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NON LINEAR SCHRODINGER LIMIT OF BOSONIC GROUND STATES,
AGAIN

NICOLAS ROUGERIE

ABSTRACT. I review an information-theoretic variant of the quantum de Finetti theorem due
to Brandao and Harrow and discuss its applications to the topic of bosonic mean-field limits.
This leads to slightly improved methods for the derivation of the local non-linear Schrédinger
energy functional from many-body quantum mechanics.
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1. INTRODUCTION

The present paper is an addendum to the “quantum de Finetti-based” approach to the mean-
field limit of bosonic ground states developed over the past few years. It has two main motiva-
tions:

1. Review an interesting variant of the quantum de Finetti theorem derived in [6] 25].

2. Couple this variant to the approach of bosonic mean-field limits described in [22], in order
to remove unaesthetic restrictions on its range of validity.

Both motivations are mostly pedagogical. Let me briefly discuss the second one.

Date: January, 2019.



2 N. ROUGERIE

We consider the ground state(s) of a many-body Hamiltonian of the form

N

Hy =" (<iVa, + A(2))) + V(x)) + ﬁ > NPw(NP(z;—a5) (1)
j=1 1<i<j<N

acting on Lgym (RdN ), the space of symmetric N-body wave-functions appropriate for the descrip-
tion of bosonic particles. Here d = 1,2, 3 is the dimension of the physical space, V : R — R is
an external potential, A : R% — R? the vector potential of an external magnetic field B = curl A
and w : R? — R a pair interaction potential. Our convention is that the length scale of the
system is set by the external potential V', that we shall take trapping:

V(z) ~ |z|® for some s > 0. (1.2)

|z| =00
The scaling of the interactions is then designed to impose
(range of interactions)? x average density x interaction strength = O(1) (1.3)

in the limit N — oo, so that the interaction energy is of the same magnitude as typical one-
particle energies. Fixing (L3)) still leaves some freedom, and the fixed parameter 5 > 0 is used
to interpolate between two scenarios:

1. 8 < 1/d is a mean-field regime, interactions are of longer range than the mean inter-particle
distance.

2. B > 1/d is a dilute regime, interactions are of shorter range than the mean inter-particle
distance.

Maximum physical relevance demands rather large values of 5: in 3D § = 1 is, for reasons
explained at length elsewhere, e.g. in [31Il Chapters 2 and 6] or [44] [45, Chapter 7], the most
relevant case. In 2D one might even consider an exponential-like scaling of the interactions’
range (thus § = oo formally), see [31, Chapters 3 and 6].

However, the larger 3, the harder the analysis. For small values of /3 it is feasible to deal with
the N — oo limit of the ground-state problem

E(N) := min {(\I!N]HN]\IJN>, Uy € Lgym(RdN)} (1.4)
using only general structural facts of many-body quantum mechanics [20], 22], within a totally
variationall proof.

This paper is concerned with improving the conditions on § (i.e. the rate at which the inter-
actions converge to point-like ones) under which one can treat the N' — oo limit of Problem (L.4))
in a totally variational way. We are able to handle the N — oo limit of Problem (4] provided
one stays reasonably deep within the mean-field regime:

1
B < 5" (1.5)

Our general approach to the mean-field limit is that of [22, B6], but we use as main tools the
results of [0l 25] instead of those of [10, 21]. Using the latter in [22] led to the condition 5 < [5y(s)
for some rather small and s-dependent (5y(s). This annoying dependence on s gets dispensed
with here.

Hn the spirit of I'-convergence one might say.
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Larger values of 5 are known to be reachable by methods outside of the range of this paper.
The complexity of the proofs increases rather steeply [4l, 34] 35 32 B3] 29] for 5 > 1/d. The
proofs are no longer purely variational, as one typically uses the many-body Schrodinger equation
to obtain a priori bounds on minimizers [23 [30, [39]. I also mention that similar problems and
techniques are useful in the context of the “almost bosonic anyon gas” [36] and the dipolar Bose

gas [48]. See also [2| [T], 13 [43], 42, 111, [41] 121 [42] B 38, [7, 8], [16] for a selection of works dealing
with mean-field and/or dilute limits of the dynamical problem associated with (TI).

Organization of the paper. In Section 2] I state the main result on the mean-field limit
of ([LT)). Section [B] explains the adaptations to be made in the proof strategy of [22]. The main
one is to use an information-theoretic quantum de Finetti theorem. Its statement and proof
are reviewed in Appendix [A] for the benefit of readers who, like myself, lack familiarity with
arguments that are standard in quantum information theory, but much less so in many-body
quantum mechanics.

Notation. For a vector ¢ in a Hilbert space $ (usually a function 1 € L?(R%)), we use the
bra-ket [1) (1| notation for the corresponding orthogonal projector (pure state).

The symbol Tr stands for the trace. When decorated with subscripts, a partial trace with
respect to these subscripts is meant. That is, for an operator acting on $; ® ... ® 9, Triy, i,
means tracing over £;,,...,$;, If the operator one takes the trace of acts on a tensor product
H®N and is symmetric, I indicate Try1_,x to mean a partial trace with respect to N — k factors
of the N-fold tensor product, no matter which.

