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We describe the activation of out-of-equilibrium collective oscillations of a macromolecule as a classical
phonon condensation phenomenon. If a macromolecule is modeled as an open system—that is, it is
subjected to an external energy supply and is in contact with a thermal bath to dissipate the excess energy—
the internal nonlinear couplings among the normal modes make the system undergo a nonequilibrium
phase transition when the energy input rate exceeds a threshold value. This transition takes place between a
state where the energy is incoherently distributed among the normal modes and a state where the input
energy is channeled into the lowest-frequency mode entailing a coherent oscillation of the entire molecule.
The model put forward in the present work is derived as the classical counterpart of a quantum model
proposed a long time ago by Fröhlich in an attempt to explain the huge speed of enzymatic reactions. We
show that such a phenomenon is actually possible. Two different and complementary THz near-field
spectroscopic techniques—a plasmonic rectenna and a microwire near-field probe—have been used in two
different labs to eliminate artifacts. By considering an aqueous solution of a model protein, the bovine
serum albumin, we find that this protein displays a remarkable absorption feature around 0.314 THz, when
driven in a stationary out-of-thermal equilibrium state by means of optical pumping. The experimental
outcomes are in very good qualitative agreement with the theory developed in the first part of the paper and
in excellent quantitative agreement with the theoretical result, allowing us to identify the observed spectral
feature with a collective oscillation of the entire molecule.

DOI: 10.1103/PhysRevX.8.031061 Subject Areas: Biological Physics,
Nonlinear Dynamics,
Soft Matter

I. INTRODUCTION

Recent progress in terahertz technology has enabled us
to look at biological systems with terahertz radiation, that
is, in an energy domain (a few meV) of the order of the
activation energy of many biological processes. These
include the excitation of collective modes of vibration of
biomolecules for which experimental evidence has origi-
nally been provided at thermal equilibrium by means of
Raman spectroscopy [1] and, recently, by several terahertz
spectroscopic studies mainly carried out using dry or low-
hydrated powders because of the very strong absorption of
water [2–5]. More recent studies also addressed solvated
proteins [6,7]. Collective oscillations of biomolecules,
possibly driven by metabolic activity in living matter by
bringing about large oscillating dipole moments, could
activate resonant (thus selective), intermolecular, attractive,
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electrodynamic forces acting at a long distance. However,
we have shown [8] that this is not possible at thermal
equilibrium, where all the mentioned experiments have
been hitherto performed. Thus, understanding whether
long-range intermolecular electrodynamic forces can really
be activated requires that we figure out if out-of-thermal-
equilibrium collective oscillations of biomolecules can be
realized. The possibility of activating these forces could
help explain the fast encounters of the cognate partners of
biochemical reactions in living matter, even in the context
of a low molecular concentration of one of the reactants, as
might be the case of some ligand-receptor reaction or of the
transcription machinery of DNA. From a theoretical view-
point, collective oscillations of macromolecules have been
described by Fröhlich [9–12] as a Bose-like condensation
of their normal vibrational modes.
However, Fröhlich’s theory has been criticized and

marginalized for several reasons. One reason is that the
original theory is oversimplified and lacks many important
explanations to qualify as relevant to understand basic
mechanisms of life. Recently, remarkable progress has been
made in the direction of assessing the possible relevance of
Fröhlich condensates in a revisitation of the theory [13],
which has led to the identification of three different kinds of
Fröhlich condensates: weak, strong, and coherent. The
authors of Ref. [13] explain that weak condensates may
have profound effects on chemical and enzyme kinetics,
while coherent condensates involve very large amounts of
energy, are very fragile, and are not produced by the Wu-
Austin Hamiltonian from which Fröhlich’s rate equations
can be derived. The work of Ref. [13] is still theoretical, and
it is developed in a quantum framework.
From the experimental side, very interestingobservations of

phonon condensates of quantumnature at thermal equilibrium
have recently been reported in the literature. Remarkably,
optical phonon condensates have been observed in hetero-
structures at room temperature [14 ], arising from phase and
frequency dynamical synchronization of phonons due to
suitable scattering processes around defects. Another in-
triguing result concerns polariton Bose condensation at
thermal equilibrium in a GaAs high-Q microcavity in a
temperature range of 10–25 K [15], still a quite-high temper-
ature with respect to Bose-Einstein condensation of alkali
atoms. These results concern optical phonons or polaritons
weakly interacting with phonons, respectively, in condensed
matter systems. But what about low-frequency vibrations of
biomolecules at room temperature?Wemaywonderwhether a
complementary step forward canbemadebygoingbeyond the
quantum treatment of Fröhlich condensates, also after the
revisitation of Ref. [13].
In fact, the frequency of collective oscillations of

biomacromolecules is expected in the sub-THz domain,
around 1011 Hz. Hence, at room temperature, it is
kBT=ℏω ≫ 1 (where kB and ℏ are the Boltzmann and
Planck constants, respectively), and the average number of
phonons estimated at this frequency with the Bose-Einstein

statistics (hni≃62.01) is the same as that given by the
Boltzmann statistics (hni≃62.51) within a 1% accuracy;
as a consequence, a classical description seems rea-
sonable. Moreover, when the system is brought out of
thermal equilibrium by external energy injection, the
effective temperature of each normal mode is higher, thus
increasing the occupation number of each mode and
making the classical approximation even more reasonable.
Furthermore, for example, the vibrational properties of
proteins are very well described by molecular dynamics
simulations performed in a classical context. Therefore, the
first important question addressed in the present work is
whether a phonon condensation phenomenology can also
be retrieved in a classical framework and out of thermal
equilibrium. To this aim, by resorting to a dequantization
method, we have worked out a classical version of the
original Fröhlich model, finding that—remarkably—in a
classical context too, Bose-like phonon condensation is
possible [16]. This possibility requires us to consider a
biomolecule as an open system—that is, far from thermal
equilibrium with its environment—through which energy
flows under the simultaneous actions of an external energy
supply and of dissipation due to radiative, dielectric, and
viscous energy losses. We find that the classical Bose-like
condensation in the lowest vibrational mode occurs when
the energy input rate exceeds some threshold value. Then,
this a priori nonobvious result motivates an experimental
effort to find if the theoretically predicted phenomenon is
actually possible in the physical world. Two independent
experiments, in geographically distinct laboratories, have
confirmed the existence of out-of-equilibrium collective
oscillations for a model protein. This is a proof of concept
of which the most significant implication is that, in
compliance with a theoretical prediction [8], a crucial
prerequisite is fulfilled to excite intermolecular long-range
electrodynamic interactions. In turn, as already mentioned
above, these interactions could affect the biomolecular
dynamics by contributing to drive the high efficiency and
rapidity of mutual encounters of the partners of biochemi-
cal reactions in living matter, encounters that do not always
appear to be the result of Brownian diffusion only.
The derivation of the mentioned classical model—

together with the numerical evidence of phonon conden-
sation—is reported in Sec. II. The results of two comple-
mentary experiments are reported and discussed in Sec. III.
Materials and methods are described in Sec. IV. In Sec. V,
we draw some conclusions.

