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Abstract

Following the latest aggressive emission and external
noise reduction targets set by the aviation industry,
there now exists an increasing amount of research and
emphasis on changing the propulsion and power systems
of aircraft. With the aim of expanding upon the cur-
rent repository of studies focusing on tightly-coupled
and integrated hybrid-electric propulsion systems, a new
approach to the preliminary sizing of such systems is
introduced herein.The purpose of this approach is to
establish a methodology for the fully integrated prelimi-
nary sizing of hybrid-electric airplanes. The specificity
of the established methodology is its ability to cover a
variety of implementations on different hybrid-electric
airplanes. Furthermore, a sensitivity study is performed
to assess the impact of hybridization ratio on airplane
max takeoff weight. Finally, in order to assess its ac-
curacy and validity, due to the lack of data on hybrid-
electric airplanes the sizing method was applied to the
aircraft chosen as baseline for this study, Pilatus PC-12.
The obtained results were compared to the existing set
of data on this airplane, and the match between the two
was found to be satisfactory.

Nomenclature

α Loss due to flight conditions
η Battery efficiency
ηb Battery efficiency
ηEC Energy Conversion efficiency
ηem Electric motor efficiency
ηgas Turboshaft efficiency
ηi Inverted efficiency
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ηPR Propulsion efficiency
ηp Propeller efficiency
ηTR Transmission efficiency
ηw Wire transmission efficiency
cb Battery specific energy
cp Thermal engine specific fuel consumption
g Acceleration of gravity
L/D Aircraft glide ratio
Pelec Electric power
Pf Fuel power
Pins Installed power
Pp Propeller power
Psup Supplied power
Puse Useful power
Soc State of Charge
Wbatt Battery weight
WE Empty weight
WF Fuel Weight
WPL Payload weight
WTO Take-off weight
EIS Entry into service
MTOW Max Take-Off Weight
PPS Propulsion and Power Systems
TOFL Take-Off Field Length

1. Introduction

Air transport industry has been steadily growing over the
years and is projected to maintain a significant growth in
the future [1]. This increase in flights is also expected to
translate into a considerable environmental impact, both
locally (polluting emissions [2], noise [3]) and globally
(greenhouse gas emissions [4]). As a result of the rising
environmental awareness, there are increasing calls for
regulations on emissions caused by the aviation industry.
Aircraft manufacturers are expected to drastically reduce
fuel consumption and emissions for the next generation
aircraft. It is within this context that the AEGIS (Aero
EnGine Innovative Studies) research partnership was
formed between ISAE-SUPAERO and SAFRAN Group.
AEGIS provided the framework for the project presented
in this paper: development of a sizing methodology for
hybrid-electric airplanes. This will provide a first step
towards development of novel design methods for air-
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planes that meet the next generation air transportation
vision.

Hybrid-electric propulsion systems are an attractive
solution to the issues outlined above, for the simple rea-
son that electrification not only offers the capability to
reduce emissions (both in terms of gaseous emissions
and noise), but could also unlock the potential for more
energy-efficient aircraft. However requirements for high
energy density, high re-charging speeds and long bat-
tery life cycles are currently the major limiting factor
in development of fully electric aircraft for commercial
use. For this reason, hybridization of short to medium
range airplanes is considered instead as a more feasible
alternative for the time being. The methodology pre-
sented herein is projected for a 2035 entry into service
airplanes, and uses extrapolated information given in
the studies published so far, which provide the maturity
level of current technologies. In order to develop such
innovative aircraft that meets a predefined set of require-
ments corresponding to a design mission, there needs
to be a preliminary sizing phase where an initial set of
basic aircraft parameters are derived. This initial step
is in line with design steps outlined in aircraft design
references ([5], [6], [7], [8] and [9]). The aim of this paper
is to propose certain modifications and complements to
the classical preliminary sizing methodologies typically
applied to standard aircraft systems, and then apply
them to concepts whose fully integrated performance
needs to be assessed. The method, situated at a low level
of design, considers coupling between major constituents
within the aircraft such as the airframe, primary energy
source(s), power generation, main systems, propulsion,
the management of thermal and electrical power. The
work presented in the paper is divided into five sections.
The first section reviews the classical steps encountered
when designing an aircraft and positions the method-
ology presented herein within those steps. The second
section establishes a generic form of hybrid-electric archi-
tecture that combines the classical hybrid architectures
that are encountered in literature. The derived novel
preliminary sizing methodology, along with the applica-
tion and verification, is presented in the third, fourth
and fifth section. The sixth section provides a sensitiv-
ity study that assesses the impact of the hybridization
ratio on airplane maximum takeoff weight. The final
chapter presents conclusions and future perspectives on
this topic.