The interaction potential in (LI]) is denoted

wy g(x) == NPw(NPz). (1.6)

Acknowledgments. Thanks to Isaac Kim who first drew my attention to [6] some years
ago. Funding from the European Research Council (ERC) under the European Union’s Horizon
2020 Research and Innovation Programme (Grant agreement CORFRONMAT No 758620) is
gratefully acknowledged.

2. RESULTS AND DISCUSSION

2.1. Statements. For the easiest case d = 1, [22] already covers any value of § > 0 with a
fully variational method. We thus focus on the cases d = 2,3 and work under the following
assumptions:

Asumption 2.1 (Stable interactions).
The pair interaction potential w : R? — R is a bounded, integrable even function with |z|w(x) €
LYRY) and Fourier transform @ € L*(R?). It is stable in the sense that

e in 3D, w>0.
o in 2D, fRd |lw_| < as« with w_ the negative part of w and a, the optimal constant in the
Gagliardo-Nirenberg inequality,

Lot <a ([ o) ([ 0u)

FEquivalently a, = HQH%2(R2) where @ is the unique (up to translations) solution to

~AQ+Q—Q@Q%*=0 on R%
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See [22] or [44] Chapter 7] for more comments on the necessity of these assumptions. In 2D
one can relax the condition to what we called “Hartree-stability” in [22], but that is a small
improvement that I sacrifice here for simplicity. For the other data of the problem we make
standard assumptions:

A 6 LIQOC(Rd’ Rd)? V 6 L%OC(Rd’ R)
and assume (L2).

The limiting objects in the N — oo limit are as follows. Let the non-linear Schrodinger (NLS)
functional be

EM5[u) ;:/ [(—iV + A)u|> + V|ul? +g/ |ul* (2.1)
R4 R4

a:/ w.
Rd

We also define the associated ground-state energy

E™ = min {5“15[14, /Rd lu? = 1} (2.2)

with M™ the set of associated minimizers. Our main result is

with

Theorem 2.2 (Mean-field/NLS limit of bosonic ground states).
Let

1
0<ﬁ<ﬁ

be a fized parameter. The following holds in the N — oo limit.
1. Convergence of the N-body ground state enerqgy
E(N) 1
— EMS. 2.3
N N-ooo ( )

2. Convergence of reduced density matrices. Let (Un)n be a sequence of quasi minimizers

for (LA, i.e.

Fork>1 let 'y](\]f) be the associated k-particles reduced density matriz
W = Trgrw (W) (], (2:5)
Then
(k) ®ky 1, @k
W o [ () (26)

strongly in the trace-class, where i is a Borel probability measure supported on M™.

Note that
1. Under the stated assumptions it is standard to see that both (L4)) and (2.2]) are well-posed.

2. The result is not new, and is actually weaker than what was known already using more-than-
variational proofs. In 3D any 5 < 1 can be covered with the methods of [30} [89]. Indeed, these
papers deal with the special, harder case § = 1 (where the result is not stated the same). In
2D [23] can handle 8 > (s +2)/(s + 1) > 1/2. The novel aspect is thus methodological, as we
discuss next.
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2.2. Method of proof. We pursue along the lines of [22]. The argument is based on the
quantum de Finetti theorem, which asserts that (2.6 holds for essentially any sequence of
bosonic states ¥y, provided the measure y is a general Borel probability over L?(R?). The goal
is then to identify the support of the measure associated with sequences of quasi-minimizers.

The difficulty in applying this general idea to NLS-like limits (8 > 0) is that one cannot use
soft compactness arguments to pass to the limit in the energy. The idea of [22] is to rely on
specific versions of the quantum de Finetti theorem which explicitly quantify the error made in
replacing the left side of (28] by the right side. Unfortunately, explicit estimates are available
only when the one-body Hilbert space L?(R?) is finite-dimensional. Thus the need to

e project the problem to finitey many dimensions, i.e. on one-body states whose one-body
energy is below a certain energy cut-off.

e use the quantitative finite dimensional de Finetti theorem in the projected space.

e take the energy cut-off high enough to be able to argue that particles above the cut-off
would have too large a one-body energy.

The technical limitations imposed on 3 in [22] arose because the de Finetti theorem [10], 9, [T4] 2T]
we used had errors depending linearly on the low-energy space’s dimension. The latter depends
polynomially on the energy cut-off (this can be seen by Cwikel-Lieb-Rosenblum-type bounds).
We here relax these limitations by using a finite dimensional quantitative de Finetti theorem
whose errors [6] depend only logarithmicallyﬁ on the dimension of the one-body Hilbert space.

The trade-off is that the error in the de Finetti theorem of [6] (see also [25]) is not quantified
in the usual trace-class norm, and that the measure constructed there does not charge only
bosonic states (i.e. the measure might live on mixed one-body operators -y, not just on pure
states |u)(u|). These are the two aspects we have to circumvent to conclude the proof along the
lines of [22].

