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A set-membership approach to find and track multiple targets
using a fleet of UAVs

Sébastien Reynaud, Michel Kieffer, Hélène Piet-Lahanier, and Léon Reboul

Abstract— This paper presents a set-membership approach
for the coordinated control of a fleet of UAVs aiming to
search and track an a priori unknown number of targets
spread over some delimited geographical area. The originality
of the approach lies in the description of the perturbations and
measurement uncertainties via bounded sets. A set-membership
approach is used to address the localization and tracking
problem. At each time step, sets guaranteed to contain the
actual state of already localized targets are provided. A set
containing the states of targets still to be discovered is also
evaluated. These sets are then used to evaluate the control
input to apply to the UAVs so as to minimize the estimation
uncertainty at the next time step. Simulations considering
several UAVs show that the proposed set-membership estimator
and the associated control input optimization are able to provide
good localization and tracking performance for multiple targets.

I. INTRODUCTION

The search for moving targets of interest over a potentially
large area is a challenging topic that can be of use in many
real-life applications. These usually time-critical missions
may be more efficiently addressed using cooperating agents.
Networks of UAVs have already demonstrated their flexibil-
ity to mission requirements, robustness to faults, and ability
to achieve the global objective in a shorter time.

In this paper, we consider the search and tracking of an
a priori unknown number of targets using a fleet of UAVs,
with a decision process that may be distributed among the
vehicles. Contributions to such problems have been presented
in two recent surveys [1], [2]. As described in [1], the initial
problem is often split into target detection and target tracking.

Target detection is mostly addressed as a probabilistic
information gathering. In [3], the search space is sampled.
A Bayesian filter is used to update the probability associated
to each point of the sampling grid, and a binary tree search
is used to allocate the UAVs to sub-regions of the search
area. This approach proves efficient even when the targets
outnumber the UAVs but requires to select adequately an a
priori subdivision of the search area. A search pattern using
Lloyd’s algorithm, combined with a Probability Hypothesis
Density (PHD) filter to evaluate the occurrence of a target
is presented in [4] to achieve distributed coverage and target
tracking when the targets may enter or leave the search area.
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In the considered scenario, target tracking is performed
combining information from multiple sensors. Since they are
mobile and their potential locations are constrained by the
ability of the carrying platforms, the tracking problem can
be formulated as a path planning problem to determine the
future UAV sensor locations that are reachable and decrease
the target state estimation uncertainty. Various methods have
been developed in this context, see, e.g., [5], [6], [7].

In all of the aforementioned approaches, a stochastic
framework is used to describe the measurement errors and
model uncertainties. As pointed out in [8], the resulting
performance may prove sensitive to the a priori assumptions
on the probability density functions (pdfs) describing the
process and measurement noises. As the definition of suitable
pdfs might prove tedious, a set-membership descriptions
of uncertainties is suggested in [8]. The only assumption
made on the noises and uncertainties is that their realizations
remain within known bounds. Using this description, one no
longer searches for a single point estimate associated with a
posterior density function but for sets guaranteed to contain
the target states at each time step.

In this paper, we assume that each UAV is equipped with
a sensor able to detect and localize targets in some compact
subset of the search area. A distributed set-membership
estimator is presented that accounts for information provided
by each UAV, but also for the absence of detected target
in the sensed subset. A control input for each UAV is
derived by predicting the impact of future measurements on
the set estimates of target states, and choosing the control
which minimizes the estimation uncertainty. To the best of
our knowledge, it is the first proposal, considering bounded
disturbances, that provides estimates consisting of compact
sets guaranteed to contains the true target states.

The paper is organized as follows. Section II describes
the multi-target multi-UAV localization problem. Section III
presents a distributed estimator that recursively provides
sets that are guaranteed to contain the true target positions.
Section IV presents a criterion to evaluate the impact of
future measurements on target state estimates and a control
input design scheme to drive each UAV so as to minimize an
upper bound of the estimation uncertainty. In Section V, the
set-membership estimator and the control input design algo-
rithms are evaluated on simulations. Section VI concludes
this paper.

