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Abstract 

We study the dynamic response to small acoustic oscillations of a vaporizing droplet in shape 

of a pastille (a small liquid cylinder, called “pastille” in the sequel, the height of which being 

smaller than the radius of the base). Contrary to some previously proposed models, where the 

thermal convection effect inside the droplet is often neglected, the continuously fed pastille-

shaped model takes into account the effects of both thermal convection and conduction. 

Curves related to different heat exchange coefficients are presented for the frequency 

response of the vaporization rate. The case where the feeding process at the bottom of the 

pastille is assumed isothermal (isothermal bottom regime) is compared to the one where the 

feeding process at the bottom of the pastille is adiabatic (adiabatic bottom regime). The 

response factor curves for the pure conduction model of the spherical droplet and for the 

present model of the “equivalent pastille” are also compared. The temperature field 

perturbation is then examined. As well as for the evaporation mass flow rate perturbation, 

comparisons are made between the regime with an isothermal bottom and the one with an 

adiabatic bottom. We find that, in spite of some divergences observed between the various 

cases, the frequency response of a droplet submitted to acoustic oscillations presents also 

some common points. It is shown that the life time (or residence time), the thermal diffusion 

time, and the period of the harmonic perturbation do intervene strongly in the behaviour of the 

vaporizing pastille. The liquid propulsion is a possible application of this basic study 

conducted as part of a thesis. 

Keywords: Pastille / evaporation / harmonic oscillations / response factor / temperature 

perturbation. 

 

Nomenclature 





b

a
 = parameters introduced in Eq. (12) and (13) 

A, B = coefficients in the transfer function 

C = “chamber” (conditions at infinity) 

cp, cL = heat capacity of the gas at constant pressure, heat capacity of the liquid (J kg
-1

 K
-1

) 

E        =      function introduced in Eq. (18) 

f = arbitrary quantity 
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G        =      function introduced in Eq. (9) 

k = heat conductivity (W m
-1

 K
-1

) 

 = latent heat per unit mass  (J  kg
-1

) 

L =  “liquid-phase” 

M = mass of a droplet (kg) 

M  = vaporization rate of an evaporating droplet (kg s
-1

) 

N = response factor 

p = pressure (Pa) 

Q  = heat flux (W m
-2

) 

S = “surface” (droplet or pastille) 

T  = temperature (K) 

t = time (s) 

u = reduced frequency 3 v  

x         =       abscissa or distance from the pastille bottom (m) 

Z = transfer function 







 ,,
= parameters introduced in Eq. (12), (13) and (14) 

  = period of the harmonic perturbation (s) 

  = time ratio 
v

T




 

κ = heat diffusivity (m
2
 s

-1
) 

  = density (kg m
-3

) 

v  = average residence time of a pastille (s) 

TT  ~,  = heat transfer characteristic times (s) 

ω = pulsation of a wave (rad s
-1

) 

        =       reduced abscissa or reduced distance from the pastille bottom 

s

x

x
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All primed quantities denote perturbation quantities (i.e. 
( )

'
x x

x
x


 ) and all barred quantities denote mean 

values.  

1. Introduction 

Much research in combustion has been focused on instability mechanisms. With an emphasis 

on low frequency oscillations, recent works have been focused on the liquid droplet injected 

into a hot gaseous environment. This type of instability is also observed in liquid propellant 

engines where it is coupled by combustion instabilities. The subsequent vaporization and 

combustion dynamics can contribute to high frequency instability of the whole chamber [1]. 

Many of these studies about this type of instability have been published. Let us cite Bhatia 

and Sirignano [2], Culick and Yang [3], Delplanque and Sirignano [4], DiCicco and 

Buckmaster [5], Dubois et al. [6], Duvur et al. [7], Harrje and Reardon [8], Heidmann and 

Wieber [9], Heidmann [10], Prud’homme [11,12], Prud’homme and al. [1, 13]. In all these 

published documents the authors have developed or refined different theories to better 

understand the phenomenon. 

 

In general, the dynamic response to oscillations is computed by using drop-evaporation theory 

[14], on the basis of the Rayleigh criterion [15], with simplifying assumptions [1, 9-10]. In the 

Heidmann analogy [10], a spherical droplet of constant volume represents a mean droplet at a 

fixed place in a chamber, in the steady regime. More precisely, the system frequency response 

of the spray of repetitively injected drops in the combustion chamber is obtained by 

considering a mean evaporating droplet at rest, continuously fed at a stationary flow rate. This 

evaporating droplet represents a mean droplet with constant volume, at a specified location in 

the combustion chamber, and is supposed to summarize the frequency response of individual 

drops in the spray. The droplet is assumed to be fed by fuel at a constant average temperature 

with a constant injection rate. With the simplification of Heidmann and Wieber [9], an infinite 

thermal diffusivity of the liquid is considered; therefore the mean droplet has a uniform 

temperature. In the analysis of Prud’homme and al. [1, 13], a finite thermal diffusivity of the 
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liquid is taken into account. The feeding comes from a point source placed at the mean droplet 

centre. A linearized investigation is performed in which the response factor is considered. 

