Finally, last two columns report fixation’s starting and
ending frames (integers).

Last directory, Tools, contains python scripts. saliencyMeasures.py
and scanpathMeasure.py contains saliency and scanpaths similarity
measure implementations as well as examples of their use. readBi-
narySalmap.py explains with an example how frames from binary
saliency map are to be extracted.

3 GAZE PROCESSING
Data acquired from the system is sampled every 4 msec. (eye-
tracker’s sampling rate). Each sample contains the following in-
formation: camera rotation (camera Euler angles as proxy for the
HMD/Head rotation); information about left, right and mean gaze
direction as a unit vector relative to the camera rotation; left and
right eyes 2D gaze positions in their respective viewport. To reduce
the amount of projections and back-projections and their associated
approximation effects during the process of transforming raw gaze
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ROOT
Stimuli

1_PortoRiverside.mp4
...

19_Touvet.mp4

HE (Head+Eye)

SalMaps

1_PortoRiverside_2000x1000x600_32b.tar.gz
...

19_Touvet_2000x1000x600_32b.tar.gz

Scanpaths

1_PortoRiverside_fixations.csv
...

19_Touvet_fixations.csv

H (Head-only)

same as HE folder.

Tools
saliencyMeasures.py

scanpathMeasure.py

readBinarySalmap.py

Figure 2: Folder tree composition of the new dataset of 360◦

videos and head and eye movement data

data into gaze points on the 3D sphere (scene) we use mean gaze
unit vectors in the following processing and analyses.

To project raw data on a unit sphere, we transform camera rota-
tion data from Euler angles to quaternions, which are multiplied
with gaze unit vectors in order to obtain new unit vectors repre-
senting gaze positions on a sphere in 3D space.

Four different types of visual attention data are considered. The
first type concerns the use of head and eye movements, here gaze
and HMD data are processed together to produce gaze positions
on the spherical scene. Data is parsed into fixations and saccades,
in particular to extract fixations which are periods of reduced eye
movements during which scene perception is implied.

The second type is based on head-only movements. Here we
are purposefully processing head rotation without gaze data. We
chose not to define "head saccades" as period of low head rotation
velocity [11][19][3][5] since this results in a far reduced number
of saccades which do not appear to be an accurate representation
of the latent scene perception. Moreover, head movements don’t
necessarily mean a loss of perception as it is mostly the case dur-
ing actual saccades; it is the addition of head and eye movements
data which will inform us of the actual perception which can be
mediated by compensations behaviors between head and eyes. For
these reasons, such concepts as head "fixation" and "saccade" are
questionable and we resort head trajectories (cf. subsection 3.2).

3.1 Parsing gaze data to fixations
We rely on a velocity-based algorithm [17] to identify fixations and
saccades from eye movements. Because our data is located on a unit
sphere we cannot rely on the euclidean distance, as it would mean
drawing a line between two points through the sphere; though as
sampling rate increases gaze points get closer together spatially
and the euclidean distance becomes a good approximation. In spite
of this last remark, we define velocity as the orthodromic distance
(i.e. great-circle distance, equation 1 shows the Haversine variant
used) between two gaze samples divided by their time difference.
The velocity 1D signal was smoothed with a gaussian filter (σ = 1
sample). Then gaze samples with velocities below 80◦/sec. threshold
were categorized as fixations. As post-processing, in a second step,
we elected to remove fixations lasting less than 80ms. Refer to
table 1 for the number of fixations identified per videos as a result.

∆σ = 2 arcsin

√
sin2

(
∆ϕ

2

)
+ cosϕ1 · cosϕ2 · sin2

(
∆λ

2

)
(1)

Where ∆σ is the distance in angle between two points on the
sphere, ∆ϕ the difference in longitudes, ∆λ the difference in latitude,
ϕ1 and ϕ2 longitudes of the two points compared.

3.2 Head trajectory
Because perception is possible during head movements we chose to
model head data as trajectories on the unit sphere. To achieve this
we down-sampled the 20 seconds raw gaze data into 100 samples by
selecting sequential windows of approximately 200 msec. (differs
according to framerate) and computing gaze position centroids
according to samples within said time windows. One benefit of
this method is to obtain data samples aligned between observers
for each stimuli, thus settling the issue of scanpath comparison
measures usually requiring a method of aligning one scanpath
with another. In the case of dynamic contents, familiar methods
of alignment (e.g. [7]) imply comparing as peers samples from
two different timestamps, thus comparing together samples which
occurred during frames displaying different contents.