2. Aircraft design methodology
overview

The aircraft design process involves several distinct
phases; they differ in terminology from one aircraft de-
sign book to another, but the overall process remains
the same. The most commonly encountered design steps
taken from [5], [5] and [5] are summarized in figure 1.

Roskam [5]

I. Preliminary Sizing

From mission speci-
fications, determine
main parameters:
initial weight break-
down, wing area and
AR, initial max lift
coefficients. Sensi-
tivity and constraint
studies.

II. Concep-
tual Design

Layout of the se-
lected plane con-
figuration and in-
tegration of the
propulsion system
and other major sys-
tems. Includes better
weight and balance,
stability and control
analyses and drag
polars estimation.
Determines the feasi-
bility of the concept.

III. Prelimi-
nary Design

Detailed weight, bal-
ance, drag, stability
and control analyses.
Performance verifi-
cation, cost calcula-
tions and structural
layout. Results in a
detailed layout

Raymer [6]

I. Conceptual Design

Study the driving
requirements and
evaluate trade-offs.
Initial weight esti-
mate to evaluate if
we can produce a
viable and sailable
plane.

II. Prelimi-
nary Design

Freeze the configu-
ration and visualise
it (CAD). Design
major items and do
detailed cost esti-
mates.

III. Detailed Design

Design individual
pieces, tooling, pro-
cesses. Test majors
items and finalize
accurate weight and
performance analy-
sis.

Torenbeek [7]

I. Pre-Conceptual
Design

Identify dominant
needs and sensitive
variables, do compar-
ative studies. Initial
weight estimate inde-
pendent of geometry.

II. Concep-
tual Design

Preliminary perfor-
mance and weight
and balance esti-
mates. Sizing of the
most promising air-
craft concept and
proof of feasibility.

III. Prelimi-
nary Design

Subsystems and com-
ponent trade-offs
and optimization.
Detailed sensitivity
studies to find the
best configuration:
mass, volumes and
aero breakdown, fly-
ing qualities, layout,
costs, environmen-
tal analysis. High-
fidelity simulations
and tests.

IV. Detailed Design

Commitment to pro-
duction. Conception
of detailed compo-
nents and individual
parts.

Literature Review of
Aircraft Design Breakdown

Figure 1: Literary review of aircraft design methodolo-
gies

In this work, the design steps are used as presented in
[5], notably: Preliminary Sizing, Conceptual Design and
Preliminary Design. The first crucial phase, the Prelimi-
nary Sizing answers basic questions on the airplane size,
weight, and performance, i.e. the macroscopic size and
performance parameters. This phase specifies whether
an affordable and feasible aircraft can be designed and
built to meet the requirements given in the mission
and certification specifications. Once this initial step is
validated and the results are deemed satisfactory, the
Conceptual Design phase can begin. This phase provides
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the first iteration on outline and details of the airplane
components and systems (avionics, materials,engines...),
requirements for occupant comfort (pressurization, gal-
leys, lavatories...), ergonomics, detailed aerodynamics
and flight mechanics features (wing size, high lift de-
vices, etc.), are fully specified. The conclusion of this
step gives an initial loft where major changes and design
reiterations have been finalized, which allows to proceed
with further detailed design of the aircraft. The last
design phase, the Preliminary Design, also known as
the full scale development phase, takes the major parts
designed in the previous step and breaks them down
into individual components that are to be designed and
analyzed separately, after which specifications regarding
fabrications, assembly and maintenance are determined.
The end of this phase, once the design gets a favorable
approval for production launch, is later followed by strict
and extensive testing. The outcome of these steps, if
all successful, is an aircraft fully ready to operate. The
methodology presented in this paper regards the very
first phase of aircraft design, the Preliminary Sizing; the
remaining steps (Conceptual Design and Preliminary
Design) fall out of the scope of the paper.