This investigation leads to a linear partial differential equation including a convection term 

with a variable coefficient. The study of the obtained equation is still somewhat complicated 

except for the pure conduction case. In fact, the linear analysis of the behaviour of a 

continuously fed spherical droplet subject to small acoustic perturbations has been possible 

under the following simplifying assumptions: 

1) Neglected convection effect in the energy conservation equation for the liquid-phase, 

2) Zero temperature gradient in the centre of the droplet (adiabatic condition). 

Out of those cases, no analytical solution has been found and any asymptotical or numerical 

study has been performed.  

 

The present modelling of the droplet by a cylindrical pastille with an impermeable and 

adiabatic lateral surface allows us to study analytically the response of the droplet under 

different other assumptions.  The mean evaporating spherical droplet is replaced by an 

equivalent cylindrical pastille with the same volume and the same evaporating surface. This 

model leads to a linear partial differential equation with constant coefficients even if the 

convection term is taken into account. It allows to study analytically the convection effect 

inside the pastille and to compare the behaviour of the system between the isothermal and 

adiabatic bottom regimes. The latter regimes replace the regimes in the centre of the droplet. 

Some results of the pastille model are certainly applicable to the spherical droplet model 

although their geometrical configurations are different. The liquid propulsion is a possible 

application of the reported basic study. The theoretical results of the present study can also be 

applied to model the transient combustion control in resonant systems since combustion 

instabilities still remain to be a formidable challenge for plane and car engine designers. 
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The main objective of the present study, based on the linear analysis of small harmonic 

perturbations, is to extend the results from [1, 12] to the case where heat convective flow 

effect is considered during the process. As in [1, 12] we will consider the case of a stabilized 

velocity and look for the response factor, defined as the ratio of evaporating mass flow rate 

perturbation to the pressure perturbation. We will also be concerned only with vaporization 

dynamics. The influence of combustion will be limited to imposing a stationary composition 

and temperature at infinity. The combined effects of vaporization dynamics and combustion 

kinetics, and their eventual retro-action on ambient pressure will not be analyzed here. We 

will assume also that the gas-phase is in the quasi-steady regime as in [16 - 18]. Consequently 

the derived perturbation equations established for the gas-phase of the evaporating droplet in 

[1, 12, 13] will be used for the equivalent pastille. 

 

First, a frequency response of the vaporization process to small oscillations in pressure will be 

evaluated for the isothermal and adiabatic bottom regimes. Variations in the response factor 

with frequency and heat thermal exchanged coefficient will be presented for both regimes. In 

the adiabatic bottom case for the equivalent pastille, comparisons will also be made with the 

pure conduction model of the spherical droplet. Finally, a specific analysis of temperature 

field perturbation will be performed. It is shown that, in some concrete cases, significant 

differences appear between the perturbation propagation for the isothermal and adiabatic 

bottom regimes. Note that in the rest of the study, the term convection will refer to the radial 

thermal convection inside the continuously fed droplet from its centre to its evaporation 

surface or to the axial thermal convection inside the continuously fed pastille from its bottom 

up to its evaporation surface. 

 

2. Formulation of the model 
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In order to assess the influence of the thermal wave inside the droplet on the unsteady 

evaporation mechanism, we present an alternative to the more classical model of a spherical 

droplet. The situation considered here is an idealized model of a motionless, cold pastille after 

it is placed in a hot stagnant, gravity-free environment of infinite extent. The pastille with an 

impermeable and adiabatic lateral surface is assumed to be continuously fed at its bottom and 

is subject to small acoustics oscillations. The system pressure is much less than the critical 

pressure of the liquid, and therefore critical phenomena are not important. 

2.1. Geometry considerations 

The classical model of a continuously fed spherical droplet was first formulated in 1960s by 

Heidmann ([10] and references therein). Next, in a simplified approach, Heidmann and 

Wieber [9] considered a mean evaporating droplet with uniform but time-varying temperature 

since an infinite thermal diffusivity in the liquid-phase is assumed. Figure 1 illustrates a 

Heidmann droplet. This evaporating droplet has a constant average radius, and is continuously 

fed by a steady flow. 

 
 

Figure 1: Droplet of radius Sr , continuously supplied by a steady injection mass flow rate M  

of the liquid fuel. 
 
 

The classical model described above was reviewed and substantially refined by Prud’homme 

and al. [1]. Their analysis, which takes into account a finite thermal diffusivity of the liquid, 

was based on the assumptions mentioned in the Introduction. Namely, it was assumed that the 
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radial convection effect in the energy equation due to the feeding process at the centre of the 

droplet is neglected and the droplet centre remains adiabatic. Explicit expression was then 

derived for the droplet mass transfer function in the pure conduction case and the results were 

discussed. Also in this study, a numerical analysis of heat transfer inside the mean 

evaporating droplet, termed the “multi-layer model”, was reported. 

  

In the present model, the spherical droplet is replaced by a cylindrical pastille-shaped droplet 

(which will be called “pastille” in the sequel) with mean height Sx  and constant orthogonal 

section S  (Fig. 2). Its volume and evaporation surface are supposed to be equal to those of 

the droplet. This double condition implies that 

, 2 6
3

S
S C S S

r
x r r x   , 

with 224 CS rrS  
 
and 3

3

4
SS rxS  , and Cr  

being the radius of the cylindrical pastille. 