II. PROBLEM FORMULATION

Consider a fleet of NU identical UAVs which aim is to
search and track NT potentially moving targets. NT is fixed



but not known a priori. Time is sampled with a constant
period T . At time k, (time instant t = kT ), let ri,k ∈ Rnr be
the state vector of UAV i and z j,k ∈ Rnz the state vector of
Target j. Their evolutions with time are modeled as

ri,k+1 = fR
k
(
ri,k,ui,k

)
(1)

z j,k+1 = fZ
k
(
z j,k,v j,k

)
, (2)

where ui,k is the control input for UAV i, to be chosen
in a set U of admissible control inputs; v j,k are unknown
target state perturbations belonging to the known box [vk].
At time k = 0, all z j,0 are assumed to belongto some a
priori known compact set Z0 ⊂ Rnz . The state vectors of
the UAV fleet and of the targets are rT

k = (rT
1,k, . . . ,r

T
NU,k

)

and zT
k = (zT

1,k, . . . ,z
T
NT,k

).
Each UAV is equipped with a sensor able to observe a

subset of the target state space Rnz and to acquire information
on targets belonging to this subset. For a given value ri,k
of the state of UAV i, the observed subset is denoted as
Fi
(
ri,k
)
⊂ Rnz . One assumes that from the observation of

Fi
(
ri,k
)

at time k, UAV i is able to get a list Li,k of indices
of detected targets, i.e.,

j ∈Li,k⇔ z j,k ∈ Fi
(
ri,k
)
. (3)

According to (3), the probability of non-detection of a target,
as well as the probability of false alarm are null. The
processing of Fi

(
ri,k
)

leads also, for each target j ∈ Li,k,
to a noisy observation of the state z j,k described as

yi, j,k = hi
(
ri,k,z j,k

)
+wi, j,k (4)

where hi is the observation equation of UAV i and wi, j,k is
the measurement noise bounded in the known box [wk].

Ii,k gathers the information available to UAV i at time k.
From Ii,k, UAV i is able to evaluate Di,k, the set of indices
of targets already detected or which presence has been
signaled by an other UAV of the fleet to UAV i. Ii,k is also
used to evaluate a set of set estimates Zi,k =

{
Zi, j,k

}
j∈Di,k

containing the state values of the already detected targets.
Zi, j,k contains all possible values of z j,k that are consistent
with the information available to UAV i at time k. Moreover,
UAV i also maintains a set Zi,k containing the possible state
values of not detected targets.

Consider a measure Φ of the target state estimation
uncertainty. This measure involves the set estimates of the
already detected targets as well as Zi,k. A possible choice is

Φ
(
Zi,k,Zi,k

)
=

1
max

{
1,
∣∣Di,k

∣∣} ∑
j∈Di,k

φ
(
Zi, j,k

)
+αφ

(
Zi,k
)
(5)

where φ
(
Zi, j,k

)
is the volume of the set Zi, j,k,

∣∣Di,k
∣∣ is

the cardinal number of Di,k, and α some parameter to
adjust the relative importance of the average state estimation
uncertainty of detected targets and of not yet detected targets.
The (target state) estimation uncertainty at time k is defined
as the average of Φ

(
Zi,k,Zi,k

)
computed for all i = 1, . . . ,NU

Φk =
1

NU

NU

∑
i=1

Φ
(
Zi,k,Zi,k

)
. (6)

When two UAVs with indexes i1 and i2 come in vicinity,
they are able to exchange their respective information, which
allows each of the UAVs to update their set estimates.

Our aim is to design the sequences of control inputs
for each UAV so as to minimize the estimation uncertainty
Φk for each k. For that purpose, one will first consider a
single UAV and show the way it may account for additional
information at time k+1, coming either from its own sensor,
or from neighboring UAVs. Then, an evaluation of the control
input to apply at time k to each UAV to minimize the
estimation uncertainty at time k+1 will be described.

III. EVOLUTION OF SET ESTIMATES FOR A GIVEN UAV
In what follows, we consider the evolution with time

of the set estimates Di,k, Zi,k, and Zi,k managed by a
given UAV i. These set estimates are evaluated considering
a generalization of the nonlinear recursive set-membership
state estimator introduced in [9]. As the classical Kalman
filter, it alternates prediction and correction steps. For the
initialization, at time t = 0, one has Di,0 = /0, Zi,0 = /0, and
Zi,0 = Z0 for i = 1, . . . ,NU.