3. Generalization of hybrid electric ar-
chitectures

The term hybrid-electric is used for encompassing all
electrically based Propulsion and Power Systems (PPS)
solutions. An All-Electric PPS relies solely on batteries
to provide both propulsive and non-propulsive energy
for all modes of aircraft operation. Hybrid-Electric PPS
utilizes thermal engines in tandem with batteries. The
utilization of batteries during and after in flight phases
varies: they can either be replaced during the turn-
around, recharged during the turn-around, recharged
in-flight via generators coupled to the thermal engine
and/or recharged through another form of energy re-
covery. In the literature ([9], [10], [11], [12] and [13])
hybrid-electric architectures can be classified under two
main categories: parallel hybrid systems and series hy-
brid systems. Additionally, a combination of these two
can be considered as the third category.

Parallel hybrid systems have two energy sources linked
mechanically to the propellers (figure 2a), which would
mean in the current case that both the turboshaft and
the electric motor are connected to the propulsive shaft,
linked to the propeller. On the other hand, the se-
ries hybrid system (figure 2b) has two energy sources
linked electrically, with a turboshaft generating electric-
ity through a generator. Both this generated power and
the power from the batteries are used for powering the
electric motors directly linked to the propellers.
Taking ref. [9] as the starting point for properly

defining efficiencies and power parameters related to
series and parallel hybrid systems, a generic architecture

(a) Parallel hybrid-electric architecture, adapted from [9]

(b) Series hybrid-electric architecture, adapted from [9]

Figure 2: The two main types of hybrid-electric archi-
tectures

Figure 3: Generic hybrid architecture

is defined, which combines these two solutions into a
single hybrid-electric propulsor design space. On top of
the hybrid-electric architecture represented by branches
(a) and (b), a third fully conventional branch (c) is
added to the architecture to encompass the case where
the aircraft would additionally use traditional kerosene-
powered engines. The schematic overview of this generic
configuration is given in figure 3.
Three efficiency factors characterize this generic ar-

chitecture:

• ηEC the energy conversion efficiency,
• ηTR the transmission efficiency,
• ηPR the propulsion efficiency.

As seen in table 1, these factors take different values
depending on the choice of the configuration (series or
parallel). The following nomenclature is employed: ηgas
is defined as the turboshaft efficiency, ηb as battery effi-
ciency, ηi as inverter efficiency, ηw as wire transmission
efficiency, ηem as electric motor efficiency and finally ηp
as propeller efficiency.

Next, the appropriate powers are defined as:
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• Psup is the supplied power such that Psup,a = Pf is
the fuel power and Psup,b = Pelec the electric power,
• Pins is the installed power such that Pins,a = Pgas is

the turboshaft power and Pins,b = Pb is the battery
power,
• Puse is the useful power such that Puse = Pp is the

propeller output power.

The supplied powers can be toggled to represent emer-
gency cases. Following this broad approach helps to
maintain the generic nature of the preliminary sizing
method by representing a potential engine failure in
terms of delivered power percentage. This way, the de-
sign space can be properly confined at preliminary sizing
without requiring a detailed configuration description.

Table 1: Generic efficiencies

Efficiencies Parallel Series

ηEC,a ηgas ηgas
ηEC,b ηb ηb

ηTR,a 1 ηgas
ηTR,b ηiηwηem ηiηw

ηPR ηp ηemηp

The coefficient α models the power loss due to flight
conditions (altitude and Mach number effects). To fur-
ther characterize this generic architecture, two hybridiza-
tion ratios are defined.