The pastille can be fed by fuel at the average temperature ST , with the average mass flow rate 

M . The feeding is made under the pastille bottom across a flat porous cylinder with the same 

diameter as the pastille, which permits to assure a uniform flow at 0x . The velocity Lv  in 

the liquid-phase is constant and parallel to the axis of the pastille. During the injection, the 

bottom of the pastille is assumed to be adiabatic (zero temperature gradient) or isothermal 

(imposed constant temperature).  
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Figure 2: The equivalent pastille 
 
 

One may obtain another system equivalent to the continuously fed spherical droplet with two 

evaporating surfaces (Fig. 3). The pastille is twice as thick and its radius is 2  times smaller, 

and is to be fed this time in its central plane. This more compact system shows the same 

behaviour as the previous one. The pastille model may be justified according to the small size 

of the droplet compared to the dimensions of the combustion chamber imposing the 

perturbations of the pressure Cp . 

Sr223

2 Sr

2Q

2Q

2M

2M

M

 
 

Figure 3: Another equivalent pastille 

 

 

2.2. The characteristic times 

It has been shown in previous studies [19, 20] that in liquid rocket engines, the acoustic 

periods of the chamber modes (about 10 
-4

 to 10 
-3

 s) may be of the same order of magnitude 

as the characteristic times of vaporization and combustion, whereas the primary and 
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secondary atomization phenomena intervene at smaller time scales. We denote the density, 

the specific heat and the thermal conductivity of the pastille respectively by 
LL c, , and Lk . 

We assume that these thermal properties remain spatially and temporally constant in the 

pastille during the process. In this situation two characteristic times intervene. The residence 

time of the pastille, which replaces the notion of the pastille life time in the present situation 

of constant volume, is written as L S
v

L L

S xM

S vM





  , that is 

L

S

v
v

x
 . The transfer time by 

thermal diffusion process is 
2

S
T

L

x



  (where L

L

L L

k

c





 

is the thermal diffusivity of the 

liquid) and is identical to the one of the spherical droplet. Thus we had the same ratio v

T





  

as for the spherical droplet [1]. 

One can estimate that the conduction mode will dominate if T v  . On the contrary, for 

T v   the convection of fuel will be dominant. The two modes will coexist for vT  ~ . As 

the equivalent pastille with two evaporating surfaces (Fig. 3) is fed this time in its central 

plan, the characteristic times v  
and T

~  are unchanged as well as their ratio  . 

 

The total mass balance of the pastille is  

 

.MM
dt

dM  

 
       (1) 

In a stabilized regime, one has: , 0
dM

M M
dt

  and .M M  

 

2.3. Energy conservation equations 

In the presence of the internal motion, the unsteady heat and mass transfer processes inside 

the pastille are described by the following system: 
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2

2
0l l l

L L

L L

T T T
v

t x x

M S v





  
  

  
 

 

 

subject to )t(T)t,(T sl 0 , )t(T)t,x(T ssl   for the isothermal injection at the bottom or to 

00 



t,

l

x

T
, )t(T)t,x(T ssl   for the adiabatic injection at the bottom. The flow condition at 

the pastille surface: 

,

,

s

l
L L

x t

T
S k Q Q M

x


  



 

couples the gas and the liquid-phase solutions. 

 

3. Linear analysis for small perturbations 

In the vaporization calculations, the acoustic oscillations affect the pastille heat and mass 

transfer processes, causing perturbations in the pastille temperature and in its mass 

evaporation rate. With these fluctuations, the rate of vaporization depends on the frequency of 

the oscillation. The transfer function of the frequency response can be evaluated. 

 

3.1. The linearized equations 

Assuming that the pastille has reached a steady regime, we now consider small acoustic 

perturbations writing f f f    where f  is a flow parameter, f  is its mean value, f  is 

the corresponding absolute perturbation, and '
f

f
f


  is the corresponding relative 

perturbation. The energy conservation equation becomes 

     
' ' 2 '

2
0l l l

L L

T T T
v

t x x


  
  

  
    (2) 

with 

Lc

L
r

M
v

 2


  , and the flow at the surface is given by 
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'

2

,S

l
c L S L

x t

T
r k T Q

x



 


.              (3) 

The boundary conditions in the isothermal bottom regime become 

 

     

' '

' '

(0, ) 0

( , ) ( )

l S

l s S

T t T

T x t T t

  




     (4) 

and in the adiabatic bottom regime we set 

     

'

0,

' '

0

( , ) ( )

l

t

l s S

T

x

T x t T t

 







                (5) 

 

3.2. Analytical solutions 

The left hand side of equation (2) consists of three terms, representing change in time, 

convection, and diffusion. Introducing harmonic perturbations of the form   tiexff ˆ' , we 

set 
' ˆ i t

l lT T e   and ti

LL eQQ  ˆ . We find a solution in the form: 

      xsxs

l eeCT̂


      (6) 

With C  being a constant, s , s  are two complex roots of the following characteristic 

equation: 

     
 

0~

2


T

S

v

S xsxs
i


  .    (7) 

The flow condition at the surface is 

     L

tx

l
SL Q

dx

Td
TkS

s

ˆ
ˆ

,

  .     (8) 