A. Prediction step
Assume that at time k, Di,k, Zi,k, and Zi,k are available

to UAV i. At time k+1, without additional information, the
predicted value of Di,k is Di,k+1|k = Di,k.

For each target already detected with index j ∈ Di,k+1|k,
UAV i is also able to evaluate the set of possible target state
values at time k + 1, i.e., the set of all target state values
that are consistent with Zi, j,k, with the dynamics (2), and the
bounded state perturbation

Zi, j,k+1|k =
{

fZ
k (z,v) |z ∈ Zi, j,k,v ∈ [vk]

}
= fZ

k
(
Zi, j,k, [vk]

)
. (7)

Similarly, the predicted set Zi,k+1|k has to contain all possible
state values of potentially undetected targets. Since all targets
have been assumed to evolve according to the same dynamics
(2), it is evaluated as follows

Zi,k+1|k = fZ
k
(
Zi,k, [vk]

)
. (8)

B. Correction step from measurements
Assume that at time k+ 1, UAV i evaluates Li,k+1 from

the observation of Fi
(
ri,k+1

)
and, for each j ∈Li,k+1, has

access to yi, j,k+1 obtained using (4). Consequently

Ii,k+1 = Ii,k ∪
{

Li,k+1,
{

yi, j,k+1
}

j∈Li,k+1

}
. (9)

Three cases have to be considered.
If j ∈Li,k+1∩Di,k+1|k, Target j, which has already been

detected, is observed again at time k+1 in Fi
(
ri,k+1

)
. The

set estimate of its state at time k + 1 has to account for
the predicted set Zi, j,k+1|k and for the obtained measurement
yi, j,k+1. The set of all values of z j,k+1 that are consistent
with Zi, j,k+1|k, yi, j,k+1, the measurement equation (4), and
the measurement noise bound [wk+1] is

Zi, j,k+|k+1 =
{

z ∈ Zi, j,k+1|k |hk+1
(
ri,k+1,z

)
∈ yi, j,k+1− [wk+1]

}
= Zi, j,k+1|k ∩h−1

i,k+1

(
yi, j,k+1− [wk+1]

)
, (10)



where h−1
i,k+1

(
yi, j,k+1− [wk]

)
is the pre-image of the box

yi, j,k+1− [wk] by the function hi,k+1 (z) = hk+1
(
ri,k+1,z

)
.

If j ∈ Li,k+1 but j /∈ Di,k+1|k, a new target has been
detected. Before detection, this new target is only known
to belong to Zi,k+1|k. One has also to take into account the
measurement yi, j,k+1 related to this newly detected target.
The set of all values of z j,k+1 that are consistent with Zi,k+1|k,
yi, j,k+1, the measurement equation (4), and the measurement
noise bound [wk+1] is in this case

Zi, j,k+1|k+1 =
{

z ∈ Zi,k+1|k |hk+1
(
ri,k+1,z

)
∈ yi, j,k+1− [w+1]

}
= Zi,k+1|k ∩h−1

i,k+1

(
yi, j,k+1− [wk+1]

)
. (11)

When j /∈ Li,k+1 but j ∈ Di,k+1|k, Target j, which was
previously detected is not observed in Fi

(
ri,k+1

)
. The set of

all values of z j,k+1 that are consistent with Zi, j,k+1|k, and that
do not belong to Fi

(
ri,k+1

)
is then

Zi, j,k+1|k+1 = Zi, j,k+1|k \Fi
(
ri,k+1

)
, (12)

where B\A= {x ∈ B |x 6∈ A}.
Two additional update equations have to be considered.

First, the set of already detected targets has to incorporate
the newly detected targets

Di,k+1|k+1 = Di,k+1|k ∪Li,k+1. (13)

Second, to evaluate the set containing the state of targets still
to be detected, one has to account for the fact that all targets
in Fi

(
ri,k+1

)
have been processed. Thus, one has

Zi,k+1|k+1 = Zi,k+1|k \Fi
(
ri,k+1

)
. (14)

At time k + 1, one has thus Di,k+1 = Di,k+1|k+1, Zi,k+1 =

Zi,k+1|k+1, and Zi,k+1 = Zi,k+1|k+1.