II. CLASSICAL OUT-OF-EQUILIBRIUM
PHONON CONDENSATION

Some decades ago, the study of open systems far from
thermodynamic equilibrium showed, under suitable con-
ditions, the emergence of self-organization. Striking simi-
larities were observed among very different physical
systems, which have in common the fact that they are
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all composed of many nonlinearly interacting subsystems.
When a control parameter, typically the energy input rate,
exceeds a critical value (that is, when the energy gain
exceeds the energy losses), then the subsystems act
cooperatively to self-organize in what is commonly referred
to as a nonequilibrium phase transition [17,18]. This
phenomenon is a generic consequence of the presence of
the mentioned basic ingredients, that is, nonlinearly inter-
acting subsystems, dissipation to a thermal bath, and
external energy supply. Therefore, even idealized models
of real systems are capable of correctly catching the
occurrence of these collective behaviors, at least qualita-
tively. This fascinating topic was pioneered in the late
1960s by Fröhlich with the model mentioned in the
Introduction. However, Fröhlich rate equations for the
vibrational mode amplitudes, as occupation numbers in
Fock’s representation, of a generic biomolecule were
originally put forward heuristically: The original formu-
lation was lacking a microscopic model. A microscopic
Hamiltonian—from which the Fröhlich rate equations can
be derived—was later given by Wu and Austin [19–22] to
model the dynamics of the normal modes of a macromol-
ecule, of the thermal bath surrounding it, and of the external
energy pump. The Wu-Austin Hamiltonian is formulated in
the second quantization formalism.
In what follows, we indicate with ba†ωi , baωi

the quantum
creation or annihilation operators for the vibrational normal
modes of the main system (i.e., a biomolecule) with
frequency ωi ∈I sys.
Such a system is put in contact with a thermal bath that

represents the degrees of freedom of the environment
surrounding the protein and, possibly, other normal modes
of the protein that can be considered at thermal equilibrium
with the surrounding environment. The thermal bath is
characterized by a temperature TB, and it is represented by
a collection of harmonic oscillators with characteristic
frequencies Ωj ∈Ibth whose annihilation or creation oper-
ators are bbΩj

and bb†Ωj
, respectively.

In order to put the system representing normal modes of
a biomolecule out of thermal equilibrium, an external
source of energy is necessary: Such an external source is
represented as another thermal bath at a temperature
TS ≫ TB. Also, in this case, the corresponding thermal
bath is described by a collection of harmonic oscillators
with frequencies Ω0

k ∈I src, the quantum annihilation and
creation operators of which are bcΩ0

k
and bc†Ω0

k
. These three

sets of harmonic oscillators can be regarded as three
subsystems of a larger isolated system S (we coherently
indicate with IS the set of all the normal modes of the
system) whose quantum dynamics is described by the
Hamiltonian

bHTot ¼ bH0 þ bHint ð1Þ

where bH0 is the free Hamiltonian of the three sets of
harmonic oscillators representing the molecular normal
modes and the two heat baths

bH0 ¼
X

ωi∈I sys

ℏωiba†ωibaωi
þ

X

Ωj∈Ibth

ℏΩj
bb†Ωj

bbΩj

þ
X

Ω0
k∈I src

ℏΩ0
kbc

†
Ω0

k
bcΩ0

k
: ð2Þ

The interactions among normal modes are described by
bHint; in the original formulation by Wu and Austin, the
interaction term has the form

bHintWA ¼ bHsys−bth þ bHsrc−sys þ bHsys−bth−sys

¼
X

ωi∈I sys;Ωj∈Ibth

ηωiΩj
ba†ωi

bbΩj

þ
X

ωi∈I sys;Ω0
k∈I src

ξωiΩ0
k
ba†ωibcΩ0

k

þ
X

ωAi ;ωAj∈I sys;Ωk∈Ibth

χωiωjΩk
ba†ωibaωj

bb†Ωk
þ H:c:; ð3Þ

where ηωiΩj
, ξωiΩ0

k
, χωiωjΩk

∈C are the coupling constants
describing the linear interactions among the thermal bath
modes and the biomolecule modes, the linear interactions
between the external source and the biomolecule, and the
mode-mode interactions among the biomolecule normal
modes mediated by the thermal bath, respectively.
From these terms, it is possible to derive the Fröhlich rate

equations by resorting to time-dependent perturbation
theory; details are given in Refs. [19,20] and in the
reference book in Ref. [23].
However, the mode coupling term corresponds to a

potential energy unbounded from below, and consequently,
this would give rise to dynamical instability of the system
and, in the quantum context, to the absence of a finite
energy ground state. This problem led to strong criticism
against the Wu-Austin Hamiltonian model and also against
the ensemble of Fröhlich condensation theory [24 ]. This
problem can be easily fixed by adding a term with a quartic
dependence on the creation and annihilation operators of
the form

bHintQ ¼
X

ωi;ωj;ωk;ωl∈I sys

½κð1Þωiωjωkωl
ba†ωiba

†
ωjbaωk

baωl

þ κð2Þωiωjωkωl
ba†ωiba

†
ωjba

†
ωkbaωl

þ κð3Þωiωjωkωl
ba†ωiba

†
ωjba

†
ωkba

†
ωl & þ H:c:; ð4 Þ

so the lower bound to the ground energy level does not go
to −∞ for large values of Nωi

. This quartic interaction
stands for an anharmonic interaction among the normal
modes of the biomolecule, a broadly studied topic of
relevance to energy transport in biomolecules like proteins.
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A. Dequantization of Wu-Austin Hamiltonian
by time-dependent variational principle

In this section, a classical Hamiltonian system with its
canonical equations is associated with the quantum system
described by the quantum Hamiltonian of Eqs. (1), (3), and
(4 ). This result is obtained by applying the time-dependent
variational principle (TDVP) technique [25,26]. The same
technique, which is deeper from both the mathematical and
conceptual points of view, has been proposed as a
“dequantization” technique in Ref. [27] as a kind of inverse
procedure with respect to the geometrical quantization.
This consists in the evaluation of the time-dependent
operator action on coherent states of quantum harmonic
oscillators. The scalar parameters describing the coherent
states become generalized coordinates of a classical
dynamical system whose equations of motion can be
derived from a variational principle.
In more detail, one begins with the ansatz that the wave

function depends on N parameters fxigi¼1;…;N ,

jψi ¼ jψðx1;…; xNÞi; ð5Þ

where the parameters xi ¼ xiðtÞ are, in general, functions
of time. For a quantum system with Hamiltonian bHTot, the
equations of motion of xi can be derived using the
following variational principle (equivalent to the least
action principle):

δS ¼ 0 with S ¼
Z

t

0
Lðψ ; ψ̄Þdt0; ð6Þ

where Lðψ ; Þ is the Lagrangian associated with the system

Lðψ ; ψ̄Þ ¼ {ℏ
2

hψ j _ψi − h _ψ jψi
hψ jψi

−
hψ jbHTotjψi

hψ jψi
: ð7Þ

The equations of motions derived from Eq. (6) can be
worked out in the framework of classical Hamiltonian
dynamics.
The classical Hamiltonian is associated with the quan-

tum one by simply taking the expectation value of the
Hamiltonian operator bHTot over the state jψðx1;…; xNÞi,
that is,

HTot ¼ hψðx1;…; xNÞjbHTotjψðx1;…; xNÞi: ð8Þ

The Poisson brackets f·; ·g depend only on the chosen
parametrization for the wave function. Starting from the
variables

wi ¼ {ℏ
!
ψ

""""
∂ψ
∂xi

#
¼ −{ℏ

!∂ψ
∂xi

""""ψ
#
; ð9Þ

one defines the antisymmetric tensor

Wij ¼
∂wj

∂xi −
∂wi

∂xj ; ð10Þ

so the equations of motion are implicitly given by

XN

j¼1

Wij _xj ¼
∂HTot

∂xi : ð11Þ

If the condition detWij ≠0 holds, then the matrix Wij ¼
ðW−1Þij defines the Poisson brackets for the classical
Hamiltonian system

ff; gg ¼
XN

i;j

∂f
∂xi Wij

∂g
∂xj : ð12Þ

This formalism can be applied to the quantum system
described by the quantum Hamiltonian of Eq. (1) to
associate it with a classical Hamiltonian system. The choice
of the parametrization for the wave function is quite
arbitrary, and the TDVP, as any other variational principle,
restricts the dynamics to a certain region of the Hilbert
space. Since the Hamiltonian is expressed in terms of
creation and annihilation operators of the quantum har-
monic oscillators describing the system, the wave function
is chosen as a product of the corresponding coherent states.
In particular,

jΨðtÞi ¼
Y

ωi∈I sys;Ωj∈Ibth;Ω0
k∈I src

jzωi
ðtÞisys

⊗ jzΩj
ðtÞi

bth
⊗ jzΩ0

k
ðtÞi

src
; ð13Þ

where jzΩi
ðtÞisys, jzΩj

ðtÞi
bth
, jzΩ0

k
ðtÞi

src
are normalized

coherent states for the normal modes of the main system,
the thermal bath, and the external source, respectively; their
general form is given by

jzi ¼ exp
$
−
jzj2

2

%Xþ∞

k¼0

zkffiffiffiffi
k!