Let us introduce the reduced frequency vu 3 , the same expression as in the spherical 

droplet case [1]. The flow condition at the surface leads to 

       S

S

SL

L TuG
x

TkS
Q ˆ,ˆ  .   (9) 
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For the isothermal bottom case, using conditions (4), one has 
SS xsxs

S

ee

T̂
C




 and  

      
SS

SS

xsxs

xs

S

xs

S

ee

exsexs
,uG












 .  (10) 

For the adiabatic bottom case, conditions (5) provide 

ˆ

S S

S

s x s x

S S

T
C

e e

s x s x

 

 





 

and  

      ,
S S

S S

s x s x

s x s x

S S

e e
G u

e e

s x s x



 

 

 






.              (11) 

 
 

3.3. The transfer function 

We will now apply to the evaporation surface of the cylindrical drop the same fields of 

temperature and pressure than those obtained with the theory of quasi-stationary spherical 

drop [1, 11]. The ambient pressure is given by ˆ' i t

Cp p e  . From the study of the gas phase it 

can be deduced that: 

     CS p̂T̂b
iu

iu
M
ˆ





1

 ,    (12) 

with 3 vu  , 
ˆ

' ,i tM
M M e

M


  and 

     SCL T̂µp̂aMQ̂    ,    (13) 

with 
ti

LLstatLL eQ̂QQQQ  . Eliminating LQ̂  in (13) and (9), the expression for 

the complex transfer function 
Cp

M
Z

ˆ

ˆ
1 


 is obtained: 

 
 

 

3 ,
,

1 3 ,

A G uiu
Z u

iu B G u

 


 




 
  ,                              (14) 
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with 
 3 3

,
ab

A B
 

 


   (the parameters ,,ba  and   are the same as defined in [1]). 

To obtain the expression of the function G , it is necessary to solve the characteristic equation 

(7). We set 



ieR
u

i 
24

1

3
,  tan

2
d

 
  

   

with R  being the modulus of 
24

1

3 


u
i  which 

is 

22

2 34

1





















u
R  and get d  as a function of u  and  : 

    

2

4

3
1

4

3










uu
d


.    (15) 

Thus, we find the two solutions s and s  of equation (7). We now set 2

2

1




i

eRm    and 

2

2

1




i

eRn  . Using respectively the expressions (10) and (11) we obtain for the 

isothermal bottom regime: 

     
nm

nm

ee

enem
G




      (16) 

and for the adiabatic bottom regime: 

     
m n

m n

e e
G

e e

m n






 .               (17) 

If we neglect the convection heat transfer effect in the pastille and consider simply a pure 

conduction circumstance, the characteristic equation takes the form 0~

22


T

S sx
i


  and the 

expression of G  in the isothermal bottom case appears as 

     , 1 coth 1
6 6

u u
G u i i

 

 
   

 

. 

For the adiabatic bottom case, G  is given by 

 
 

 

1
6

,

coth 1
6

u
i

G u
u

i









 

 
 

. 
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4. Response factor 

A sinusoidal oscillation in pressure causes an oscillation in vaporization rate that depends on 

the same frequency. The response is the resulting heat or mass perturbation. We analyze in 

this section the response of the vaporization rate of the pastille to an acoustic oscillation. 

 

4.1. The reduced response factor 

The reduced pressure perturbation is defined as 
 

'
p p

p
p


 , and the resulting reduced heat 

or mass perturbation is 
 

'
q q

q
q


 . The response factor N  is defined as 

   

  
,

2

,

' , ' ,

' , V

V t

V t

q V t p V t dt dV
N

p V t dt d




. 

For sinusoidal oscillations which are uniform over a finite volume: 
ˆ

cos
ˆ

q
N

p
 , where 

pq ˆ,ˆ  are the moduli and   is the phase difference between 'q  and 'p . The response factor 

N is expressed as the ratio of the magnitude of heat or mass perturbation to the magnitude of 

the pressure perturbation and thus, includes phase relations. In the rest of this paper we will 

consider and call “response factor”, the reduced response factor, which is the real part of the 

transfer function Z  [11]: 

 Z
N


  

The response factor is assumed positive when the vaporization rate and the chamber pressure 

are either above or below their mean values and assumed negative when the vaporization rate 

and the chamber pressure are on the opposite sides of their means. Following the well-known 

Rayleigh criterion [15], an unsteady evaporation and burning can be one possible driving 

mechanism of instability [8, 21]. 
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4.2. Results and discussions 

Our goal is to relate the response factor characteristics to arbitrary changes of the exchange 

coefficient   (ratio of the characteristic times of the process). To draw a response factor curve 

with the thermal convection transfer effect, it is necessary to replace 
2



 
in the expressions 

(16) and (17) by arctan( )d  taking into account that  d  is a function of u  and   by relation 

(15). The response factor curves are plotted in (Fig. 4) as functions of the reduced frequency 

u . The variation in the response factor with frequency is defined as the frequency response of 

the vaporization process. In each diagram of (Fig. 4), different response factor curves 

corresponding to particular values of parameter   are presented. With or without thermal 

convection effect, some differences are noticed between the isothermal and adiabatic bottom 

regimes. All the presented curves have been obtained with 10A   and 100B  . Note that 

these values of A
 
and B

 
are used by Prud’homme in [12]. They are arbitrary chosen, but 

they correspond to orders of magnitude of values encountered in the classical fuels. In 

general, larger negative response factors were observed as the reduced frequency u  increases. 