C. Correction step from communications

In this section, we consider the updates performed after
a communication between two neighboring UAVs i1 and i2
occurring in the time interval ]k,k+1[. Assume that at time k,
UAV i has access to the sets Di,k, Zi,k, and Zi,k. Each UAV
broadcasts a message containing a description of these sets.

Assume in what follows that UAV i1 has received a
message from UAV i2. then Di1,k+ =Di1,k∪Di2,k, to account
for the targets seen by both UAVs.

The update equation for the set containing the state of a
given target depends on whether it has been previously seen
by both UAVs i1 and i2 or by a single UAV only. If j ∈
Di1,k ∩Di2,k, both UAVs have already detected Target j and
Zi1, j,k+ =Zi1, j,k∩Zi2, j,k. If j∈Di1,k but j /∈Di2,k, UAV i2 has
not detected Target j, but it nevertheless knows that its state
is within Zi2,k. As a consequence Zi1, j,k+ = Zi1, j,k ∩Zi2,k.
Similarly, if j /∈Di1,k but j ∈Di2,k, Zi1, j,k+ = Zi1,k ∩Zi2, j,k.

Finally, the set containing the state of targets to be detected
is updated according to Zi1,k+ = Zi1,k∩Zi2,k, since each part
of the state space that has been shown by one of the UAVs
not to contain a target can be eliminated from the search
space for undetected targets.

IV. UAV TRAJECTORY COMPUTATION

Here, we determine the sequence of control inputs that
have to be applied at time k to each UAV so as to minimize
the target state estimation uncertainty Φk+1. One starts con-
sidering a single UAV i and Φ

(
Zi,k+1,Zi,k+1

)
. Then several

communicating UAVs will be considered.

A. Control input design for a single UAV

Assume that at time k, Di,k, Zi,k, and Zi,k are available to
UAV i. Using the results of Section III-A, UAV i is able to
evaluate Di,k+1|k, Zi,k+1|k, and Zi,k+1|k. One has to determine
the impact of a given control input u applied to UAV i on
Φ
(
Zi,k+1,Zi,k+1

)
. Our aim is to evaluate

û = argmin
u∈U

Φ
(
Zi,k+1,Zi,k+1

)
= argmin

u∈U

∑ j∈Di,k+1
φ
(
Zi, j,k+1

)
+αφ

(
Zi,k+1

)
max

{
1,
∣∣Di,k+1

∣∣} . (15)

1) Impact of the choice ui = u ∈ U: Four situations have
to be considered for a given value ui = u ∈ U.

The first situation is for targets with indices j ∈Li,k+1∩
Di,k+1|k. When applying the control input ui = u ∈ U, using
(1), one gets ri,k+1 = fR

k

(
ri,k,u

)
. Using (10), the updated

estimation uncertainty for that target will be

φ
11 (Zi, j,k+1

)
= φ

({
z ∈ Zi, j,k+1|k |

hk+1
(
ri,k+1,z

)
∈ yi, j,k+1− [wk+1]

})
. (16)

Here and in what follows, φ δkδk+1 indicates whether the
considered target has been detected at time k (δk = 1) or not
(δk = 0) and whether it is detected at time k+1 (δk+1 = 1) or
not (δk+1 = 0). The measurement yi, j,k+1 depends on ri,k+1,
on the actual value of the target state z j,k+1 at time k+ 1,
and on the realization of the measurement noise wi, j,k.
Consequently, one may rewrite (16) as

φ
11 (Zi, j,k+1

)
= φ

({
z ∈ Zi, j,k+1|k |hk+1

(
fR
k
(
ri,k,u

)
,z
)
∈

hk+1
(
fR
k
(
ri,k,u

)
,z j,k+1

)
+wi, j,k+1− [wk+1]

})
. (17)

In (17), when the choice ui = u is made at time k, wi, j,k+1 is
only known to belong to [wk+1] and z j,k+1 is only known to
belong to Zi, j,k+1|k and to Fi

(
fR
k

(
ri,k,u

))
, since Target j is

assumed to be detected at time k+1. The future corrected set
estimate Zi, j,k+1 is relatively difficult to evaluate considering
only the previous bounds on the noises and the fact that
z j,k+1 ∈ Zi, j,k+1|k ∩Fi

(
fR
k

(
ri,k,u

))
.