ε =
Pins,b

Pins,b + Pins,a

φ =
Pins,a

Pins,c + Pins,a

(1a)

(1b)

The hybridization ratio ε compares the installed elec-
trical power to the total installed power provided by
the two energy sources, where ε = 0 stands for a fully
kerosene based propulsion, and ε = 1 represents the case
of a fully electrical aircraft. As for the hybridization
ratio φ, it serves to compare the installed thermal energy
which powers the hybrid branch to the total installed
thermal energy in case the traditional kerosene-powered
engines are used. Where φ = 1 represents the case where
the traditional kerosene-powered engines are not part of
the architecture (Psup,c = 0). The hybridization ratios
can be defined differently for each flight segment depend-
ing on the target aircraft architecture and mission.
To size the aircraft, the installed power is deduced

from the useful power which is necessary for flight. It is
known that:

Puse = Puse,a+b + Puse,c

Puse,a+b = ηPR,a+b(PTR,b + PTR,a)

(2a)
(2b)

Equation (1a) can be rearranged and simplified using
figure 3 and equation (2b) so that:

ε =

PTR,b

αbηTR,b

PTR,b

αbηTR,b
+

PTR,a

αaηTR,a

=

PTR,b

αbηTR,b

αaηTR,aPTR,b+αbηTR,bPTR,a

αbαaηTR,bηTR,a

ε =
αbαaηTR,bηTR,aPTR,b

(αaηTR,a − αbηTR,b)PTR,b +
αbηTR,b

ηPR,a+b
Puse,a+b

× 1

αbηTR,b

(3)

Furthermore, the required installed power necessary
for flight for each energy branch, can be computed, such
that:

Pins,a =
PTR,a
αaηTR,a

=
Puse,a+b

αaηTR,aηPR,a+b

[
αbηTR,bε

αaηTR,a(1−ε) + 1
] (4)

and respectively:

Pins,b =
PTR,b
αbηTR,b

=
Puse,a+b

αbηTR,bηPR,a+b

[
αaηTR,a(1−ε)
αbηTR,bε

+ 1
] (5)

To add the effect of branch (c), from the equation
system (2) it can be deduced that:

Pins,c =
1

αcηPR,cηTR,c
Puse,c

Pins,a(1− φ) =
φ

αcηPR,cηTR,cPuse,c

(6a)

(6b)

By defining H as:

H =
1− φ
φ

αcηPR,cηTR,c

αaηTR,aηPR,a+b

[
αbηTR,bε

αaηTR,a(1−ε) + 1
] (7)

The useful power of branch (c) as a function of the
hybrid useful power is obtained, along with the hybrid
useful power as a function of the total power used for
flight:

Puse,c = HPuse,a+b

Puse,a+b =
Puse

1 +H

(8a)

(8b)

Equations (4) through (8) can be used for sizing the
installed powers from a given required flight power and
given hybridization ratios.
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The previously derived ratioH cannot be used directly.
In fact, as φ approaches 0 (which is the case of a fully
electric aircraft), H goes to infinity. In order to avoid this
singularity, the proposed sizing procedure is as follows:

Find Puse the power required for flight,

Calculate Puse,a+b using equation (9), which does not
result in the same singularity as H alone,

Calculate Puse,c using equation (2a),

Calculate Pins,a, Pins,b and Pins,c using equations (11),
(10) and (6a).

To eliminate singularities, write equation (8b) as:

Puse,a+b =
1

1 + Π(ε− 1 + φ− εφ)
(9)

Such as:

Π =
αcηPR,cηTR,c

φηPR,a+b(αaηTR,a(ε− 1)− εαbηTR,b)
(10)

The same can be done for equations (4) and (5):

Pins,b =
εPuse,a+b

αaηPR,a+bηTR,a(1− ε) + αbηPR,a+bηTR,bε
(11)

Pins,a =
(ε− 1)Puse,a+b

αaηTR,a(ε− 1)− αbηTR,bε
(12)

Power evolution as a function of hybridization ratios ε
and φ can be seen in figure 4. For a given φ different than
0, as ε increases, the closer to a fully electric aircraft the
architecture is, Pins,b increases, whilst Pins,a decreases,
i.e more installed power is required from the electric
source than from the thermal source. Inversely when ε
decreases more installed thermal power is needed. When
branch (c) is taken into account, when conventional
thermal energy is part of the architecture, the effect
of varying φ can be seen, such as when φ = 1 both
branch (c) useful and subsequently installed power are
null. This figures allows to have a complete overview
of both the useful and the installed powers significance
and contribution as a function of the two hybridization
ratios.