However, the frequency for a peak or a non-negative maximum response, if it exists, is 

relatively unaffected by the variations of  . A response factor of less than zero will always 

signify that the evaporation mechanism has a stabilizing influence upon the system. The cut-

off reduced frequency cu  for a zero response factor, therefore, divides the frequency response 

into regions of destabilizing and stabilizing influences, and may be considered as a critical 

frequency. 

In the isothermal bottom regime, a positive response region and therefore a critical frequency 

cu  exist for low values of the thermal exchange coefficient ( 41  ).When   increases, uc 

and also the u value at the positive maximum response, decrease quickly towards 0. The 
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decrease is accelerated when the thermal convection affects the system. With or without 

thermal convection effect, the curves of response factor are completely under the X-axis for 

large   values. The absence of region of positive response factor for increasing values of  

may cause more stability in the combustion chamber. We conclude that in this regime, the 

convection affects significantly the peak value of the response factor at low   values 

( 41  ) and has also an appreciable decreasing effect on the critical frequency 
cu . Positive 

intervals for response factor curves, if they exist, are then affected by the convection as shown 

in (Fig. 4a) and (Fig. 4c) for 1,2  . 

N/α

N/α

N/α

N/α

a) Isothermal bottom without convection effect

c) Isothermal bottom with convection effect

b) Adiabatic bottom without convection effect

d) Adiabatic bottom with convection effect

1 

1 1 

1 

2 2 

2 2 

3 

5 
5 

5 
5 

100 100 

100 
100 

3 
3 

3 

 

Figure 4: Influence of reduced exchange coefficient   on the response factor for the pastille 

with 10A   and 100B  . 
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1N/α

u
2

3

5

100
 

Figure 5: Influence of reduced exchange coefficient   on the response factor for the spherical 

droplet with an adiabatic condition at its centre with 10A   and 100B  .  

 

In the adiabatic bottom regime, the response factor exhibits a peak value at a specific 

frequency. It approaches zero at a lower frequency and decreases to negative values at higher 

frequencies. When   increases from 1 on, taking into account the thermal convection effect 

or not, the critical frequency cu tends to decrease quickly first, reaches a minimum value 

about 4   and then begins to increase very slowly and tends to attain a limit frequency 

value slightly greater than 30 . On the other hand, the peak value increases slightly with   

and tends to a value about 0.1 . As shown in Fig. 4b and Fig. 4d, the critical frequencies cu  

(corresponding to 0N  ) are slightly smaller for the cases of response factor in the presence 

of the convective effect in the system. One concludes that, in this regime, when we assume 

1 , the thermal convection effect reduces slightly the critical frequency value and has only 

a little effect on the shape of the response curve as is shown in Fig. 4b and Fig. 4d. 

Comparisons with the pure conduction model for the spherical droplet are valid only within 

the context of an adiabatic bottom regime. Assuming that the thermal convection effect is 

neglected, the study of the transfer function for the spherical droplet with a finite conductivity 

gives (see [1, 11]): 

 
 

 

,
,

1 ,

A E ui u
Z u

i u B E u

 


 




 
 ,                                           (18) 

where  SS rsrsE 00 coth1 with  0 2

9 93
1 ,

2

L v v
S

S T

u
s r i

r

  


 
     and 

2

S
T

L

r



 . The 

influence of the reduced exchange coefficient   on the response factor  Z
N




 is shown in 
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Fig. 5. Assuming also the absence of the thermal convection effect in the equivalent 

vaporizing pastille model, we notice that response factor curves for the pastille Fig. 4b and the 

equivalent droplet Fig. 5 present several similarities with respect to their shapes, for an 

arbitrary given value of  . However, we also notice, for low values of   (1 4  ), a 

reduction of the critical frequency leading to a reduction of the positive region for the 

vaporizing pastille model. The phenomenon is slightly reversed for the large values of   but 

then the critical frequencies 
cu  for both models tend to a constant value about 30 . Assuming 

now a convective effect uniquely for the vaporizing pastille model, we see that the curves for 

the pastille (Fig. 4d) and the equivalent droplet (Fig. 5) have the same appearance for 1  . 

As for the foregoing comparison, we note here for 1 4   a critical frequency displacement, 

but no appreciable change occurs in the shapes of the curves for the conditions examined.  

 

To conclude, we note that for 2  the curves of the two models of pastille (with or without 

thermal convection effect) are similar but differ from those in the pure conduction case by a 

light reduction of positive region (instability domain). A complete response similarity for a 

pure conduction droplet model and an equivalent pastille model occurs uniquely for very large 

values of 1 .  We can see that neglecting the thermal convection effect in droplet model 

gives correct results for sufficiently large theta. For the continuously fed spherical droplet 

model one may then neglect the convective term for large values of   ( 1 ). 