As a final remark on the method, I stress that it is meant to obtain wvariationally the full
statement of Theorem for the fully general case of (II]). For 8 < 1/d one might still
obtain [I8] 24] 23] part of the statement under restrictive assumptions (typically one does not
obtain the convergence of all density matrices and/or assumes that the limit problem has a
unique minimizer and/or does not include the possibility of a magnetic field).

3. PROOF OF THE MEAN-FIELD LIMIT THEOREM

We follow the general strategy of [22] (also presented in [44] [45, Chapter 7]), with the appro-
priate modifications allowing to insert the main new tool, Theorem [A.5] below.

3.1. Localizing the two-body Hamiltonian. Our first task is to localize the Hamiltonian to
low one-body energy states. Let us denote

h=(-iV+A?+V (3.1)
and, for some high-energy cut-off A € R,
P=1p<p, Q=1-P. (3.2)
Recall that since h has compact resolvent, PL?(R?) is finite dimensional. In fact

Ny = dim(P) < CAS*2 (3.3)

2Thus, for many practical purposes, the theorem is almost as good as a quantitative de Finetti theorem in
infinite dimension.
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with s the exponent in ([L2]), see [22] Lemma 3.3] and references therein.
We shall write the many-body energy of a quasi-minimizer Wy in the manner
1 1
([ Hy| W) = 5 T () (3.4)

using the two-particle reduced density matrix 'y](\?) and the two-body Hamiltonian

Hy := hi + ho + wn g(x1 — x2).
We shall need a slightly modified version: for € > 0 let

HS = Hy — eN% ‘w (M (@ - 1)) ‘ (3.5)
Now we project the two-body Hamiltonian below the high-energy cut-off:

Lemma 3.1 (Localized two-body Hamiltonian).
Assume that A > Ce N for a large enough constant C > 0 and 0 < & < 1. Then we have,
as operators on L*(R%d),

A
H, > PP2H5P®? 4 Z(Qe1+12Q) (3.6)
Proof. This is [22] Lemma 3.6]. For brevity I do not reproduce the proof. O

3.2. Quantum de Finetti. Now we apply the quantum de Finetti theorem whose proof is
recalled below to the localized reduced 2-body density matrix of a quasi-minimizer (or any other
state for that matter):

Proposition 3.2 (de Finetti representation of projected density matrices).
Let $ be a complex separable Hilbert space, and $Hny = HO¥mN the corresponding bosonic space.

Let 7](\2) be the 2-body reduced density matriz of a N-body state vector Uy € $Hn (or general
mized state).

Let P be a finite dimensional orthogonal projector. There exists a Borel measure u%) on the
set of one-body mixed states

Sp := {7 positive trace-class operator on P$, Try =1} (3.7)
such that
log(dim(P
sup Tr|A® B <P®27](3)P®2 o /7®2dﬂ§\2/) (,ﬂ)‘ < C M (3.8)
0<A,B<1 N

where the sup is over bounded operators on PS$).

Previous comparable statements in [22, 23] have an error proportional to dim(P)/N. The
point is that we shall be forced to apply the above with a rather large dim(P) > N1/2_ 50 that
the much-improved dependence on dim(P) in (3.8]) counter-balances the worst dependence on

N.

Proof. We combine Fock-space localization and the information-theoretic quantum de Finetti
theorem recalled in Appendix [Al
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Step 1, de Finetti. Let I'y be a mixed state over PN $ . From Theorem [A5 we know there
(2

exists a probability measure py’ over Sp such that

A ® Ay (Fﬁ) - / Y2 (7))
Gl(ij)

where the sup is over quantum measurements, see Definition [ATl] We claim that this implies

A® B (Fﬁ) - /7®2d/z§3)(7)>‘ </ % (3.10)

where the sup is now over bounded operators. Indeed, given operators Ay, As, define measure-
ments

2log(dim P)

< e (3.9)

sup
A1,A2EM(9H)

sup Tr
0<A,B<1

Ai(7) = Tr[Av][ex)(er| + Tr [(1 — Aj)7] |e2){e2]
for orthonormal vectors ej, es (independent of 7). Then, for any 2-particle operator 2, we have
A1 @ Agyy = Tr[A; © Agya] [ef?) (e
+ Y Te[Bi@Bop]|fi® fo)(f1 @ fol
(Bj:fi)i<i<2

where the last sum is over all possible choices of B; = A; or B; = 1 — A;, with f; = e; in the
former case and f; = ep in the second, and we impose that for at least one index j, B; = 1 — A;
(and thus fj = eg). Since e; and ey are orthogonal it follows that all projectors appearing in
the second line live on spaces orthogonal to e?k and thus

Tr [A1 @ Agyo| > [Tr [A1 @ Ao
Applying this to
2 2
Y =75 - / Y24 (4)

shows that indeed (BI0) follows from (B.9)).