The second situation corresponds to j ∈ Li,k+1 but j /∈
Di,k+1|k, i.e., a new target is detected. Using (11), one gets

φ
01 (Zi, j,k+1

)
= φ

({
z ∈ Zi,k+1|k |

hk+1
(
ri,k+1,z

)
∈ yi, j,k+1− [wk+1]

})
. (18)

The third situation corresponds to j /∈ Li,k+1 but j ∈
Di,k+1|k, i.e., a previously detected target is no more detected.
Using (12) and (1), one gets

φ
10 (Zi, j,k+1

)
= φ

(
Zi, j,k+1|k \Fi

(
fR
k
(
ri,k,u

)))
. (19)



The last situation corresponds to undetected targets for
which one has to evaluate φ

(
Zi,k+1

)
. Using (14) and (1),

one gets

φ
(
Zi,k+1

)
= φ

(
Zi,k+1|k \Fi

(
fR
k
(
ri,k,u

)))
. (20)

2) Bounding Φ
(
Zi,k+1,Zi,k+1

)
: Now, to evaluate (15)

when ui = u, one has to isolate the contributions of the
potentially newly detected targets. To simplify notations, one
assumes that

∣∣Di,k
∣∣> 1 and gets

1∣∣Di,k+1
∣∣ ∑

j∈Di,k+1

φ
(
Zi, j,k+1

)
=

1∣∣Di,k+1
∣∣
 ∑

j∈Di,k

φ
(
Zi, j,k+1

)
+ ∑

j∈Di,k+1\Di,k

φ
01 (Zi, j,k+1

) .

(21)

The term φ 01
(
Zi, j,k+1

)
in (21) is difficult to evaluate accu-

rately, but it may be upper bounded using (18) as follows

φ
01 (Zi, j,k+1

)
= max

w∈[wk]
max

z′∈Zi,k+1|k∩Fi(fR
k (ri,k,u))

φ
({

z ∈ Zi,k+1|k |hk+1
(
fR
k
(
ri,k,u

)
,z
)
∈

hk+1
(
fR
k
(
ri,k,u

)
,z′
)
+w− [wk+1]

})
.

This upper bound is independent of the index j of the newly
detected target. Then

φ
01 (Zi, j,k+1

)
6 φ

01 (Zi,k+1|k
)
, (22)

with φ
01 (Zi,k+1|k

)
= φ

(
Zi,k+1|k ∩Fi

(
fR
k

(
ri,k,u

)))
.

Using (22), one may upper bound (21) as

1∣∣Di,k+1
∣∣ ∑

j∈Di,k+1

φ
(
Zi, j,k+1

)
6

1∣∣Di,k+1
∣∣
 ∑

j∈Di,k

φ
(
Zi, j,k+1

)
+ ∑

j∈Di,k+1\Di,k

φ
01 (Zi,k+1|k

)
6

1∣∣Di,k+1
∣∣ ∑

j∈Di,k

φ
(
Zi, j,k+1

)
+

∣∣Di,k+1
∣∣− ∣∣Di,k

∣∣∣∣Di,k+1
∣∣ φ

01 (Zi,k+1|k
)

6
1∣∣Di,k+1
∣∣ ∑

j∈Di,k

φ
(
Zi, j,k+1

)
+φ

01 (Zi,k+1|k
)
. (23)

Now, to upper bound φ
(
Zi, j,k+1

)
, one has to consider

whether j ∈Li,k+1 to get

φ
(
Zi, j,k+1

)
6 max

{
φ

10 (Zi, j,k+1
)
,φ 11 (Zi, j,k+1

)}
. (24)