p jki

¼ exp
$
−
jzj2

2

%Xþ∞

k¼0

ðzba†Þk

k!
j0i;

where z ¼ zðtÞ ∈C: ð14 Þ

From the definition of coherent states in Eq. (14 ), it follows
that the expectation value for the occupation number n is
given by the squared norm of z,

hnðtÞi ¼ hzðtÞjba†bajðtÞi ¼ jzðtÞj2; ð15Þ

so, as we are interested in writing rate equations for these
quantities, we parametrize the wave function ΨðtÞ with the
set of real parameters fðni; θiÞgi∈IS

such that
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zi ¼ n1=2i exp ½−{θi& ⇒ z'i ¼ n1=2i exp ½{θi&; ni ¼ jzij2; i ∈IS: ð16Þ

Using Eq. (9), it is possible to derive the Poisson brackets associated with the variables fðni; θiÞgi∈IS
:

wni ¼ {ℏ
!
fðnj; θjÞgj∈IS

""""
∂
∂ni fðnj; θjÞgj∈IS

#

¼ {ℏ
∂ni=∂jzij

!
fðnj; θjÞg

j∈IS

""""
∂

∂jzij ⊗
j∈IS

'
exp

$
−
jzjj2

2

%Xþ∞

k¼0

jzjjk exp ½−{kθj&ðba†jÞ
k

k!
j0i

(

¼ {ℏ
2jzij

ð−jzijhfðnj; θjgj∈IS
jfðnj; θjÞgj∈IS

iþ exp½−{θi&hfðnj; θjÞgj∈IS
jba†j jfðnj; θjÞgj∈IS

iÞ

¼ {ℏ
2jzij

ð−jzijþ jzij exp½{θi& exp½−{θi&Þ ¼ 0; ð17Þ

wθi ¼ {ℏ
!
fðnj; θjÞgj∈IS

""""
∂
∂θi

""""fðnj; θjÞgj∈IS

#

¼ {ℏ
!
fðnj; θjÞgj∈IS

""""
∂
∂θi ⊗

j∈IS

'
exp

$
−
jzjj2

2

%Xþ∞

k¼0

jzjjk exp ½−{kθj&ðba†jÞ
k

k!
j0i

(

¼ {ð−{Þℏjzij exp½−{θi&hfðnj; θjÞgj∈IS
jba†i jfðnj; θjÞgj∈IS

i ¼ ℏjzij2 ¼ ℏni: ð18Þ

Consequently, using the definition (10), the entries of the W matrix are

Wθiθk ¼ Wnink ¼ 0; ð19Þ

Wniθk ¼ −Wθkni ¼
∂wnk

∂θi −
∂wθi

∂nk ¼ ℏδi;k; ð20Þ

and its inverse has the form

Wθiθk ¼ Wnink ¼ 0; ð21Þ

Wθink ¼ −Wnkθi ¼
δi;k
ℏ

: ð22Þ

Thus, it follows that the variables Jω ¼ ℏnω and θω are canonically conjugated variables. The classical Hamiltonian
H ¼ H0 þHintWA þHintQ for the variables fðθω; JωÞgω∈IS

is given by a free classical part

H0 ¼ hΨðθω; JωÞjbH0jΨðθω; JωÞi ¼
X

ωi∈I sys

ωiJωi
þ

X

Ωk∈Ibth

ΩkJΩk
þ

X

Ω0
p∈I src

Ω0
pJΩ0

p
; ð23Þ

by a semiclassical Wu and Austin interaction part

HintWA ¼ hΨðθω; JωÞjbHintWAjΨðθω; JωÞi

¼
X

ωi∈I sys

X

Ωk∈Ibth

jηωiΩk
j

ℏ
J1=2ωi J

1=2
Ωk

cos ðθωi
− θΩk

þ θηωiΩk Þ

þ
X

ωi∈I sys

X

Ω0
p∈I src

jξωiΩ0
p
j

ℏ
J1=2ωi J

1=2
Ω0

p
cos ðθωi

− θΩ0
p
þ θξωiΩ0p

Þ

þ
X

ωi;ωj∈I sys

X

Ωk∈Ibth

jχωiωjΩk
j

ℏ3=2 J1=2ωi J
1=2
ωj J

1=2
Ωk

cos ðθωi
− θωj

þ θΩk
þ θχωiωjΩk Þ; ð24 Þ
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and by the quartic term

HintQ ¼ hΨðθω; JωÞjbHintQjΨðθω; JωÞi

¼
X

ωi;ωj;ωk;ωl∈I sys

J1=2ωi J
1=2
ωj J

1=2
ωk J

1=2
ωl

$jκð1Þωiωjωkωl
j

ℏ2
cos ðθωi

þ θωj
− θωk

− θωl
þ θκð1Þωiωjωkωl Þ

þ
jκð2Þωiωjωkωl

j
ℏ2

cos ðθωi
þ θωj

þ θωk
− θωl

þ θκð2Þωiωjωkωl Þ

þ
jκð3Þωiωjωkωl

j
ℏ2

cos ðθωi
þ θωj

þ θωk
þ θωl

þ θκð3Þωiωjωkωl Þ
%
; ð25Þ

where each complex coupling constant is given in the polar representation. In what follows, the coupling constants are
considered real and rescaled such that

θηωiΩk ¼ θξωiΩ0p
¼ θχωiωjΩk ¼ θκð1;2;3Þωiωjωkωk ¼ 0;

jηωiΩk
j

ℏ
→ ηωiΩk

;
jξωiΩ0

p
j

ℏ
→ ξωiΩ0

p
;

jχωiωjΩk
j

ℏ3=2 → χωiωjΩk
;

jκð1;2;3Þωiωjωkωl
j

ℏ2
→ κð1;2;3Þωiωjωkωl

: ð26Þ

With these choices, the total Hamiltonian of the system reads

HTotðfðJωi
; θωi

Þgωi∈IS
Þ ¼

X

ωi∈I sys

ωiJi þ
X

Ωj∈Ibth

ΩjJΩj
þ

X

Ω0
k∈I src

Ω0
kJΩ0

k

þ
X

ωi∈I sys

X

Ωj∈Ibth

ηωiΩj
J1=2ωi J

1=2
Ωj

cos ðθωi
− θΩj

Þ þ
X

ωi∈I sys

X

Ω0
k∈I src

ξωiΩ0
k
J1=2ωi J

1=2
Ω0

k
cos ðθωi

− θΩ0
k
Þ

þ
X

ωi;ωj∈I sys

X

Ωk∈Ibth

χωiωjΩk
J1=2ωi J

1=2
ωj J

1=2
Ωk

cos ðθωi
− θωj

þ θΩk
Þ

þ
X

ωi;ωj;ωk;ωl∈I sys

J1=2ωi J
1=2
ωj J

1=2
ωk J

1=2
ωl ½κð1Þωiωjωkωl

cos ðθωi
þ θωj

− θωk
− θωl

Þ

þ κð2Þωiωjωkωl
cos ðθωi

þ θωj
þ θωk

− θωl
Þ þ κð3Þωiωjωkωl

cos ðθωi
þ θωj

þ θωk
þ θωl

Þ&: ð27Þ

In order to derive Fröhlich-like rate equations, the dynam-
ics of the action variables Jωi

of the system has to be
studied. We could choose to investigate the dynamics of the
system by letting observable quantities evolve in time
(according to Hamilton’s equations of motion) and then
performing time averaging, and averaging on different
initial conditions compatible with the assumption that
the two subsystems Ibth and I src are two thermal baths
with different temperatures. However, this method has
some disadvantages: The integration should be done
numerically because of the presence of nonlinear inter-
action terms in the Hamiltonian, and a very large number of
degrees of freedom would be necessary to adequately
simulate the dynamics of the thermal baths. Moreover,
long integration times would be necessary to attain the
convergence of time averages of the observables, and,
finally, this computational effort would not be worth it, as it
would provide redundant information on the dynamics.
Another way to derive rate equations for the Jωi

consists in

a statistical approach: The relevant dynamical variable
to consider is the phase-space distribution function
ρðfðJω; θωÞgω∈IS