4. Estimating the range of a hybrid air-
craft

The well-known Breguet range equations [14] for both
conventional and fully electric aircraft are taken as the
starting point:

Rconv =
1

g × cp
L

D
ln
W0

W1

Relec =
cb
g
η
L

D

Wbatt

W0

(13a)

(13b)

(a) Puse,a+b (blue) and Puse,c (orange)

(b) Pins,a (green), Pins,b (blue) and Pins,c (orange)

Figure 4: Evolution of various powers as a function of
φ and ε

where g is the acceleration of gravity, cp the thermal
engine specific fuel consumption (SFC), L

D the aircraft
glide ratio, W0 the initial mass, W1 the end mass, cb
the battery specific energy, and η the battery efficiency
and Wbatt the battery mass. Finding a convincing so-
lution for the range of an hybrid-electric aircraft with
power and energy hybridization is not simple. Equa-
tions (12a) and (12b) cannot merely be linearly added
together (a strategy used by some authors [15]) because
the equations are necessarily coupled when both sources
of energy are used concurrently.

The weight fraction ln
(
W0

W1

)
from equation (13a) is

discussed in the following. W1 is defined as the end-
of-cruise weight and W0 the start-of-cruise weight such
that W0 = W1 +WΣ = feW0 +Wpay +WΣ. Wpay is the
payload weight and WΣ the total energy weight (fuel
and batteries), the empty weight being a fraction fe of
W0.
According to equation (13b), the final weight for a

fully-electric cruise still equals W0 since no fuel is con-
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sumed. For our hybrid scenario, the ratio of the final
weights is weighted by the fuel flows (fossil: ṁf , electric:
ṁe). Note that the fuel flow for the batteries does not
have physical sense, but it will be replaced with more
consistent variables.

W0

W1
⇒ (ṁf + ṁe)W0

ṁeW0 + ṁfW1
=

(ṁf + ṁe)W0

ṁeW0 + ṁf (Wpay + feW0)
(14)

By definition, the power specific fuel consumption
equals the fuel flow divided by the power. Hence, with
cp the kerosene specific fuel consumption, SFCe the
electricity ’specific fuel consumption’, Pf the power from
fossil fuel and Pe the power from the batteries:

W0

W1
⇒ (cpPf + SFCePe)W0

SFCePeW0 + cpPf (Wpay + feW0)

=
(cp

Pf

Ptot
+ SFCe

Pe

Ptot
)W0

SFCe
Pe

Ptot
W0 + cp

Pf

Ptot
(Wpay + feW0)

(15)

According to the two previously defined hybridization
ratios, ε and φ, and with cb = 1

SFCe
being the the

battery specific energy, the power ratios in equation (15)
can be simplified such that:

W0

W1
⇒ (cpcb(1− ε) + ε)W0

εW0 + cpcb(1− ε)(Wpay + feW0)
(16)

Looking at equation (13b), the same is to be done to
the fraction Wbatt

W0
cb. Where Wbatt is generalized to get

WΣ, since WΣ = Wbatt if ε = 1. Along with Pe = ṁecb
and using the same reasoning as before, it can be found
that:

WΣ

W0
cb ⇒

ε[(1− fe)W0 −Wpay]

εW0 + cpcb(1− ε)(Wpay + feW0)
(17)

Replacing those ratios in equations (13a) and (13b)
and adding those equations together with the right ef-
ficiencies, a range equation for hybrid-electric aircraft
can be obtained:

R =
ηelec
g

L

D

[
ηg
cp

ln

(
(ε+ (1− ε)cbcp)W0

εW0 + (1− ε)cbcp(Wpay + feW0)

)
+

εcb((1− fe)W0 −Wpay)

εW0 + (1− ε)cbcp(Wpay + feW0)

]
(18)

When considering that the gas turbine also splits its
power between the generator and a propeller (branch
(c) in the previously defined generic architecture), φ can
be included in the formula by impacting the gas turbine
specific fuel consumption cp such that:

cp,hybrid = cp,aφ+ cp,c(1− φ) (19)
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Figure 5: Effect of payload weight on range (cb =
300Wh/kg)

0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

4,000

ε

R
an

ge
(k
m
)

cb=1400 cb=1300 cb=1200 cb=1100
cb=1000 cb=900 cb=800 cb=700
cb=600 cb=500 cb=400 cb=300

Figure 6: Effect of battery specific energy on range
(Wp = 1000kg)