Since Zi, j,k+1|k \ Fi
(
fR
k

(
ri,k,u

))
in (19) is easily obtained

using the SIVIA algorithm [10], to get φ 10
(
Zi, j,k+1

)
, it

remains to evaluate φ 11
(
Zi, j,k+1

)
. As for φ 01

(
Zi, j,k+1

)
, an

upper bound φ
11 (Zi, j,k+1

)
will be evaluated from (17), using

a similar approach to get

φ
11 (Zi, j,k+1

)
= max

w∈[wk]
max

z′∈Zi, j,k+1|k∩Fi(fR
k (ri,k,u))

φ
({

z ∈ Zi, j,k+1|k |hk+1
(
fR
k
(
ri,k,u

)
,z
)
∈

hk+1
(
fR
k
(
ri,k,u

)
,z′
)
+w− [wk+1]

})
,

which can be further upper bounded as

φ
11 (Zi, j,k+1

)
6 φ

11 (Zi, j,k+1
)
, (25)

with φ
11 (Zi, j,k+1

)
= φ

(
Zi, j,k+1|k ∩Fi

(
fR
k

(
ri,k,u

)))
.

Finally, using (20), (23), (24), and (25) in (15), one obtains

Φ
(
Zi,k+1,Zi,k+1

)
6

1∣∣Di,k+1
∣∣ ∑

j∈Di,k

max
{

φ
10 (Zi, j,k+1

)
,

φ
11 (Zi, j,k+1

)}
+φ

01 (Zi,k+1|k
)
+αφ

(
Zi,k+1

)
.

Since
∣∣Di,k+1

∣∣ is unknown at time k, but
∣∣Di,k

∣∣6 ∣∣Di,k+1
∣∣,

one may further upper bound Φ
(
Zi,k+1,Zi,k+1

)
as

Φ
(
Zi,k+1,Zi,k+1

)
6

1∣∣Di,k
∣∣ ∑

j∈Di,k

max
{

φ
10 (Zi, j,k+1

)
,

φ
11 (Zi, j,k+1

)}
+φ

01 (Zi,k+1|k
)
+αφ

(
Zi,k+1

)
,

(26)

which is independent of the number of newly detected
targets.

In (26), to evaluate

φ
(
Zi,k+1

)
= φ

(
Zi,k+1|k \Fi

(
fR
k
(
ri,k,u

)))
(27)

one has to compute the difference between two sets. An
outer-approximation of this set difference is again evaluated,
e.g., using SIVIA, [10].

When Zi,k is large, i.e., when a large part of the state space
is unexplored, the chosen control input is likely to be such
that φ

(
Zi,k+1

)
is minimized. When the uncertainty on the

state of already detected targets increases, the chosen control
input will correspond to a trade-off between φ 10

(
Zi, j,k+1

)
and φ

(
Zi,k+1

)
, as expected. The value of α helps finding a

trade-off between the search for not already detected targets
and the reduction of the estimation uncertainty for already
detected targets.

B. Control input design for several cooperating UAVs

In this section, one assumes that all UAVs communicate
their set estimates at each time instant k once they have
taken into account their own measurements. They also send
their current state vector. As a consequence, all UAVs share
the same information, and the set estimates are equal. In
this context, the control input design for all UAVs may be
performed by each UAV independently, while accounting for
the presence of other UAVs. Alternatively, a leader UAV may
evaluate the control inputs of all UAVs and broadcast these
inputs at the beginning of each time interval.

The evaluation of the one-step control inputs to apply at
time k may be formulated as

(û1, . . . , ûNU) = arg min
(u1,...,uNU)∈U

NU

1
NU

NU

∑
i=1

Φ
(
Zi,k+1,Zi,k+1

)
.

(28)

The Φ
(
Zi,k,Zi,k

)
s are all equal, since they are evaluated

after each correction step from communications. Without
loss of generality, one can focus on Φ

(
Z1,k,Z1,k

)
. To solve



(28), one has again to evaluate the impact of u1, . . . ,uNU on
Φ
(
Z1,k+1,Z1,k+1

)
.