Step 2, localization. From methods discussed e.g. in [19] or [44] [45] Chapter 5] we know there
exists a state Fﬁ on the truncated bosonic Fock space

Fp=CaPH®Pma...6 PNy

of the form
Fﬁ = (CN,OFﬁp) &) (CN,lrﬁ,l) D...H (CN,NFﬁ,N) ,

with ey ; > 0, I'y j a j-particles state, such that

N _
pek (k) pek _ LAREAWING 3.11
TN —ZCN,Z L L ( N,z) . (3.11)
l=k

We apply the previous step to each I’ﬁ s» £ > 2, obtaining probability measures ,ug\Q,)Z and the
estimates

sup Tr|A® B ((I‘ﬁj)@) - /’y®2d,u§\2,7)z('y)>‘ <C w (3.12)

0<A,B<1
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N -1
Z N l
(=2

combining ([B.12) with (BII)) we get the statement, because
1 <N ) ( ) / E — 1 (=k+1) < 1
NIAN k VN (AN—-k+1) = VN

3.3. Mean-field functionals. The previous ingredients will allow to replace the N-body prob-
lem by a mean-field one, namely reduce attention to two-body matrices of the form v®2 in (B.4).
This leads us to considering mixed Hartree and NLS functionals. First, let

a = w
Rd

M) i= T (—1V + AP+ V) 7) + 5 /Rd (s x) dx (3.13)

for ¢ > 2. Setting

O

and

and
EPS™ — min {EHIS[V], 7 trace-class operator on L*(R%), Trvy = 1} (3.14)

with M™5™ the set of associated minimizers. The superscript m means mixed because we allow
mixed states 7 as arguments. We recover the objects described in Theorem by reducing
to pure states v = |u)(u|. Note that the minimization problems amongst all mixed states and
amongst only pure states can differ [46] [47], especially if A # 0. This is a point we shall deal
with later.

For the moment we need to ensure that the Hartree problem, with smeared non-linearity,
converges to the above. Let thus

1
U] =T ((-iV+ A + V) q) + 5 (wns7®?) (3.15)
where (recall (L6)) wy g is understood as a multiplication operator on L?(R?). Also, let
FEY = min {EH [v], 7 trace-class operator on L?(R?), Trvy = 1} . (3.16)

These are the objects one obtains by inserting a factorized ansatz in (34]). We shall need the
following,.

Lemma 3.3 (Stability of one-body functionals).
Under the assumptions of Theorem [2.2, there is a constant C' > 0 such that, for any mized
one-body state ~y

Tr (hy) < C(EM[H] + C) (3.17)
and
ENy] — MM ]| < CN7P (1 + Tr (hy))?. (3.18)
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Proof. This is essentially similar to [22, Lemma 4.1]. To extend the proof of (I8 to mixed
states it is convenient to write the kernel of v as

Y(z;y) = Z A (2)u; (y).

Then
Tr (wy7%) = AN [ o)V @ = p)layto) Py
i.j %

and one may apply the arguments of the proof of [22, Lemma 4.1] to each term of the sum. This
is the place where we use that |z|w(z) € L' (R%). O

3.4. Passage to the limit and conclusion. We now proceed to the

Proof of Theorem [ZZ2. The usual trial state argument (testing the energy with a factorized ¥ =
u®V) and Lemma give the energy upper bound

E(N) < NE™ 4 o(N). (3.19)

We focus on the energy lower bound and associated convergence of reduced density matrices. Let
W be a sequence of quasi-minimizers as in the statement of the theorem and P the projector
onto low kinetic energy modes defined above.

First energy estimate. Use the Fourier transform to write a smooth pair potential W as

W(z—y)= | W(p)erTe PVdp
Rd
:/Rd@(p) Y dedts,os)|dp (3.20)
(i,j)€{+,*}

with c;)t, s;f the bounded operators (with bound 1) of multiplication by the positive and negative
parts of cos(p - z),sin(p - x).

Proposition gives
1 im (P
sup TrA® B <P®27](\2)P®2 _ /7®2d,uf§\2[) (’7)) ' <C M (321)
0<A,B<1 N

But the sup in the above is the same as the sup over signed operators A, B so we may combine
with (3.20) and use the triangle inequality to obtain

T |Wio ) (PP - [0 ' < oD [ 157 5

Applying this with W (z) = N%w(N8z) we get

T (P2 PP Q) > / Tr (H37®?) dud (7) — OV + Ay 128
Sp



10 N. ROUGERIE

where we also used that on PL?*(R?%), h < A by definition to apply B.2I) to the one-body term.
Combining with Lemma [B.] yields

%N) +o(1) > % HQ’YN / Elly (7) + CA Tr (ny ) — C(N 4 A) log(Na)
3.22
with ( :

1
5?[7] =Tr ((—iV + A)2 + V) ’y) + 3 Tr (wN,g *y®2) — %Tr (\wN,g\'y@Q) .