As shown in figures 5 and 6, even slightly increasing ε
away from 0 (that is, moving from a conventional archi-
tecture to a slightly hybridized architecture) drastically
reduces the range due to the much lower specific energy
of batteries compared to that of fuel.
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5. Investigation

5.1. Requirements and objectives
In order to evaluate the derived methodology, it was
decided it would be applied to a small commuter aircraft
similar to the Pilatus PC-12. Since batteries tend to limit
aircraft to short ranges, hybrid-electric configurations
may become competitive in the thin haul market. Table 2
details the top-level requirements for the airplane to be
designed:

Table 2: Top-Level Aircraft Requirements

EIS 2035
Range 350NM + 100NM diversion

Capacity 9 PAX
Altitude 21000ft
TOFL approx. 1000m

Approach speed <120KTAS
MTOW 4-5000kg

The mission profile consists of a taxi-out, followed by
a take-off, climb and cruise, before the descent and taxi-
in. Additionally, a 100NM diversion and a 30 minutes
contingency hold were assumed. The technology levels
shown in table 3 were assumed for the electric power-
chain:

Table 3: Technology levels [16]

Tech 2017 2035 2050

Motor Peak Spec. Pwr (kW/kg) 6.6 9.9 20.6
Motor Nominal Spec. Pwr (kW/kg) 4.9 7.4 15.4

Controller Spec. Pwr (kW/kg) 0.08 0.08 0.08
Batt. Spec. Energy <5C (Whr/kg) 200 600 1200

Batt. Spec. Energy >5C, <20C (Whr/kg) 150 450 900
Batt. Spec. Energy >20C, <60C (Whr/kg) 100 300 600

Motor Peak Efficiency 0.95 0.97 0.98
Gearbox Efficiency 0.97 0.98 0.99
Controller Efficiency 0.98 0.99 0.99
Battery Efficiency 0.98 0.98 0.99

Powerchain Efficiency 0.89 0.92 0.95

5.2. General Sizing Process
The developed general methodology is in great part
inspired by the work presented in ref. [9]; the sizing
process flow chart is presented in figure 7.
The power sizing for the hybrid electric aircraft, for

every flight segment, will start from the constraint di-
agram as shown in figure 7. This diagram allows to
represent each segment of flight in terms of power load-
ing (power to weight ratio) as a function of wing loading
(weight to wing surface ratio). In the case of hybrid
electric aircraft, it is common practice to use the power
loading on the y-axis instead of thrust loading, which is
traditionally used for jet airplanes. The equations have
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Figure 7: Hybrid aircraft sizing process, adapted from
[9].

been deduced from the document of Gudmundsson [8]
in order to obtain the minimum power loading and the
maximum wing loading and to deduce the optimal sizing
in Weight for at the current sizing phase. However, in
order to be succinct, only one segment of flight will be
developed in this paper, which is the take-off, typically
the most energy demanding flight mission segment for a
commercial aircraft. The other flight segments can be
analyzed in a similar manner.
Assuming that the thrust, the drag and the lift are

constant during take-off, the ground roll can be expressed
as follows:

sTOG =
0.5WTO(VLOF − Vw)2

FTO −DTO − µ(WTOg − LTO)−WTOg sin θ
(20)

By definition:

VTO = 1.2Vstall (21)

From equation (20) and (21), it can be inferred that:

sTO =
0.5× 1.44V 2

stallW0

g(T −D + µ(L−W0))
(22)
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with:

D = 0.5ρS(0.84Vstall)
2

(
CD0 + k(

CLmax
0.71

)2

)
(23)

and:
L = 0.5ρS(0.84Vstall)

2CLmax
0.71

(24)

And from (22) the power loading needed for the take-off
can be deduced:

TT0

W0
=
β

α

(
0.842qstall
βW0/S

(
CD0 − µ

CLmax
0.71

+ k(
CLmax

0.71
)2

))
+

β

α

(
µ+

1.44V 2
stall

0.5gsTO

)
(25)

with
T = Tsl × α

being the adjusted thrust to barometric altitude.
For each flight segment, the power loading needed is

developed for different flight conditions. The application
of the derived equations for all flight segments, yields
the diagram presented in figure 8.