First, for a given choice (u1, . . . ,uNU)∈UNU of the control
inputs, D1,k|k will be updated as

D1,k+1|k+1 = D1,k|k ∪
NU⋃
i=1

Li,k+1,

where the terms Li,k+1 depend on the relative configuration
of the UAVs with respect to the undetected targets.

The set containing the state of potentially undetected
targets is then easily deduced from (14)

Z1,k+1|k+1 = Z1,k+1|k \
NU⋃
i=1

Fi
(
fR
k
(
ri,k,ui

))
.

As a consequence

φ
(
Z1,k+1|k+1

)
= φ

(
Z1,k+1|k \

NU⋃
i=1

Fi
(
fR
k
(
ri,k,ui

)))
.

To evaluate the components of Z1,k+1, for all j ∈
D1,k+1|k+1, let U j,k+1 be the set of all UAVs that detect
Target j at time k+1. One has

i ∈U j,k+1⇔ j ∈Li,k+1.

Moreover, let U j,k+1 = {1, . . . ,NU} \U j,k+1. With these
notations, combining (10) and (12), one gets for all j ∈D1,k|k

Z1, j,k+1 =
⋂

i∈U j,k+1

{
z ∈ Z1, j,k+1|k |

hk+1
(
fR
k
(
ri,k,ui

)
,z
)
∈ yi, j,k+1− [wk+1]

}
\

⋃
i∈U j,k+1

Fi
(
fR
k
(
ri,k,ui

))
.

If U j,k+1 = /0, Z1, j,k+1 boils down to

Z1, j,k+1 = Z1, j,k+1|k \
NU⋃
i=1

Fi
(
fR
k
(
ri,k,ui

))
leading to

φ
10 (Z1, j,k+1

)
= φ

(
Z1, j,k+1|k \

NU⋃
i=1

Fi
(
fR
k
(
ri,k,ui

)))
.

If U j,k+1 6= /0, consider i1 ∈U j,k+1, then one has

Z1, j,k+1 ⊂
{

z ∈ Z1, j,k+1|k |
hk+1

(
fR
k
(
ri1,k,ui1

)
,z
)
∈ yi1, j,k+1− [wk+1]

}
,

and consequently, in this case

φ
11 (Z1, j,k+1

)
6φ
({

z ∈ Z1, j,k+1|k |
hk+1

(
fR
k
(
ri1,k,ui1

)
,z
)
∈ yi1, j,k+1− [wk+1]

})
,

where the right hand side term of the inequality corresponds
to φ

11 (Z1, j,k+1
)
.

Finally, combining (11) and (14), for all j ∈ D1,k+1|k+1
with j /∈D1,k|k, one has

Z1, j,k+1 =
⋂

i∈U j,k+1

{
z ∈ Z1,k+1|k |

hk+1
(
fR
k
(
ri,k,ui

)
,z
)
∈ yi, j,k+1− [wk+1]

}
\

⋃
i∈U j,k+1

Fi
(
fR
k
(
ri,k,ui

))
.

In this case, since j ∈D1,k+1|k+1 and j /∈D1,k|k, U j,k+1 6= /0.
Considering i1 ∈U j,k+1, one has

Z1, j,k+1 ⊂
{

z ∈ Z1,k+1|k |
hk+1

(
fR
k
(
ri1,k,ui1

)
,z
)
∈ yi1, j,k+1− [wk]

}
,

and now

φ
01 (Z1, j,k+1

)
6 φ

({
z ∈ Z1,k+1|k |

hk+1
(
fR
k
(
ri1,k,ui1

)
,z
)
∈ yi1, j,k+1− [wk]

})
6 φ

01
i,k+1.

As for the control of a single UAV, all these sets depend
on the actual target location, which is only known to belong
to some set, to the realizations of the measurement noise,
and to the realization of the state perturbations. The same
upper bound for Φ

(
Z1,k+1,Z1,k+1

)
as (26) can be derived

here and one resorts to the minimization of this upper bound
to design the optimal control inputs.