; tÞ so that the rate equations are written
for the statistical averages of actions variables

hJωi
ðtÞi ¼

Z
Jωi

ρðfðJω; θωÞgω∈IS
; tÞ

Y

ω∈IS

dJωdθω: ð28Þ

In the following section, classical Fröhlich-like rate equa-
tions are derived by resorting to the time evolution of the
distribution function ρðfðJω; θωÞgω∈IS

; tÞ satisfying the
Liouville equation.

B. Derivation of classical rate equations using the
Koopman–von Neumann formalism

Let ρðfðJω; θωÞgω∈IS
; tÞ be a probability density func-

tion for the whole system described by the Hamiltonian in
Eq. (27); according to the Liouville theorem, the evolution
of ρ associated with this Hamiltonian is given by
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∂ρ
∂t ¼ fH; ρg ¼ −{LHðρÞ; ð29Þ

where {2 ¼ −1 and f·; ·g are the canonical Poisson brackets

ff; gg ¼
X

ωi∈I sys

' ∂f
∂Jωi

∂g
∂θωi

−
∂g
∂Jωi

∂f
∂θωi

(

þ
X

Ωj∈Ibth

' ∂f
∂JΩj

∂g
∂θΩj

−
∂g
∂JΩj

∂f
∂θΩj

(

þ
X

Ω0
k∈I src

' ∂f
∂JΩ0

k

∂g
∂θΩ0

k

−
∂g
∂JΩ0

k

∂f
∂θΩ0

k

(
; ð30Þ

and LHð·Þ ¼ {fH; ·g is the Liouville operator acting on
functions defined on the phase space of the system. An
interesting method to study and solve Liouville equations
relies on the Koopman–von Neumann (KvN) formalism
developed in the 1930s: A formal analogy among Liouville
and Schrödinger equations is established so that classical
mechanics can also be formulated in the framework of a
Hilbert space of square integrable functions. In our case, the
Hilbert space of complex square integrable functions in
phase space is L2ðΛfðJω;θωÞgω∈IS

Þ, with the inner product
defined by

hfjgi ¼
Z

ΛfðJ;θωÞgω∈IS

f'g
Y

ω∈IS

dJωdθω

¼
Y

ω∈IS

Z
2π

0
dθω

Z
þ∞

0
dJωf'g; ð31Þ

with f, g ∈L2ðΛfðJω;θωÞgω∈IS
Þ. On this space, we can define

the action of the Liouville operator

bLHjfi ¼ LHðfÞ ð32Þ

and consider the domain D
LbH ⊆L2ðΛfðJω;θωÞgω∈IS

Þ where

the Liouville operator is self-adjoint, namely, bL†
H ¼ cLH

and D
LbH ¼ D

Lb†
H
. Let ψðfðJω; θωÞgω∈IS

; tÞ ∈D
LbH be a

normalized time-dependent function [28] such that

{
∂ψ
∂t ðJ; θ; tÞ ¼

bLHψðJ; θ; tÞ; ð33Þ

then, it can be proven that ρ ¼ k ψ k L2ðΛðJ;θÞÞ ¼ ψ'ψ is a
normalized function for which Eq. (29) holds. Moreover, as
bLH is a self-adjoint operator, it represents the unitary time
evolution of the “wave function” as

ψðfðJω; θωÞgω∈IS
; tÞ ¼ exp ½−{tbLH&ψðfðJω; θωÞgω∈IS

; 0Þ

ð34 Þ

in analogy with quantum mechanics. With this formalism,
the rate equations for the average values of the actions

(which are the counterparts of quantum occupation num-
bers) associated with the normal modes ωi of the main
system are given by

d
dt
hJωi

it ¼
d
dt
hψðtÞjcMJωi

jψðtÞi

¼ {hψðtÞj½bLH; cMJωi
&jψðtÞi; ð35Þ

where cMJωi
is a multiplicative operator acting on

L2ðΛfðJω;θωÞgω∈IS
Þ as follows:

cMJωi
jψi ¼ jJωi

ψi: ð36Þ

The Liouville operator can be decomposed as

cLH ¼ bLH0
þ bLHint

ðtÞ; ð37Þ

and since the eigenfunctions of the operator bLH0
are known,

the action of the operator bLHint
can be treated as a time-

dependent perturbation, which is adiabatically turned on
and off from t0 ¼ 0 to t ¼ þ∞. Then, a classical analog of
the interaction representation formalism is used. Thus, if
jψðtÞiS is the wave function in the Schrödinger represen-
tation, then, in the interaction representation, jψðtÞiI reads

jψðtÞiI ¼ exp ½{tbLH0
&jψðtÞiS; ð38Þ

and, given a generic operator bAS in the Schrödinger picture,
its expression in the interaction picture bAI is

bAIðtÞ ¼ exp ½{tbLH0
&bAS exp ½−{tbLH0

&: ð39Þ

With this formalism, the time evolution of jψðtÞiI can be
writtenwith the unitary evolution operator bUðt; t0Þ satisfying

jψðtÞiI ¼ bUðt; t0Þjψðt0ÞiI; ð4 0Þ

{
∂Uðt; t0Þ

∂t ¼ bLHint
ðtÞbUðt; t0Þ; ð4 1Þ

and the formal solution of Eq. (4 0) is given by

Uðt; t0Þ ¼ I − {
Z

t

t0

bLHint
ðt0ÞbUðt0; t0Þdt0: ð4 2Þ

At first order in bLHint
ðt0Þ, the unitary evolution operator

bUðt; t0Þ in the right-hand side of Eq. (4 2) is substituted
by the identity operator, meaning that the state jψðt0ÞiI ,
if the perturbation is turned on at t0, at the lowest
order can be approximated by jψðt0ÞiI ≃jψðt0ÞiS and is
assumed to be coincident with the Schrödinger picture
[i.e., jψð0Þi ¼ jψ0i]. Thus,
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jψðtÞiI ≈
'
bI − {