Figure 8: Constraint diagram (ε = 0.1, phi = 1)

5.3. Weight Sizing
For a given mission specification, this section presents a
method for estimating:

• Take-off gross weight, WTO

• Empty weight, WE

• Mission Fuel Weight, WF

• Mission Battery Weight, WBatt

The process of estimating values for WTO, WE consists
of the following steps:

- Step 1: Determine the mission payload weightWPL,

- Step 2: Guess an initial value of take-off weight
WTOGuess

using pre-existing regression lines for air-
craft type,

- Step 3: Calculate a tentative value for WOE ,
- Step 4: Determine a guessed mission battery weight
WBattGuess

,
- Step 5: Calculate the mission fuel weight WF ,
- Step 6: Deduce the flight performance with the
weights estimated previously in addition to the drag
polar,

- Step 7: Compute the state of charge (SoC) of the
batteries with the specified battery model, and the
electrical power profile,

- Step 8: Compare the SoC of the batteries at the
end of the mission to the SoC limit given by the
batteries specifications, as well as the maximum
power delivered by the batteries and the electrical
power needed. If the previous conditions are not
validated, a reiteration on the battery weight must
be performed,

- Step 9: If the previous conditions are validated, com-
pare the total fuel mass computed to the estimated
fuel mass. If the later is smaller, a reiteration on the
WTOGuess

is performed, steps 2 to 9 will be repeated
until an agreement is reached and all conditions are
satisfied within a pre-selected tolerance.

Mission payload weight: Mission Payload Weight
WPL is imposed in the mission specification. This pay-
load weight for commercial airplanes consists of pas-
sengers and baggage as well as cargo. Because FAR 23
certified airplanes are frequently operated by owner/pilot
it is not unusual to define the crew weight as part of the
payload in these cases. For passengers in a commercial
airplane an average weight of 175 lbs per person and 30
lbs of baggage is a reasonable assumption for short to
medium flights. The crew consists of the cockpit crew
and the cabin crew. The number of people in each crew
depends on the airplane and its mission and the total
number of passengers carried. The minimum number of
cabin crew members required is specified by certification
rules FAR 91.215, reference 8. For crew members an
average weight of 175 lbs plus 30 lbs of baggage is a
reasonable assumption.

WPL = Wcrew +WPass +Wcargo

Determining the battery system weight: The
weight of the battery system is determined from the
constraint diagram (once the Pelec and Eelec are speci-
fied) and the battery specifications.

Determining the fuel weight: Rather than using
the analytical Bréguet equation to calculate the fuel
weight used during the cruise, a numerical method from
the results of the constraint diagram is used. Since
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the developed hybrid Bréguet equation is very complex
and is implicitly defined, an analytical solution cannot
be found simply. To counter this obstacle, a direct
numerical approach was employed. At each step of the
weight sizing loop, the power outputs from the batteries
and the thermal engine are derived using the constraint
diagram and the MTOW estimation. The cruise range
is discretized and the fuel consumption in addition to
the battery energy usage at each step of the cruise are
computed. This yields the total fuel weight and the
required energy from the batteries.

5.4. Verification and application of the
methodology

In order to verify the derived methodology, the appli-
cation on the Pilatus PC-12 requires to set the degree
of hybridization ε to zero. The comparison between the
parameters resulting from applying the methodology
and those in the aircraft data sheet was found to be
satisfactory. With a total MTOW of 4816kg, compared
to 4700kg the results are fairly comparable. The au-
thors would like to precise that one parameter from the
original PC-12 mission requirements was modified, since
a feasible electrically powered vehicle could not be sized
while conforming to realistic energy density levels. In
particular, the PC-12 range requirement was reduced
from the original data sheet value of 1500NM to 350
NM. A study of the influence this disparity has on the
results validity will be performed at a later stage; it is
advised to take this into account when evaluating the
current comparison.