 

4.3. Analysis of results 

A first important remark concerning the diagrams of (Fig. 4) is that peak values of the 

response factor for both adiabatic and isothermal bottom regimes occur at the same reduced 

frequency of about 3u  , that is 33  vu   or 1v . This means that the response 

factor is nearly at maximum when the entire pastille lifetime (residence time v ) equals the 

oscillation period. As the pastille lifetime approaches the period of oscillation, the pastille 
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temperature can respond to the acoustic oscillations. This favours mass transfer in phase with 

pressure and results in a peak positive response factor. When the pastille residence time is 

very small compared to the cycle time, the response factor tends to be zero. In the limit of a 

very small pastille residence time, the propellant is consumed as fast as it is injected 

regardless of the combustion chamber conditions. This results in the response factor of zero. 

The response factor is negative when residence time is large compared to the cycle time, and 

thus, many oscillations occur in the vaporization process. In this region of negative response, 

the thermal inertia of the pastille is large relative to the oscillation frequency, and the 

temperature of the pastille grows from its injection value to the equilibrium temperature with 

only a small oscillatory component. That is the cause of negative response when the lifetime 

of the pastille is large. 

 

The value of   has also a significant influence on the reduction of the amplification domain 

(positive region) in both adiabatic and isothermal bottom regimes. In fact, significant 

differences in the frequency response for the isothermal bottom regime compared to the 

adiabatic one are smaller peak values of the response factor and the absence of a region of 

positive response factor for large   values. Since 
T

v




 ~  is large, that is Tv  ~ , the 

thermal diffusivity characteristic time is less than the pastille life or residence time and the 

pastille temperature reaches rapidly the equilibrium value. This is especially apparent when 

4   for curves in Fig. 4a and Fig. 4c in which the pastille temperature is held constant, since 

the feeding process at the bottom of the pastille is isothermal. The response factor is negative 

for all frequencies. This fact is readily confirmed by theoretical consideration since, in the 

isothermal bottom regime, with or without thermal convection effect, we obtain: 

2

2

1 u

uN
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when  . In the adiabatic bottom regime, the cut-off frequency 
cu , which is a function of 

 , tends to a limit value slightly greater than 30 . One may note that in this case the adiabatic 

injection effect at the bottom tends to counterbalance the diffusion of heat from the pastille 

surface. Therefore, the boundary conditions relative to the thermal conduction in propellant 

injection can have a significant effect on the frequency response of vaporization process. 

 

The thermal convection has a negligible effect on the frequency response for 1   when the 

bottom of the pastille is assumed adiabatic. This is predictable since in the linearized equation 

(2), the convection term 

'

l
L

T
v

x




 is proportional to 

'
1 lT

x




. The latter term is close to 0  when 

1   since 
x

Tl



 '
 is small for the adiabatic bottom regime. This approximation implies also 

that for very small values of  1   , the frequency response process may result in the 

reduction or complete absence of a region of negative response factor and thus, may lead to 

more instability in the combustion chamber even in isothermal bottom regime. Indeed, 

assuming the absence of the thermal convection effect in both isothermal and adiabatic 

bottom regimes, one finds that 

2

2

1 u

u

B

AN





 

when 0 . Assuming now the thermal convection effect in both regimes, we obtain 

2

2

14816

4816

u

u

B

AN







 

when 0 . In our case 10A   and 100B   so, for 1 , the curves of the response factor 

in both regimes tend respectively to positive values 0.1  and 0.068  when u . When 

1  , the thermal convection effect in both adiabatic and isothermal bottom regimes tends to 

reduce the critical frequency cu . In addition, one finds an appreciable reduction of the peak 

value of the response factor curves in the isothermal bottom case. Therefore the convection 
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tends to reduce the positive interval of the response factor curve, and constitute, in that way, 

an important source of stability in the engine combustion chamber. 

 

In the adiabatic bottom regime, the droplet pure conduction model and the equivalent pastille 

model without thermal convection effect display very similar behaviour for a given value of 

 . When in addition 1  , behaviour of these two models becomes similar to the one of the 

equivalent pastille with thermal convection effect. Indeed, for the droplet pure conduction 

model and the equivalent pastille model with or without thermal convection effect, we have  

2 4

2 2 2 4

( )

(1 )

N A B AB u u

B B u u

  


  
 

when   and therefore, critical frequencies or cut-off values tend to a constant value 

equal to BABA   ( 33.3  for 10A   and 100B  ). Accordingly, in the limit of 

infinitely high values of   one has for the equivalent pastille model with or without thermal 

convection effect the same response factor already found in [1] for the case of the spherical 

droplet with infinite thermal conductivity.  A typical response curve attains a peak value at a 

specific frequency. It approaches zero at lower frequencies and decreases asymptotically to a 

negative value equal to 1  at higher frequencies, as we can deduce from the response factor 

expression in the case of the droplet with infinite thermal conductivity. Critical frequencies 

are then nearly constant. This behaviour is characteristic of a resonant system, where a peak 

response occurs at some frequency and a negative feedback occurs at a higher frequency. If 

this behaviour is realistic, it is significant to the problem of combustion instability in the 

chamber. It implies that the vaporization process may be tuned to the acoustic frequency of 

the combustion cavity. 
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5. Temperature field 

We assume in this section that convection always affects the system, whether the feeding 

process at the bottom of the pastille is assumed to be adiabatic or isothermal. As the response 

factor is the frequency response of mass transfer to the acoustic oscillations, the reduced 

temperature perturbation is the response of the temperature field to the same acoustic forcing. 