Z
t

0

bLHint
ðt0Þdt0

(
jψ0iI ð4 3Þ

and, as bLHint
ðt0Þ is self-adjoint, the time evolution for the

“bra” has the form

hψðtÞjI ≈hψ0jI
'
bI þ {

Z
t

0

bLHint
ðt0Þdt0

(
: ð4 4 Þ

The time derivative of themultiplicative operator cMJωi
in the

interaction picture is derived according to Eq. (39),

ð _cMJωi
Þ
I
¼ {ð½bLH; cMJωi

&Þ
I

¼ { exp ½{tbLH0
&½bLH; cMJωi

& exp ½−{tbLH0
&: ð4 5Þ

This means that the average (35) can be entirely rewritten
using the interaction picture as

d
dt
hJωi

it ¼ IhψðtÞjð
_cMJωi

Þ
I
jψðtÞiI

¼ IhψðtÞjð½bLH; cMJωi
&ðtÞÞ

I
jψðtÞiI

≈ hψ0j
'
bI þ

Z
t

−∞
bLHint

ðt0Þdt0
(
ð½bLH; cMJωi

&ðtÞÞ
I

'
bI −

Z
t

0

bLHint
ðt0Þdt0

(
jψ0i

¼ hψ0jð½bLH; cMJωi
&ðtÞÞ

I
jψ0iþ

Z
t

0
hψ0j½ð½bLHint

; cMJωi
&ðtÞÞ

I
; ðbLHint

ðt0ÞÞI&jψ0idt0: ð4 6Þ

After lengthy computations (see Supplemental Material [29] for details), one finally arrives at the following rate equations
for the expectation values of the actions (that is, the amplitudes of vibrational modes), which are worked out as follows:

dhJωi
i

dt
¼ sωi

þ bωi

$
kBTB

ωi
− hJωi

i
%
þ

X

ωj∈Isys
ωj≠ωi

cωiωj

$
ðhJωj

i − hJωi
iÞ þ

ωj − ωi

kBTB
hJωi

ihJωj
i
%

þ
X

ωj;ωk;ωl∈Isys
ωiþωj−ωk−ωl¼0

16πκ2ð1Þωiωjωkωl

δωsys
hJωl

iðhJωj
ihJωk

iþ hJωi
ihJωk

i − 2hJωi
ihJωj

iÞ

þ 3π
δωsys

2

64
X

ωjωkωl∈Isys
ωiþωjþωk−ωl¼0

3κ2ð2Þωiωjωkωl
hJωl

iðhJωj
ihJωk

iþ 2hJωi
ihJωk

i − hJωi
ihJωj

iÞ

þ
X

ωjωkωl∈Isys
ωiþωjþωk−ωl¼0

κ2ð2Þωiωjωkωl
hJωl

ihJωk
iðhJωj

i − 3hJωi
iÞ

3

75: ð4 7Þ

C. Properties of the classical rate equations

The rate equations (4 7) that have been derived by
solving the Liouville equation with the Hamiltonian (27)
display a functionally similar structure to the original
Fröhlich’s equations [9], apart from the additional
quartic terms. As in the original formulation given by
Fröhlich, the condensation phenomenon is found by
considering the stationary solutions of the rate equa-
tions. It is convenient to rewrite Eq. (4 7) in a non-
dimensional form after introducing the following
variables:

τ¼ tω0 with ω0¼ min
ω∈I sys

ω; yωi
¼
ωihJωi

i
kBTB

;

αωi
¼ωi

ω0

; Sωi
¼αωi

sωi

kBTB
; Bωi

¼
bωi

ω0

;

Cωiω¼
cωiω

ω0

; ϒð1Þωiωjωkωl
¼
16πκð1Þωiωjωkωl

ðkBTBÞ2

δωsysω3
0

;

ϒð2Þωiωjωkωl
¼
3πκð2Þωiωjωkωl

ðkBTBÞ2

δωsysω3
0

: ð4 8Þ

Thus, Eq. (4 7) reads
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_yωi
¼

dyωi

dt
¼ Sωi

þ Bωi
ð1 − yωi

Þ þ
X

ωj∈Isys
ωj≠ωi

Cωiωj

$'
αωi

αωj

yωj
− yωi

(
þ
ðαωj

− αωi
Þ

αωj

yωi
yωj

%

þ
X

ωj;ωk;ωl∈Isys
ωiþωj−ωk−ωl¼0

ϒð1Þωiωjωkωl

yωl

αωl

'
αωi

αωj
αωk

yωj
yωk

þ αi
αk

yωi
yωk

− 2
αωi

αωj

yωi
yωj

(

þ

2

64
X

ωjωkωl∈Isys
ωiþωjþωk−ωl¼0

3ϒð2Þωiωjωkωl

yωl

αωl

'
αωi

αωj
αωk

yωj
yωk

þ 2
1

αωk

yωi
yωk

−
1

αωj

yωi
yωj

(

þ
X

ωjωkωl∈Isys
ωi−ωj−ωk−ωl¼0

ϒð2Þωiωjωkωl

yωk
yωl

αωk
αωl

'
αωi

αωj

yωj
− 3yωi

(
3

75; ωi ∈I sys: ð4 9Þ

By inspection, one can notice the following properties of
the equations above:

(i) If the normal modes thermalize at the heat bath
temperature TB, so that hJωi

i ¼ kBTB=ωi, it follows
that the variables yωi

are equal and take the
value yωi

¼ 1.
(ii) By switching off the external source of energy, i.e.,

putting Sωi
¼ 0, the thermal solution above, that is,

yωi
¼ 1 for all the ωi, is a stationary solution of the

system, namely, _yωi
¼ 0.

In order to understand whether the phonon condensation
phenomenon also exists in the above-defined classical
framework, one has to work out nontrivial out-of-
equilibrium stationary states of the model equations.
Unfortunately, doing this analytically for a system with a
large number of nonlinear equations is hopeless; there-
fore, one has to resort to numerical integration of the
dynamical equations (4 9). A difficulty of the numerical
approach is to provide a priori estimates of the coupling
constants for a real biomolecule. To overcome this
problem, we borrow from Ref. [30] the values of
physically realistic nonlinear coupling parameters.
Moreover, the nondimensional form of the equations
partially simplifies the problem, as only the ratios among
the coefficients have to be known. On the other hand,
since we are only interested in a purely theoretical kind
of qualitative study, some simplifying assumptions are in
order. Thus, the coupling constants appearing in Eq. (4 9)
should be independent of the frequency; in particular,
the condition Sωi

¼ S is also assumed (the energy
injection rate is the same for all the normal modes).
Then, we perform the numerical integration of the
dynamical equations by changing the total number N þ
1 of oscillators (normal modes) in a fixed range
(1 ≤ωi ≤2) of equally spaced frequencies given (in
arbitrary units) by ωn ¼ 1þ n=N, with n ¼ 0; 1; 2;…; N.
This choice models an increasing density of modes in a
given fixed frequency interval. The classical energy

condensation phenomenon, numerically found and
described below, is characterized by a strong deviation
from energy equipartition among the normal modes in a
stationary state of the dynamical system (4 7) [and,
equivalently, of the system (4 9)]: As the energy injection
rate increases, the system undergoes a major change in
the energy distribution among its normal modes, result-
ing in a more “organized” phase (the energy is mainly
channeled into the lowest-frequency mode). Such a
condensation phenomenon can be viewed as associated
with the breaking of the permutation symmetry for the
set of variables fyω0

;…; yωN
g in the stationary state,

where yωi
is the energy content in the mode of frequency

ωi in kBTB units. It is clear that such a symmetry holds at
energy equipartition. In analogy with the characteriza-
tion of symmetry breaking in the classical theory of
equilibrium phase transitions, we have to define some
(possibly scalar) indicators to detect the permutation
symmetry breaking. In order to detect energy equiparti-
tion, and its violation in the presence of the condensation
phenomenon, we borrow and adapt from Ref. [13] a
condensation index Ey, which reads

Ey¼
yω0

− ỹω0PN
i¼0 yωi

; ð50Þ

where yω0
is the energy content of the fundamental mode

and ỹω0
¼ 1þ S=B is the energy content of the funda-

mental mode given by the exact solution of Eq. (4 9) in
the absence of all the nonlinear couplings (mode-mode
and system-bath). Here, we replace the occupation
numbers of the modes entering the condensation index
of Ref. [13] with the mode energy contents. Note that
Ey¼ 0 corresponds to energy equipartition among the
normal modes, and Ey¼ 1 corresponds to full concen-
tration of the energy into the lowest-frequency mode. In
order to easily compare the results obtained at different
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numbers N of modes, the energy fractions yωi
in each

normal mode are normalized to give the variables
pi ¼ yωi

=
P

ωi∈I sys
yωi

.
Another possible choice for the indicator detecting the

permutation symmetry breaking is any of the quantities
yωi

=yω0
¼ pi=p0, with i ≠0: These are expected to attain

their maximum value equal to 1 at equipartition and to take
values between zero and 1 for a Fröhlich-like condensation
phenomenon. Numerical simulations have been performed
in order to characterize this major change of the stationary
states of the dynamical system (4 9), that is, to find the
asymptotic stationary solutions of the variables yωi

ðtÞ
which correspond to the fixed points _yωi

¼ 0 of the system.
As a reasonable initial condition, at t ¼ 0, the system is
taken at thermal equilibrium with the heat bath; that is, all
the yωi

ð0Þ are set equal to 1.