It is easy to see that the latter functional is bounded below uniformly in N if we choose ¢ small
enough (but independent of N), which we henceforth do. We may now set

A =CNBe! (3.23)
for a large constant C'. Then using (8:3)) we obtain
C>ATr <Q7](\})) — C.on(1) (3.24)
under the assumption that
B<s
2d
The constant C. depends only on €. We deduce that
Tv (Q’yﬁ’) 0 (3.25)

when N — oo.

The de Finetti measures converge. Returning to the proof of Proposition we have that

al 0 —1)
/S dpy) (7) = T <P®%§3)P®2> = N
.

NN - 1)
(=2
N 9 N 2
2 Zchf]fﬂ - ]CV > <Z CN,K%) - %
(=0 /=0
- <Tr (P%(\})P»Q - % (3.26)

where we used Jensen’s inequality. But ([B.25)) implies
T (Pyy'P) — 1.
: N N—o00

Returning to (3:26]) we have that

| ey =
Sp

N—oo

Thus the sequence (,uf,)) ~ of measures given by Proposition is tight on the set of one-body

mixed states

S = {7 positive trace-class operator on L2(Rd), Tr~v= 1} .
()

Modulo subsequence (1) N converges to a measure fi.
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Convergence of reduced density matrices. In this step we reproduce for convenience
arguments already used repeatedly in [20] and [44] [45] We may return to (3:22]) and derive a
similar energy lower bound to

Tx ((Hy = nh @1 -l @)1 ) (3.27)

for some small fixed n > 0. For n small enough we may use a variant of Lemma to deduce
that (327 is uniformly bounded from below. Hence, combining with (8] and the energy upper
bound (BI9) we deduce that

gTr <(h ®@1+1®h) 7§3’> = nTr (hm(vl)) < C.p.

Since h has compact resolvent we deduce (modulo subsequence) that

7y =

strongly in trace-class, for some limit one-body bosonic density matrix 4). But we also have
(again, modulo subsequences)
k k
7 = 7 ®
weakly-* in the trace-class. Applying the weak quantum de Finetti theorem [20, Theorem 2.2]
we deduce that there exists a measure v on the unit ball of L?(R9) such that

1 = [ 10) ().

But since 4(!) must have trace 1, the measure v must actually live on

SL2(RY) = {u e L*(RY), /Rd lul? = 1} ,

the unit sphere of L?(R%).
Next we claim that the two measures p and v just found are related by

[ 1w = [ 1) du), (3.28)

Indeed, let ~
P=1, <A

where A is a fixed cut-off (different from A above). Testing (Z.8) with Ay, A, finite rank operators
whose ranges lie within that of P we get

Tr <A1 ® Aﬂ](\?)) feandl Tr <A1 ® Ay /s 7®2dﬂ(7)>

using the convergence of ,uf,) to . On the other hand, by the convergence of 7](3) to v we also

have

Tr (A1 ® Ag*}/}?) — Tr <A1 ® Agfy(Q)) =Tr <A1 ® Ag/ ]u®2>(u®2]du(u)> .
N—o0 SL2(R%)
Thus
Tr <A1 ® Ay / 'y®2d,u(fy)> =Tr <A1 ® Ag/ ]u®2><u®2\dy(u)> (3.29)
s SL2(RY)
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for any A1, Ay with range within that of P. Letting finally A — oo yields P — 1 and thus (329)
holds for any compact operators Aj, As. This implies (B28]). In particular, since the left-hand
side of 28] is v(?), a bosonic operator, ; must be supported on pure states v = |u)(ul, see [I5].

Final passage to the liminf. Let us return to (3.22)). We split the integral over one-body
states v between low and high kinetic energy states:

Low={y €S, Tr (hy) < Ckin}, High=S)\ Low.

Using Lemma (or rather an obvious variant applying to £1) we obtain

ENM AL () > CCiim | N4apQ () + / gnsmn)dpld () — C.NF
Low

Sp High
> [ min (CCusn, 257 )) duf) () CoN 2
Sp

Is,m - .
where EM%™ is EMsM with
a~»a— ea.

Inserting in (22]) and passing to the liminf in N' — oo this implies

EWN) /S min (C.Cigan, €3] ) dia().

Finally, we pass to the limit Cki, — 0o and then the limit € — 0 to deduce

E™S > lim inf

N—o0

E(N
E™S > lim inf (V) > / ELS[ydp (). (3.30)
N—oco N S
But as we saw above p must be supported on pure states v = |u)(u|, which yields both the

energy lower bound concluding the proof of (23]) and the fact that p must be supported on
M Because £%5[4] is a linear function of ¥*? we can also combine (E30) with B28) to
deduce that also ¥ must be supported on M™®, which proves (2.8]). O
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APPENDIX A. AN INFORMATION-THEORETIC QUANTUM DE FINETTI THEOREM

Here we reproduce, for the convenience of the reader, the statement and proof of a Theorem
of Brandao and Harrow. No claim of originality is thus made. See also the lecture notes [5].