 
5.1. The reduced temperature perturbation 

We deduce from (12) and (14) the following relation for the value of ST̂ : 

 
  b
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The reduced temperature perturbation is defined as 
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Taking into account the expression of lT̂  in relation (6) and the expression of the transfer 

function 
Cp

M
Z

ˆ

ˆ
1 


 , we have for the isothermal bottom regime: 

 
  
  

1

3

' , , ,
3

iu
m n

lred m n

A B e e e
T u

B G e e


 

  


 
  

 
  

 

 ; 

with the expression of G  corresponding to the isothermal bottom case, i.e. obtained from the 

relation (10). For the adiabatic bottom regime, the calculation yields: 
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 ; 

with the expression of G  corresponding to the adiabatic bottom case, i.e. obtained from the 

relation (11). 
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5.2. Results and discussions 

Plotting the reduced temperature perturbation  ' 3ˆ, , ,
iu

lred l redT u T e


  
 

 
 

 as function of the 

reduced abscissa   is realized through browsing in time over semi-period 
2

( 0, , )
v

t

u u

 



 

 

for different values of  . The cases 5   and 1500,150,15u  for both isothermal and 

adiabatic bottom regimes are presented in Fig. 6. The penetration depth 
l  

is localized by the 

abscissa 
l  from which the amplitude of the thermal oscillation becomes null. Legends of the 

curves in Fig. 6 present the variation of the temperature perturbation amplitude related to 

varying time, , and the magnitude of the wave penetration depth inside the pastille. The 3D 

graph in Fig. 7 shows the variations of the reduced temperature perturbation '

lredT  according to 

the time   and the reduced abscissa   at a fixed frequency u . All the shown curves have 

been calculated with 10A   and 100B  . 

In the isothermal bottom regime, with reduced frequency at 15u   and 

varying  50,5,1.0 , the amplitude of the thermal oscillation which is zero for 0   

(bottom of the pastille), increases with   and reaches a maximum value at 1   (surface of 

the pastille). Nevertheless, this maximum value at the surface reduces when   increases. So, 

for 1   and 0  , the maximal value of the temperature perturbation at the evaporating 

surface is approximately  4.0,8.0,1  for the three given values of  50,5,1.0  

respectively. We note also that at a fixed frequency u , the greater   is, the greater is the 

penetration depth l  of the thermal wave is. The same phenomenon is observed when the 

value of u  is fixed at 150  and also at 1500 . We nevertheless observe that the increasing of 

the value of the reduced frequency u  at the fixed   reduces the penetration depth l  of the 

wave inside the pastille and also the maximum amplitude of the oscillation at the evaporating 
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pastille surface, as the 3D graph in Fig. 7 shows. The phenomenon is clearly expressed when 

u  takes the values 
315 10 , 

515 10 , and 
615 10 , respectively and then 

l  is reduced even 

for a comparatively high value of   ( 50   for example). For the last value of 

6( 15 10 )u u   , the penetration depth 
l  of the wave is nearly zero for 50  . 

In the adiabatic bottom regime, the penetration depth 
l  of the wave increases with   for a 

fixed frequency u . Moreover, the oscillation amplitude remains high for  values near zero 

for a large value of   combined with a small value of u . A typical case is the one with u  

fixed at 15  and   at 50 . In this case l = 1 and the amplitude of the trio of curves remains 

uniformly close to the one of the values at the evaporating pastille surface. One may 

conjecture that in this case the perturbation of the reduced temperature at the surface 

propagates instantly with the same amplitude toward the bottom of the pastille. As in the 

isothermal bottom regime, the increase of u  at a fixed   tends to reduce the penetration depth 

l  of the perturbation (Fig. 6). Remarkably, when 50   and 
615 10u    the penetration 

depth l  of the wave is nearly zero. 
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Figure 6: Reduced temperature perturbation inside the pastille: browsing in time over semi 

period. 
 

5.3. Analysis of results 

The curves for the isothermal and adiabatic bottom regimes are similar or even identical for 

( 0.1  , 15u  ); ( 5  , 1500u  ); and ( 50  , 15000u  ). Accordingly, the 3D graphs in 

(Fig. 7e) and (Fig. 7f) seem to be identical for isothermal and adiabatic bottom regimes. We 

may estimate for the ratio 
u


 the upper bound value 0R  starting from which the propagation 

of the perturbation of the reduced temperature '

lredT  in the pastille is identical for isothermal or 

adiabatic bottom cases. This value turns out to be about 100 .  
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Figure 7: Differences between reduced temperature perturbation 
'

lredT

 

propagation inside the 

pastille (3D view) according to boundary condition at 0x  . Abscissa values are in the range  

1,,0   and time 
7

, ;
u u

 
 

 

'

lredT
  
varies in the range 1,,1 . Variables

 

'

lredT ,   and 


 
are defined in section 5.1.  

 

Below we describe an attempt to evaluate for the ratio 
u


 , we attempt the lower bound value 

0r  bellow which notable differences in the amplitude of the perturbation propagation along 

the abscissa   appear between the isothermal and adiabatic bottom regimes. We consider for 

comparisons a sample of 56  different values of this ratio for both isothermal and adiabatic 

bottom regimes. For the values of *u u  with * 15u  , notable differences between the two 

cases appear for 
*

3
*

u u

 
  , that is for 1T  . The inequality 1T   signifies that the 

thermal diffusion time T  is smaller than the period of the harmonic perturbation. The heat 
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transfer by diffusion from the evaporating surface reaches the bottom of the pastille before the 

thermal perturbation wave. This fact induces a notable difference in the thermal wave 

propagation between the isothermal and adiabatic bottoms cases, since the boundary 

conditions relative to the conduction at the bottom of the pastille are kept different.  