D. Results of numerical simulations

In Figs. 1 and 2, the results of numerical integration of
the rate equations (4 9) are reported for the set of parameters
Bωi

¼ B ¼ 1, Cωiωj
¼ C ¼ 0.1, with the initial conditions

specified in the previous subsection. The coefficient B has

been chosen as a reference parameter because it is directly
related to the characteristic thermalization timescale
τtherm ≈B−1. The quartic coupling constant has been
chosen as ϒð1Þ ¼ ϒð2Þ ¼ 10−4, which is sufficient to
guarantee a finite bound of the energy from below. The
choice C=B ¼ 0.1 is coherent, with respect to what has
been reported in the literature [23] concerning the already-
investigated qualitative aspects of quantum Fröhlich con-
densation. The integration has been performed using a
fourth-order Runge-Kutta algorithm, in each case for a time
interval τint > 0 sufficiently long so as to guarantee that
jϵωi

ðτÞ − ϵωi
ðτstatÞj < 10−5 for τstat, τ ∈½0; τint&. In Fig. 1,

the reported results display the fraction of energy content in
each mode for a system with N ¼ 20, that is, 21 normal
modes and different values of the energy injection rate.
It is quite clear that the larger the energy injection rate S, the
stronger the deviation from energy equipartition, with
increasing energy concentration in the lowest-frequency
mode ω0. This energy concentration phenomenon, which
we can call phonon condensation, stems from the classical
Liouville equation and displays several analogies with
the phenomenology of the pseudo-Bose condensation
predicted by Fröhlich in a quantum framework and

FIG. 1. Classical Fröhlich-like condensation. Normalized fractions of energy pi in normal modes vs the mode frequencies of the
system I sys for a fixed number of modes: N ¼ 20. The histograms display increasing deviations from energy equipartition among the
normal modes as the energy input rate S increases. The spectra correspond to S ¼ 0.1 (blue), S ¼ 1 (green), S ¼ 10 (purple), and
S ¼ 100 (pink). Equipartition corresponds to equal heights of the bars. Note the great difference among the energy fractions in the
lowest normal mode and in the higher frequency modes.
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subsequently largely studied and debated in the same
quantum framework.
A relevant feature of the Fröhlich condensation is the

existence of a threshold in the energy injection rate, which
corresponds to the breaking of the above-discussed per-
mutation symmetry. In order to find out if a similar
threshold effect is also displayed by our classical model,
we study the behavior of the above-defined indicators of
symmetry breaking (the condensation index Ey and the
ratio yωi

=yω0
) as a function of S and for different values of

N. Figure 1 shows that, for the chosen values of S, it is
pi > piþi; hence, the parameter p1=p0 appears as a natural
choice to detect a possible threshold effect. The results of
numerical simulations of the order parameters have been
reported in Fig. 2. Both indicators pass from their respec-
tive equipartition values (Ey≃0, p1=p0 ≃1) to their con-
densation values (Ey≃1, p1=p0 ≃0) by displaying a clear
steepening at increasing N. In particular, at increasing N,
the curves of the condensation index EyðS;NÞ display a
tendency to superpose at large S values, and a sharpening
of the transition knee at lower S values, suggesting an

asymptotic convergence to a sharp bifurcation pattern. In
fact, this sharpening of the transition curves with N is
reminiscent of the finite-size patterns of the order parameter
as a function of the control parameter of equilibrium
second-order phase transitions. An analogous phenomenon
is displayed by the S pattern ðp1=p0ÞðSÞ of the indicator
p1=p0 at increasing N. Actually, the right panel of Fig. 2
shows that, around the value S≃10, the different curves
ðp1=p0ÞðS;NÞ cross each other and get steeper at increas-
ingN, again suggesting that the larger the number of modes
the sharper the transition between almost equipartition
among the modes and phonon condensation in the low-
est-frequency mode. It is worth noting that this phenom-
enology is qualitatively confirmed by the outcomes
reported in Fig. 5 (aimed at highlighting a saturation
effect), where again a sharpening—at increasing N—of a
threshold effect can be observed. The lower panel of Fig. 2,
for the case of Nsys ¼ 201, provides some interesting and
more detailed information about the dynamics underlying
the condensation phenomenon reported in the upper panels
of the same figure. In fact, the lower panel shows how the

FIG. 2. Classical Fröhlich-like condensation. For an increasing number of modes entering the numerical simulations of Eq. (4 9), in the
upper left panel, the condensation index Ey, defined in Eq. (50), is reported versus the energy input rate S, and in the upper right panel,
the ratio of the energy content p1=p0 is reported versus S. At equipartition, E0 ¼ 0 and p1=p0 ¼ 1; for the condensed state, Ey¼ 1 and
p1=p0 ¼ 0. The colors of the lines correspond to Nsys ¼ 11 (blue), Nsys ¼ 21 (green), Nsys ¼ 41 (brown), Nsys ¼ 101 (orange),
Nsys ¼ 201 (purple), and Nsys ¼ 301 (red). The dashed oblique line (tangent to the inflection point of the two highest N curves) is a
guide to the eye to mark a possible asymptotic bifurcation point. In the lower panel, the relative energy content of two groups of modes
—pi for i ¼ 0–10 (from blue to purple) and i ¼ 99, 100, 101 (blue, green, magenta superposed)—are displayed as a function of S,
having set Nsys ¼ 301. The dashed line corresponds to energy equipartition.

OUT-OF-EQUILIBRIUM COLLECTIVE OSCILLATION AS … PHYS. REV. X 8, 031061 (2018)

031061-11



relative energy content pi of a randomly chosen subset of
modes (p0, p1, p5, p10, p100) deviates from energy
equipartition at increasing S. We can observe that the
highest frequency mode selected, p100, deviates from
equipartition at smaller values of S than the lower fre-
quency modes chosen; then, somewhat below S ¼ 10, the
energy content of all the selected modes starts decreasing,
except the energy content p0 of the lowest-frequency mode,
which gathers more and more energy, approaching the
value p0 ¼ 1, that is, full condensation at high S.
The main result of this theoretical part of the paper is an

original derivation of a classical counterpart of the well-
known Wu-Austin quantum Hamiltonian from which
Fröhlich’s rate equations can be derived. This classical
counterpart consists of a system of nonlinear dynamical
equations (4 9) for the (adimensionalized) energy content
yωi

of each normal mode ωi of an ensemble of oscillators
coupled with two thermal baths at different temperatures.
The ensemble of oscillators—ideally modeling the vibra-
tions of the atoms or of groups of atoms in a macromolecule
—is both linearly and nonlinearly coupled to the set of
oscillators representing a thermal bath at temperature TB;
this thermal bath accounts for the environment (mainly
water molecules) and for other fast internal oscillations of a
macromolecule. The second thermal bath at a temperature
TS ≫ TB models an external energy supply, in close
analogy with the Wu-Austin model. The numerical study
of Eq. (4 9) has shown that the condensation phenomenon is
not peculiar of a quantum model, which a priori was not an
obvious fact; hence, the occurrence of a phonon conden-
sation phenomenon in a macromolecule at room temper-
ature is more plausible in our classical model than in
Fröhlich’s quantummodel. Therefore, even though Eq. (4 9)
still represents a biomolecule in a very idealized way, the
genericity of qualitative features of out-of-equilibrium phase
transitions—mentioned at the beginning of this section—
suggests that the condensation phenomenon should actually
occur in real biomolecules, even though our model is not
expected to predict the quantitative details of the phenome-
non. This is enough to make the predicted phenomenology
worth an effort for its experimental detection.