A.1. A local de Finetti theorem. In [6], Brandao and Harrow proved a quantitative quantum
de Finetti theorem, where the quality of the approximation deteriorates only logarithmically with
the dimension of the one-body state space, in contrast with previous results [9] 10, 141 [17] 21].
The trade-off is that the control is in a weaker norm than trace-class. See also [25], which
contains results related to [6].

Recall that, for a complex separable Hilbert space ), the state space is
S(9) := {v positive trace-class operator on $, Try = 1}. (A1)
We shall need a notion of measurement of such states:
Definition A.1 (Quantum measurements).

A quantum measurement A on a complex Hilbert space $) of dimension d is identified with a set
(M, e )k=1..a of bounded operators and vectors such that

o My >0 for all k and ), My =1
e (ex) is an orthonormal basis of $.

Its action on a state p € S(9) is given by
Alp) = Tr[Myp]lex){ex|- (A.2)
k

We shall denote M($)) the set of quantum measurements on §). Given two measurements
A1, Ay on $1, 5 one can define A1 ® Ay on $1 ® Ho in the natural way: it is associated with the
operators M}, 1 ® M}, o and vectors e 1 ® ex 2. One can also define 1; ® Ay by setting

1@ AT =) Tro[ My 2T © |ex o) (en.2- (A.3)
k

The statement we wish to discuss applies to more general states than the bosonic ones en-
countered in the context of mean-field limits:

Definition A.2 (Symmetric N-body states).
Let § be a complex separable Hilbert space. A symmetric N -particles state is a state I' over H®N
commuting with label permutations:

I € S(H®N) such that U,T =TU,
for all permutation o, where U, is the unitary operator exchanging labels according to
Usu1 @ ... QUN = Uy(1) @ ... @ Ug(N)-
A bosonic state satisfies the stronger condition
u,I'=1rv, =r

for all permutation o, and can thus be restricted to act only on the symmetric subspace H®sm
which is the point of view adopted in the main text. The reduced density matrices of a symmetric
N-body state are defined as usual:

Tr <Bk1“(k)) — Ty <Bk ® 190 *’“r)
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for any bounded operator By, on $HF.

The rest of the appendix is concerned with exposing the proof (due to [0 25]) of the following
statement:

Theorem A.3 (Quantum de Finetti under local measurements).

Let $) be a finite dimensional complex Hilbert space, with dimension d. Let I' be a symmetric
N-particles state on HEN. For every 0 < k < N there exists a probability measure p, on
one-particle states such that

‘AI ®...® Ay <F(k) - /’7®kdﬂk(’7)>

We start by explaining, in Section [A.2] how the measure is constructed. Then we state a more
“information-theoretic version” of Theorem [A.3] and proceed to its proof in Section [A.4l Stan-
dard tools from quantum information theory are interjected in Section[A.3] that the familiarized
may want to skip on first reading.

2(k — 1)%logd

sup < .
Gl(ﬁk) N - k + 1

A177Ak€M(ﬁ)

(A.4)

A.2. Construction. Denote S($)) the space of states over a Hilbert space £, and P(S($)) the
set of probability measures on it. Theorem [A.3]is implied by

AM®...®A <F(k) - /7®kd,u(7)>

N—k)

2 2
i 2k*log d
< —.
inf sup o N _&

(A.5)
vEP(S(9)) Ay,...,AEM(H)

Let € be a quantum measurement over $%(

Elp) = Z Tr[Myplen)(enl-
I

acting as

Defining, for each pu,

T M, T
r, .= Tkt1oN | 2;; | ® |€u><€u|’ = Tr []l®k 2 Mﬂl‘}

we have by simple computations the

Lemma A.4 (Decomposition of the state I').
For each i, I', is a N-body state. Moreover,

Y Ly =19 @eT
o

> p P =1k,
nw

and

In particular p, > 0 and

> pu=1.
w
Notice that I'" being symmetric implies that FELk) also is. Now, the N-body state

Feo=Yon ()™ (A6)
i
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is certainly of the de Finetti form. Thus

2
inf sup HA ®R...0A <F(k)—/7®kd 7)
vEP(S(H)) Ay,..,AyeM(H) ! ’ ot Sl(Hk)
- 2
< inf su HA ©... 0N (T® - TP ( (AT
_5eM(ﬁ®N*k)A1,...,Ak£M(ﬁ) ' k( & > &1 (Hk) (A1)

This is the first main idea: the measure is constructed by minimizing over measurements as
above. The second main idea is to make a detour from the trace-class norm to more information-
based measures, such as quantum relative entropies. In fact Theorem [A.3] is implied by an
estimate of the error using the relative entropy

HT,T') :=Tr [T (logI" — logI')] .
Theorem A.5 (Quantum de Finetti, information-theoretic version).
Denoting
Lk:A1®...®Ak.
, we have

®k (k—1)%logd
inf su E H (L% L, (T > L \EZ ) logd A8
SEM(YJ@(N_’“))Al,_..,AkIe)M(ﬁ) - Py ( k- ’f< B > S TNkt (A.8)

In the next subsection we provide more background and tools bearing on the multipartite
mutual information of a state (i.e. on the left-hand side of (A.8])). Then we give the proof of
Theorem [A.5] and conclude that of Theorem [A3] in Section [A.4]

A.3. Quantum information-theoretic tools. In the sequel, S and H stand for the usual von
Neumann entropy and relative entropy. A state over a k-fold tensor product will be denoted
'k and for | < k, the reduced states T'' over [-fold tensor products are defined as reduced
density matrices, taking partial traces.