V. SIMULATION RESULTS

A. Implementation issues

To implement the proposed approach, one has to evaluate
the direct image of a set by a function as in (7) or (8), the
reciprocal image of a set by a function, as in (10) and (11), to
compute the difference between two sets, as in (13) or (14),
and finally, to compute the volume of sets. Here, all sets are
described using subpavings, i.e., unions of non-overlapping
interval vectors, as in [10] and [9]. The ImageSp algorithm
can then be employed to evaluate an outer-approximating
subpaving of (7) or (8). The SIVIA algorithm can provide
an outer-approximation of the sets defined by (10) and (11).
When the observed area is defined by inequalities, the set
differences (13) or (14) may also be evaluated using SIVIA,
see [10]. Finally, the volume of all these sets is the sum of
the volume of the interval vectors forming the approximating
subpaving.

The resulting set estimates are guaranteed to contain the
actual state, provided that the hypotheses on the noise bounds
are satisfied and provided that the measurement process
actually satisfies (3).

B. Simulation conditions

A Matlab simulation has been carried out to illustrate the
properties of the proposed approaches. ImageSp and SIVIA
have been implemented using the Intlab library [11].

The search of three targets by two cooperating UAVs is
considered. The targets are assumed to be static and located
in a plane, z j,k ∈R2, j = 1, . . . ,3. The initial search area is a



square of 500×500 m2. The Φ function is also expressed in
square meters with α = 1. The UAVs fly at a constant height
of 75 m above the terrain and are equipped with an optical
sensor able to detect targets within its field of view defined
by a

[
−π

8 ; π

8

]
angle in both azimuth and elevation. The field

of view is thus a cone with square basis. When a target
is detected at time k, one assumes that the measurement
equation provides its actual location with an uncertainty
bounded in [−5m,5m] for both components of z j,k.

The UAVs are flying at constant speed of 15 m/s. The
sampling period is T = 1 s. The set U of admissible control
inputs of the UAVs contains the potential speed orientation
variation and consists of 20 regularly-spaced valued between
−π/2 and π/2. Both UAVs are able to communicate at
each time instant. Their estimates are thus equal, but their
control inputs are evaluated in a totally decentralized way,
independently for each UAV.

Figure 1 (left) shows the initial locations of the targets (red
dots) and of the UAVs and the subpaving obtained when a
single measurement has been performed by both UAVs. All
displayed boxes represent an outer-approximation of the sets
Z1,1 or Z2,1. The other sets are empty. In Figure 1 (right), one

Fig. 1. Initial locations of the UAVs with their sensed area and unknown
target locations in red; the boxes form an outer-approximations of the sets
Z1,1 or Z2,1 (left); Final subpaving describing Z1,1 or Z2,1 after detection
of the three targets (in green) by the UAVs (right)

sees that the three targets have been successfully detected.
Nevertheless, there may be more target to be detected. The
exploration may continue until Z1,k or Z2,k is empty. One
can then conclude that all targets have been detected.

Figure 2 presents the evolution with time of Φ
(
Z1,k,Z1,k

)
,

which describes the average target state estimation uncer-
tainty. The control inputs applied to the UAVs are mainly
chosen here so as to reduce φ

(
Zi,k+1

)
. When a target has

been located, the associated estimation uncertainty decreases
to less than 100 m2, which corresponds to the volume of the
measurement uncertainty box. As soon as a target has been
detected, the UAV moves away from it to further decrease
the size of Zi,k+1.

Videos describing the evolution of the sets Zi,k
considering static and moving targets are available
at https://drive.google.com/drive/folders/
1vG9M2xFvJ1z0yU79pfsOs7J440ez6HZM
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Fig. 2. Evolution of Φ
(
Z1,k,Z1,k

)
corresponding to the average target state

estimation uncertainty

VI. CONCLUSIONS AND PERSPECTIVES

This paper considers the search and tracking problem of
an unknown number of targets using a fleet of UAVs in a
bounded-error context. Set-membership estimates are used to
describe the state estimation uncertainty of detected targets.
A set containing all state values of targets remaining to
be detected is also provided. Both absence or presence of
targets in the field of view of UAVs are efficiently taken into
account in this set-membership framework. Considering the
volume of all these sets at a given time step as a measure
of the average estimation uncertainty, one has designed the
control inputs minimizing an upper bound of the estimation
uncertainty at the next time step.
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