III. EXPERIMENTAL DETECTION OF
NONEQUILIBRIUM COLLECTIVE MODE

Even though experimental evidence of the existence of
collective modes of vibration of biomolecules was provided
at thermal equilibrium by means of Raman spectroscopy [1]
many years ago and is still the object of many investigations
[2–7,31], no experimental evidence is available for the
possibility of exciting out-of-thermal-equilibrium collective
oscillations of a biomolecule.Unveilingwhether these can be
activated amounts to understanding whether a necessary
condition to activate long-range intermolecular electrody-
namic forces [8] can be fulfilled. This strongly motivated the
joint theoretical and experimental work reported in the

present paper. The experimental counterpart of the theoreti-
cal work relies on two complementary experiments.
For both experiments, a model protein has been chosen:

the BSA protein. This protein is mainly made out of α
helices and is a “model” since it is largely studied in the
biophysical chemistry literature. Our strategy to create a
stationary out-of-thermal-equilibrium state of this molecule
is to induce it by means of optical pumping—without
involving any optical transition of the protein—through the
excitation of some fluorochromes bound to each protein
molecule. The optical excitation of these fluorochromes
creates, on each protein, some “hot points” acting as the
epicenters of a so-called “proteinquake” [32,33]—dis-
cussed in more detail later—and resulting in an energy
transfer to the vibrational part of the protein. We used the
Alexa4 88 fluorochrome, which is covalently bonded at the
lysine residues of the BSA and which is excited by means
of an argon laser (wavelength 4 88 nm). Some 0.19 eV per
fluorochrome and per incident photon (the average energy
difference between the absorbed and reemitted photons) is
thus available for an energy transfer to the protein and,
partly, to its environment. By attaching an average number
of 5 fluorochromes per protein, a considerable amount of
energy (≫ kBT) can be continuously pumped into each
protein. Two THz-near-field absorption spectroscopy set-
ups of aqueous solutions of the protein (at 1 mg=mL
concentration), operating in two distinct laboratories, have
been used at room temperature [Figs. 3(a) and 3(c)]. In both
experiments, THz radiation is produced by tunable, highly
spectrally resolved (< 300 Hz) and continuous-wave
sources, with an average power of 1 mW, allowing an
accurate detection of possible resonances. A typical experi-
ment consists in three phases; during each of them, the
aqueous solution of proteins is illuminated with THz
radiation, performing a sweep in frequency and thus
allowing us to measure the frequency dependence of the
absorbed electromagnetic power (detected by the near-field
probes) in the solution. During the first phase, no extra
illumination is done with the argon laser; during the second
phase, the argon laser is switched on to excite the
fluorochromes bound to the proteins; finally, during the
third phase, the laser is switched off to check whether some
memory and irreversible photochemistry effect (photo-
bleaching) or sample heating is present. The use of near-
field coupling of metal probes to the sample eliminates the
Fabry-Perot interferences often seen in optical spectra in
fluidic cells [34 ].
The first setup [Figs. 3(a) and 3(b)] includes a micro-

coaxial near-field probe inside a metallic rectangular
waveguide, enabling a modal transition from TM01

Sommerfeld’s to TE01 waveguide mode. The subwave-
length diameter of the wire (12 μm) allows an extremely
localized detection of the longitudinal component of the
electric field at its end and in a volume of about 4 pL. The
spectra were subtracted from the spectrum of pure water in
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order to remove artifacts coming either from the water
absorption or from the geometry of the experimental setup.
The second setup [35] [Figs. 3(c) and 3(d)] involves a near-
field probe rectenna composed of a planar metal bow-tie
antenna, with dimensions close to half a wavelength (at
0.3 THz), that enhanced the THz field in the feed-gap
region (volume of about 0.2 pL) and a plasma-wave field-
effect transistor (FET) integrated in the feed gap of the
antenna. When illuminated by THz radiation, the antenna-
coupled FET device provides a dc voltage—between
source and drain contacts—proportional to the THz-field
intensity [36–38]. A hemispherical silicon lens pressed on
the back of the semiconductor substrate focuses the THz
radiation on the antenna, simultaneously eliminating Fabry-
Perot interference in the substrate [39]. The spectrum of the
protein solution obtained in the absence of blue light
illumination is subtracted from the spectrum obtained with
blue light illumination.
Figure 4 (a) presents the spectra obtained using the

microcoaxial probe in the absence of blue light illumination
(black squares) and in the presence of blue light illumina-
tion of different durations (from 3 to 9 min). In the former
case (no illumination), there was no specific spectral feature
in the studied frequency range, while in the latter case (with
illumination), we observed spectral resonances that become
more evident for an increasing duration of illumination. In
particular, the strongest resonance appeared at 0.314 THz,

accompanied by two other minor resonances situated at
0.278 and 0.285 THz; these values did not depend on the
time of illumination, and the strength of the resonances
saturated after 9 min of illumination. These results have full
reproducibility. Figure 4 (b) presents the spectra obtained
using the rectenna probe for two durations of blue light
illumination. The spectra with illumination on versus
illumination off were taken several times (two of them
showed reproducibility). In this case, we also observed the
appearance of evident resonances whose strength saturated
at increasing durations of illumination (10 and 15 min in
the two experimental runs reported). Long excitation times
are needed because, under our experimental conditions, the
energy dissipation rate and the energy supply rate are
almost equal, so a long time is needed to accumulate
enough energy into each protein in order to make intra-
molecular nonlinear interaction terms sufficiently strong to
activate the condensation phenomenon.
The spectra obtained using the two previously described

methods and for the longer durations of illumination are
compared in Fig. 4 (c). The principal resonance at
0.314 THz is perfectly reproduced using two completely
different and complementary setups. Since THz extinction
in water is huge (2000 dB=cm), the emergence of this
spectral feature of the protein out of the water absorption
background must be associated with the activation
of a giant dipole moment. This can happen only as a

FIG. 3. Experimental setup of THz absorption near-field spectroscopy. (a) A drop of the biological sample placed under the near-field
probe, which is directly immersed in the solution. (b) Picture of the near-field probe and its microwire. (c) A drop of the biological
sample placed above the near-field rectenna. (d) Electron-beam microscopy picture of the bow-tie antenna with its integrated FET.
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consequence of the activation of a coherent oscillation of
the whole molecule, possibly together with a dipole-
moment strengthening due to an electretlike structuring
of water dipoles of the first hydration layers of the proteins,
as the hydration shell might contribute to the magnitude of
the protein dipole moment [4 0].
Since the BSA is a heart-shaped globular protein, the

possible lowest frequency of a global oscillatory mode is
roughly estimated by schematizing the molecule as com-
posed of two massesm, equal to half the total protein mass,
joined by a spring of elastic constant k given by
k ¼ EA0=l0, where E is the Young modulus of the protein,

and A0 and l0 are its transverse section and length at rest,
respectively. Using m ¼ 33 kD, A0 ≃1.2 × 10−13 cm2,
l0 ≃1.2 × 10−7 cm, and E ¼ 6.75 GPa, we find ν ¼
ð1=2πÞ

ffiffiffiffiffiffiffiffiffi
k=m

p
≃0.300 THz, which is close to the main

resonance observed at 0.314 THz. Since the BSA molecule
can be modeled to first order as a three-dimensional elastic
nanoparticle [6], a more refined approximation is obtained
by modeling the protein with an elastic sphere and then
considering its vibrational frequencies.
The fundamental frequency of a spheroidal deformation

mode of an elastic sphere is given by the formula [4 1]