6. Take-Off Weight Sensitivity Study

Following the development and the verification of the
methodology for the preliminary sizing, it is important
to conduct sensitivity studies on the parameters which
influence the results the most. The sensitivity study
helps with finding which parameters are critical to the
design and configuration choice. Most importantly in
the case of hybrid-electric aircraft design, the sensitivity
study offers a clear insight into the technological advance-
ments that must be further pursued, which becomes even
more critical in cases where unconventional missions are
sought. To carry out this sensitivity study, analytical
as well as numerical iterative methods for computing
take-off weight sensitivities were used. The analytical
derivations are derived from Roskam’s [5] methods and
adjusted to the hybrid-electric aircraft case. Starting
from:

WE = WTO −WF −WPL −Wbatt (26)

using the regression formula introduced in Roskam’s [5]
method:

log10(WE) = [log10(WTO)−A]/B (27)

to eliminate WE from equation (26) yields:

log10WTO = A+B log10(WTO − C) (28)

with A and B being the regression line constants, and:

C = WF −WPL −Wbatt (29)

To study the sensitivity of WTO to any given parame-
ter X, WTO in equation (28) is partially differentiated.
A and B being constants for a given aircraft type, their
partial derivatives are both zero, which results in:

1

WTO

∂WTO

∂X
=

B

(WTO − C)
(
∂WTO

∂X
− ∂C

∂X
) (30)

which can be rearranged to solve for ∂WTO/∂X:

∂WTO

∂X
=

(
B

1−B − C/WTO

)
∂C

∂X
(31)

The derivative ∂WTO/∂X is called the aircraft growth
factor due to X parameter. For example, in order to
derive the sensitivity of theWTO to payload weight, then
let X = WPL. The translation of ∂WTO/∂X in this case
expresses that - assuming mission performance remains
the same- for each kilogram of payload added, the WTO

will have to be increased by ∂WTO/∂X kilograms.
As mentioned previously, one of the most crucial pa-

rameters that significantly limit the design of hybrid-
electric aircraft is the battery specific energy. In fact
when studying the sensitivity of the WTO to the battery
specific energy, X = cb for different values of hybridiza-
tion ratio ε, it is very easy to see form figure 9 that
a slight increase in the "electrification" of the classic
aircraft, yields high WTO, which tends to go to infinity
quite fast. The most advanced Li-Ion batteries of today
are able to provide around 200Wh/kg [17], which hin-
ders the potential for advanced hybridization. However,
battery technology has been improving for many years
and specific energy continues to grow at a rate of 5 to
8 percent each year [18]. At this rate, specific battery
energy could reach values between 600Wh/kg and an
optimistic 1000Wh/kg by the horizon of 2035, which
would enable, for the same mission requirements and
configuration set today, to reach very high degrees of
hybridization.

7. Conclusion

A preliminary sizing methodology for a hybrid-electric
aircraft was introduced in this paper. Firstly, a generic
hybrid architecture is derived from series and parallel
architectures presented in the literature. It contains a
hybridized dual-energy (electric and fuel) propulsor asso-
ciated with a conventional, single-energy (fuel) propulsor.
With a judicious choice of efficiencies and the declaration
of two non-dimensional variables (hybridization ratio
and dual energy/single energy ratio), this description



AEGATS2018-50

Figure 9: MTOW as a function of ε for different battery specific energy SFCe

provides a generic design space to model multiple poten-
tial configurations at a high-level, with particularities
of a coupled hybrid-electric propulsion system taken
into account. The presented variables can be specified
separately for different flight segments of the airplane
mission. After establishing the power requirements for
each mission flight segment, the power and energy split
can then be computed and used to size the propulsion
system. Although finally not performed in the course of
this work - constraining the design space by representing
hypothetical engine failure case in terms of percentage of
power loss is also possible; it remains to be incorporated
in the future work. A new coupled range equation is
also derived, taking into account the combined use of
two energy sources and their differing impact on fuel
weight consumption during flight. In practice, the pre-
sented methodology is intended to be used in the early
stages of aircraft design to provide first order estimates
of major sizing parameters (aircraft weight, power and
energy usage, range) as well as to enable trade stud-
ies, independently of any specific configuration the user
might choose for the target aircraft. The preliminary
sizing step of the hybrid-electric aircraft design process
is completed and verified. The first stones are laid for
the next step of the process: the conceptual design. The
current developed methodology can help to shed some
light on the technological shortfalls that need to be fur-
ther developed and looked into to make such complex
aircraft feasible for a 2035 entry into service.
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