We start with the simple

Lemma A.6 (Partial measurements).
For a three partite state T''?3 and a measurement over the third system Az

(1 @1 @A T'23) % =112,
Proof. This is immediately seen from the definition (A.3]) O

Definition A.7 (Mutual informations).
For a quantum state T' = T'* over a tensor product 91 ® ... ® 9y, define the bi-partite mutual
informations (I < k)

(90, 90 Oty S = H (rl---k,rl---l ® rl+1---k)
S <F1...l) 1S (Fl+1...k> _g (Fl...k)
and the multipartite mutual information
(9. ) =H (rl---’f,rl ®...® r’f)
=S+ 8 (TF) = (T
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Remark A.8 (Mutual informations).

One can of course define mutual informations over any kind of partition. It follows from their
definitions as relative entropies that these are positive quantities. The second equality in each
definition comes from the fact that

log(I'' ® I'?) = log (Fl ®1)+log (1 ® 1“2)

that one uses to prove that the von Neumann entropy is subbaditive (which is the same as the
bipartite mutual information being positive). o

Mutual informations are positive, as we just saw, but they cannot be too big:

Lemma A.9 (Bound on bi-partite mutual information).
Let T2 be a bi-partite state over $1 ® 8§, for two finite-dimensional Hilbert spaces of dimensions
d1 and dy respectively. Then

I($1 : H2)r1z < 2min (logdy, logds) .

Proof. Recall the Araki-Lieb inequality (proved by purification, Schmidt decomposition of pure
states and subbadivity of entropy [26])

Sy > ST — S(Ir?)].
Inserting this in the (second) definition given above we have
I($71 : H2)piz = ST + S(I'?) — S(I'?) < 2min (S(T'), S(I'?))
and the result follows, for the maximal entropy of a state in dimension d is log d. O
We also have the useful

Lemma A.10 (Mutual informations, bipartite to multipartite).
With the notation of the above definition

k
I(f)l L. Fl .k ZI ,57)1,..., —1 :,ﬁj)rlmj. (Ag)
7j=2

Proof. The definitions easily yield
I($H:...: g)k)l"lmk = I(f)l, D1 D)k L9 ﬁkfl)rquﬂ
and it suffices to iterate this relation. O

Next we need the

Definition A.11 (Conditional mutual information).
For a quantum state T' = T''?3 over a three-fold tensor product $,®92®93, define the conditional
mutual information
I(H1 : H2|93)r = 1(H1 : H2,93)r128 — [(H1 : H3)ps
— 7_[(11123’ Fl ® F23) _ 7_[(1113’ Fl ® F3)
Remark A.12 (Conditional mutual information).

It turns out that also the conditional mutual information is positive. This is not quite trivial
and in fact follows from strong subbadivity of quantum entropy [27] 28]. o

A first lemma bearing on the conditional mutual information is
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Lemma A.13 (Conditional mutual information of partly measured states).
Let T'123 be a tri-partite state of the form

123 _ 12 o
I E pil" @ [ej) (el
or positive numbers p; summing to 1, bi-partite states T'\? and an orthonormal basis (e;). Then
J i J

I(f)l : 52|~63)1‘ = ijl(f)l : ,‘732)11}2. (A.lO)
J

Proof. Diagonalize I‘}Q and then Schmidt-decompose its eigenvectors. This gives

' = Z Piq5.k/T5,k1\ T4,k m|a] k l><a’j k m| ® |bj k l>< 5,k m| & |6]><6J|
gk Lm
with orthonormal basis (a;,;); and (b ;) and positive numbers satisfying

ZQj,k = 1, er’kJ =1.
k

l

Inserting this in the definitions
I1(91 : H2|93)r = —S(r123) + S(r23) — S(I3) 4+ S(T*3)
ij GRS ij )+ S(F) = ST},

the proof is a straightforward calculation. O

The previous lemma morally justifies an extension of Definition [A 1T}

Definition A.14 (Multi-partite conditional mutual information).
Let TVF+1 be a k + 1-particle state of the form

rhit = ijrl ® lej) (el

for positive numbers p; summing to 1, k-partite states Fjlk and an orthonormal basis (e;). By
definition

I($:... :5k’ﬁk+1)l"lmk+l = ijf(f)l T Y)k)rjlk
J

Next we state a crucial link between bipartite mutual informations and conditional mutual
informations

Lemma A.15 (Chain rule for mutual informations).
Let T =T4N be a N-partite state.