3.3 Scanpaths
For each video and for both types of data, were extracted sequences
of gaze positions on the spherical scene reported as scanpath in the
form of text files (described in subsection 2.5).

3.4 Saliency maps
Saliency maps are computed by convolving each fixation or tra-
jectory points (for all observers of one video) with a Gaussian. A
sigma of 2◦ is chosen for head and eye data and 11.5◦ for head-only
data. The former accounts for eye-tracker’s precision and foveal
perception, the latter is justified by the average distance between
fixation positions and the center of the viewport observed in our
data (subsection ??, Fig. ??). This convolution operation is done in
2D sphere space because an isotropic Gaussian on an equirectan-
gular map would not be isotropic back-projected unto a sphere. A
kernel modeled by a Kent distribution can be used as well but we
consider a Gaussian to be an acceptable compromise in our case.
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Figure 3: Number of fixations (blue) by longitudes (left, -180◦

to 180◦) and latitudes (right, 0◦ to 180◦). PDF curves (red) are
fitted with a vonMises kernel for longitudes and a Gaussian
kernel for latitudes.

4 RESULTS
We describe below three sets of analyses possible with the data
and tools provided. First, fixation count per latitudes and per lon-
gitudes. Second analysis shows the similarity between saliency
maps obtained from Head-and-Eye data and Head-only data. Fi-
nally, we show the similarity between starting rotation conditions
as a function of time. Our data also allows analysis of bottom-up
and top-down time-ranges (as described in [14]), it is possible to
extract from scanpath CSV files all fixations that occurred in the
first 500 msec. of observation, for instance.

4.1 360◦ content exploration
We report the distribution of fixations as a function of longitudes
and latitudes in Fig. 3. Participants observe longitudinally (hori-
zontally on the equirectangular projection) with two peaks arising
at 0◦ and 180◦, the two starting rotation modalities. The 0◦ peak
is greater and can be explained by visual stimuli often displaying
a center bias even in 360◦ conditions. Latitudinally, observers are
much more inclined to explore areas at and around the equator as
we can see by fixation numbers decreasing as a function of distance
to the equator (90◦).

4.2 Head-Eye and Head-only saliency maps
comparison

Head-only and Head-and-eye saliency maps are compared together.
To make such comparisons we pooled saliency frames by intervals
of 200ms (between 4 and 6 according to video frame-rate) which we
added together then normalized (divided by the total sum) to obtain
new saliency maps for each time increment. For each stimulus we
computed a similarity values by computing KLD (Kullback-Leibler
Divergence) and CC (Cross-Correlation) for each such saliency
maps paired according to the temporal (frame) alignment. The
resulting sequence of similarity measures are then averaged over
group of frames to obtain a single comparison value as reported in
Fig. 4 for each stimulus.

The differences observed account for the information lost in
Head-only saliency maps relative to Head-and-Eye maps, which

Figure 4: Head-only and Head-and-Eye saliency maps simi-
larity measures: CC (red) and KLD (blue). Error bars report
confidence intervals (95%).

is simplistically modeled by a larger Gaussian sigma during the
creation of saliency maps in this dataset.

4.3 Starting rotation effect
We compare saliency maps pooled by batches of frames as described
in subsection 4.2. Instead of averaging over groups of frames, each
saliency map is considered aligned temporally and compared with
a Head-and-Eye saliency map according to starting rotation modal-
ities. Averaging over stimuli, we obtain similarity measures (KLD
and CC) per frame groups (Fig. 5). Results show that saliency maps
are quite dissimilar in the first seconds of exploration. Though, this
difference decreases with time and shows no improvements after
approximately 5 seconds of exploration.

5 CONCLUSION
In this paper a new dataset of 19 omnidirectional videos in equirect-
angular format is presented, with the associated gaze fixation and
head trajectory data in the form of saliency maps and scanpaths.
This data was obtained after processing the raw eye and head move-
ments gathered from a free-viewing experiment with 57 observers
wearing a VR headset equipped with an eye-tracker. A between-
subject condition was added to study the impact of starting longi-
tudinal positions on 360◦ content exploration. In order to aid the
community in analyzing this data, some useful tools to compare
saliency maps and scanpaths are also provided.

This dataset extends our previous work with still images [13],
providing a public dataset of 360◦ videos with the added value of eye
gaze data, in addition to head movement information, which may
help in the research on visual attention in VR and its applications
to coding, transmission, rendering and quality assessment of 360◦
content.
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Figure 5: Saliency maps similarities between starting rota-
tion condition groups as a function of time. Similarity mea-
sures reported: CC (red) and KLD (blue). Error bars report
confidence intervals (95%).
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