For the values of *u u , that is with 
*

3
v

u
   ( 5v  ), the differences between the two 

cases seem to occur for *   with * 5  , and this happens independently of the value of 

the ratio 
u


. For frequency value u  smaller than * 15u  , the residence time v  of the injected 

liquid is less than the period of the harmonic perturbation. The inequality *   signifies, on 

the other hand, that the thermal diffusion time T  is also less than the residence time v . The 

thermal perturbation propagation extends toward the bottom of the pastille where the 

boundary condition is kept either isothermal or adiabatic.  

 

The differences between the isothermal and adiabatic bottom are then manifested in the 

following range of u values:   

*

*

u u

 




  
or   

*

*

*

u u

u u

 








 

 

It is better to have only one inequality to summarize these conditions. The use of the absolute 

value function for this purpose is similar to the common usage of the Heaviside function. The 

limit with the negligible differences region may be characterized by a formula delimiting the 

area of significant differences:   

 

.                               (19) 
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2 * *

*

u
u u u u
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In effect, the inequality (19) provides for * : * *u u u u u u     which implies 
*

*

u u

 
 . For 

* : * *u u u u u u     which implies *  . Therefore 0r  can be approximately estimated 

to be about 
*

3
*

u


 . One may notice that v  do not intervene in these relations. Only T

~
 and 

2



   intervene,   being the period of the harmonic perturbation. For a given v  the later 

inequality becomes 

 
 

.                                     (20)   

 

The two areas, of negligible differences (in white) and important differences (in grey) 

between the isothermal and adiabatic bottom cases, are illustrated in Fig. 8. 
 

T
~

*~
T

*

Negligible differences

Important differences

 
 

Figure 8: Differences between the temperature fields of liquid for the two conditions in 0x  : 

isothermal (imposed temperature) and adiabatic (zero thermal conduction).  

 

In conclusion, we understand that important differences between the two regimes occur if the 

thermal perturbation reaches the bottom of the pastille after the heat diffusion transfer is 

realized inside the pastille. This is possible if the thermal diffusion time T
~

 is roughly less 

than one oscillation period and than the residence time v . The calculations conducted for the 

pastille with 10A   and 100B   give * 5   and * 15u  . 

 

2 1 1
* * * *
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T
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6. Conclusions 

We studied analytically the dynamic response of an evaporating droplet subjected to acoustic 

oscillation using a "pastille-shaped" model. Like other authors, we approached this problem 

by considering a continuously fed drop at rest. Our model does not consider the spherical 

geometry of the drop, but the resulting simplification has better taken into account the 

convection effect inside the drop and the boundary conditions controlling the vaporization 

process.  This model permits to broaden the range of parameters of the problem and therefore 

seems to be more realistic.  

 

Two thermal forcing types were considered: constant temperature (isothermal case) and zero 

temperature gradient (adiabatic case). Important differences were observed between the cases 

analyzed, but similarities were also observed. It was found that if the response factor has 

positive values, pointing to instability, its maximum is always reached when the residence 

time is of the same order of magnitude as the period of the harmonic disturbance. Likewise, 

the temperature disturbance yields a wave penetration depth inside the pastille. If this depth is 

smaller than the pastille thickness, the thermal forcing mechanism has little influence on the 

temperature perturbation inside the pastille. The isothermal injection leads to lower response 

factors and may even suppress the instability, unlike the adiabatic injection which maintains a 

zone of instability. The temperature profiles in the liquid are very different in both cases when 

the thermal diffusion time is smaller than the period of the harmonic oscillation and than the 

residence time. Thermal disturbances are more important in the case of an adiabatic feeding. 

This study and its results may be relevant to the development of numerical codes for 

calculating two-phase flows with a consideration of thermal structures inside the droplets. The 

analytical solutions can serve as references to validate the codes and the physical results 
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obtained may help to interpret the observed behavior since the lifetime of a vaporizing droplet 

without feeding can be assimilated to the residence time for a supplied droplet. 

 

The application of the frequency response characteristics of the vaporization process to 

combustion chamber design may be envisioned in several ways. First, according to the 

influence of the boundary conditions controlling the vaporization process, the isothermal 

feeding can better contribute to design stable combustion chamber (with the response factor 

less than zero) than the adiabatic one. Since the thermal convection have significant reduction 

effect on instability due to acoustic oscillations, arbitration may be made between the speed of 

the injection rate and the size (length or radius) of the combustion chamber. We have also 

shown that the residence time, the thermal diffusion time, and the period of the harmonic 

perturbation do intervene strongly in the behaviour of the process. It is found that the 

residence time depends on the size of the drop, the thermal diffusion time depends on the 

propellant diffusivity, and the period of the oscillation can be related to the shape of the 

combustion chamber. The judicious choice of these parameter values in agreement with the 

main results of this paper may permit to obtain more stability in the combustion chamber. 
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