N
I($91,- - Okt = Do OV = D T(H1, -, Hpm 1 95[941 ® - @ ON)prw—nyen. (AL
j=k
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Proof. Call M =N —k+1, A=H1®...® N1, Bj = Hryj—1. A reformulation is then

M
I(A:By,...,By) =Y I(A:Bj|Bj11®...® By).

j=1

The left-hand side is equal to

LHS = S(I4) + §(0Br~Bar)y _ g(rAB1--Bar),
But the M —th term of the left-hand side is just a mutual information with no conditioning
RHS) = S(T#) + S(IPm) — §(TABM),
The other terms of the right-hand side are, for k < M,
RHS;, = H(IABr-Buy A @ 1BrBary _ gy(PABrs1--Bar DA @ [Brs--Bar)
— S(DBr-Bury _ G(DABr-Bur) _ (§TBr+1--Bary _ g(pABr+1--Bar)

and the result clearly follows. O

A.4. Proof of the main estimate. This is the proof of [6], expanded so as to become more
accessible.

Proof of Theorem[A 3. From now on we occasionally label the copies of the one-body Hilbert
space, for we will sometimes deal with states that are not fully symmetric.
Step 1. We split multipartite informations into bipartite ones using Lemma [A. 10l

IH:...: L = 21551,---, 12~VJj)Lng)-

Then, by monotony of the relative entropy we know [40] that the mutual information decreases
under local measurements, for they are trace-preserving completely posmlveﬁ maps. Thus

k
L9 9)y o0 < D T(O1 911 995), 1o
j=2
where we abuse notation by denoting
AT =10 @A®... 01T,
Next, using symmetry and monotony of the relative entropy under partial traces
I et )y, po < (K= DI D1 ), p0-

Multiplying by p,,, summing over p and using Lemma [A.13] this yields

Zpu D)g,rr < k= DI D1 DeDrtrs - ON)ageer (A.12)

3positive suffices actually [37].
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Step 2. We claim that
(N —k+ 1)mgnn}\akxf(ﬁ1, oy D1 Okl Dket 15 AN ) AET
< max I(H1,....9%-1: 9% ... 98) (A.13)

T Agyeo AN
where
v =110 A, @ Apy1 @ ... An(D).

This is achieved by a particular choice of the measurements Agyq,...,Ax (in particular, the
minimum over all measurements on /N — k systems is bounded above using tensorized measure-

ments). We start from the right-hand side of (A.13]) and use the chain rule, Lemma [A.15t
N
I(S{)la cee ayjk;—l : '6]95 e aij)l/ - ZI(S{)I, .. ayjk;—l : 5{)]|~6]+1 e aij)I/j (A14)
=k

where in the right-hand side

v = Jlok=1j..N
Observe that, as per Lemma[AL6], the j-th term in the right-hand side of ([A14)) does not depend
on the measurements Ag,...,A;_1. We then choose Ay to maximize the N-th term, Ay_; to
maximize the NV — 1-th term given Ay, etc ..., A; to maximize the j-th term given the previous
choices of Ay,...,Aj41, and continue this way iteratively. Then we certainly have, for each
term,

191, D1 : 95941, ON)y; = min maxI(Hy,..., 91 :9j[HDj41...,9N),

Aj+1,...,AN Aj

and using Lemma again we also have

I(91,. - D1 : 99511, 9N),
> min maXI(le,...,.ﬁk_l :ﬁj|f)k...f)j,1f_)j+1...,f_)N),,.

T AN A, AN A

By symmetry of I" then
191, D1 : 95941, ON)y; = min - max I(H1,..., D1 Dl D1, H8)w

A1, AN Ak

and since this corresponds to choosing a particular class of measurement £
191, D1 : 9941, ON)y; = nginrrll\axf(ﬁb---,ﬁkq S 9.|9k+1 - DN)AET
k
Thus, for the particular choice of measurements we made,

(N =k +1)minmax (91, ..., Dr—1: HelD+1, - Hv)aveer
k

N
< 21(51,---,51?71 2919541, N,
=k

and Claim (A13)) is proved upon using (A14).
Conclusion. Lemma [A.9] yields

max I(H1,. .., 9%—1: %, ..., 98y < 2log dim(HPF1) = 2(k — 1) log d.

Ay AN
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Insert this in (AI3), use (AI2]) and the result is proved. O
Finally, we explain how Theorem [A.3] follows from Theorem [A 5k

Proof. Denote
for brevity. Using Lemma [A.4], convexity and then Pinsker’s inequality

o 10~ [t (18- (1))
B

61(.6’“)
®k
=S L, <p(k>_ e >
2 (T = () )]
®k
<2 puH (ka;(f),Lk <F;(})) ) (A.15)
I

(k)

where H is the von Neumann relative entropy and we have used that, by symmetry of I',” and
by arguments similar to Lemma [A 6]

(L,grgﬂ)1 ®...® (Lkl“ff))k =L, (T()

The last term in (A.15) is nothing but the multipartite mutual information refered to in Theo-
rem [AL5] and thus the proof is complete. O

®k
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