ν0 ¼ð1=2πÞ½2ð2lþ1Þðl−1Þ&1=2
'

E
ρR2

H

(
1=2

; ð51Þ

which holds for l ≥2. For the lowest mode (l ¼ 2), we find
the frequency ν0 ¼ 0.308 THz, which agrees within an
error of about 2% with the observed peak value at
ν ¼ 0.314 THz, using the following data for the BSA
protein: Young modulus E ¼ 6.75 GPa obtained at room
temperature using Brillouin light scattering of hydrated
BSA proteins [4 2], hydrodynamic (Stokes) radius
RH ¼ 35 Å, and specific volume 1=ρ ¼ 0.74 derived from
small-angle x-ray scattering (SAXS) experiments [4 3].
Though such a modeling is unrealistic since it does not
take into account the details of the protein structure and the
associated normal modes [4 4 ], it nonetheless catches a
relevant aspect of the global deformation dynamics of the
BSA molecule, namely, the activation of a collective
oscillation, also suggesting that the physical parameters
adopted correspond quite well to the situation investigated
[4 5]. Secondary resonances are also present in both spectra.
We could tentatively give a possible explanation by
considering torsional modes. These could be activated at
the frequencies given by the relation [4 1]

νt ¼ ν0

'
ð2lþ 3Þ
2ð2lþ 1Þ

(
1=2

; l ≥2;

where ν0 is given by Eq. (51), whence, for l ¼ 2 and l ¼ 3,
one finds ν ¼ 0.257 THz and ν ¼ 0.246 THz, respectively.
These could be associated with the two weaker absorption
lines observed at ν ¼ 0.278 THz and ν ¼ 0.285 THz.
Here, the larger discrepancy can be attributed to the
nonspherical shape of the BSA, which entails the existence
of different moments of inertia according to the rotation
axis, whereas the breathing mode is insensitive to this.
Minor peaks are observed at higher frequencies with the
rectenna (falling outside the accessible frequency range of
the near-field probe) when the protein solution is illumi-
nated with blue laser light. However, the blue light
illumination could produce spurious signals from the 2D
electron gas of the FET junction as a consequence of
electron-hole pair excitation causing a change of the
transistor channel conductivity. This effect is well known

(a)

(b)

(c)

FIG. 4 . Differential transmission and absorption spectra as
functions of the frequency. (a) Spectra obtained using the
microwire probe after subtraction of the water spectrum in
the absence of illumination and in the presence of illumination
for the reported durations. (b) Spectra obtained using the
rectenna, after subtraction of the protein solution without illumi-
nation, for the reported durations. (c) Comparison of the two
normalized spectra for the longest illumination durations.
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and studied in the literature [4 6], so minor peaks could be
instrumental artifacts due to this electron-hole-pair creation
effect.
Let us stress an important point: Computational normal

mode analysis for proteins has shown nearly continuous
vibrational density of states [4 4 ], which have also been
proven to be nearly uniformly optically active. Moreover,
the coupling of these vibrational modes with water results
in broad absorption features [4 7,4 8]. But this is true at
thermal equilibrium, whereas in out-of-equilibrium phonon
condensation, the energy content of all the normal modes is
strongly depleted, with the exception of the collective
mode, hence a narrow absorption feature. In fact, the
computation of the function LðωÞ in Sec. IV shows how
a dipole actively oscillating at a given frequency entails an
absorption feature of shape similar to the experimentally
observed one.
According to our classical version of the Fröhlich model,

it is also expected that the appearance of a collective
oscillation should exhibit a thresholdlike behavior when
increasing the energy flowing through the protein. Actually,
Fig. 5(a) presents a clear threshold in the intensity of the
resonance peak at 0.314 THz when the optical input power
exceeds 10 μW. By using a classical formalism for the
analysis of the out-of-equilibrium phonon condensation,
we have calculated the intensity of the normal vibrational
modes of the BSA protein as a function of the source power
injected through the protein. Figure 5(b) highlights the
thresholdlike behavior of the intensity of the fundamental
mode that accumulates the energy at the expense of the
excited modes, in qualitative agreement with the exper-
imental outcome. By increasing the number of modes
included in the calculation, this threshold becomes more
and more evident. The experimental and theoretical results
reported in Fig. 5 also show the same saturation effect
occurring at large values of the energy input rate.

The observed spectra are certainly due to the light-
excited protein because the spectral feature at 0.314 THz is
not observed by illuminating (i) water alone, (ii) an aqueous
solution of the fluorochrome in the absence of the protein,
or (iii) an aqueous solution of the BSA protein without the
bound fluorochrome (see Sec. IV). On the other hand, the
observed spectral line at 0.314 THz immediately disappears
by switching off the laser. Remarkably, the spectra obtained
with two independent and different experimental setups,
based on two different methods of detection of the THz
radiation, operated in two different laboratories, show a
strikingly good overlap of the respective absorption line
profiles at 0.314 THz. This result is in excellent agreement
with the frequency of 0.308 THz predicted for the sphe-
roidal (collective) vibrational mode computed on the basis
of recent experimental measurements of the relevant
parameters of the BSA protein. This triple concordance
among the results obtained so far should be enough
to exclude experimental artifacts. Nevertheless, various
sources of the artifact for the observed phenomenology
were considered. One objection is that the observed
phenomenology is just a trivial heating effect due to the
laser light. This would be true in the absence of a
frequency-dependent response to the injection of energy
into the proteins. Heating indeed means increasing the
kinetic energy of the atoms and groups of atoms of the
protein, entailing energy equipartition among the vibra-
tional modes of the protein. Hence, neither a frequency-
dependent effect nor a threshold effect for the energy input
rate would be measured, but a new thermal equilibrium
state would be achieved. To the contrary, each protein—
submitted to continuous energy feeding and energy dis-
sipation—behaves as an open system undergoing a non-
equilibrium phase transition: When the ratio between
energy gain and loss exceeds a critical value, a collective
behavior sets in, producing the phonon condensation, as
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FIG. 5. Thresholdlike behavior of giant dipolar oscillations. (a) Intensity of the resonant peak measured at 0.314 THz as a function of
the optical laser power. (b) Normalized energy of the fundamental mode calculated as a function of the normalized source power. The
different curves correspond to the reported numbers of normal modes of the BSA protein. Theory and experiment are in qualitative
agreement.
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has already been discussed in Sec. II. Then, an important
point concerns the conversion mechanism of the visible
light energy absorbed by the electrons of the complex
protein or dyes into the vibrational modes of the proteins.
This mechanism of rapid intramolecular dissipation of
energy through quakelike structural motions as a conse-
quence of a perturbation (such as the breaking of a chemical
bond or the absorption of photons through electronic
transitions) is receiving increasing experimental attention
[32,33,4 9,50] and is referred to as the “protein quake.”
Similar to an earthquake, this effect describes how a protein
strain is released at a focus or “hot point” (in our case, the
fluorochromes) and then rapidly spreads as a structural
deformation through waves, thus exciting protein vibra-
tional modes. Another source of artifact could be the
apparition of standing waves and related interferences,
but these would be easily identified. Furthermore, there is
no reason for such interferences—if they exist—to manifest
themselves as a consequence of the excitation of fluoro-
chromes through the blue light [see Fig. 6(b)].

IV. MATERIALS AND METHODS

A. Sample preparation

BSA was purchased from Sigma-Aldrich (A7030)
(St. Louis, MO) in lyophilized powder—protease free, fatty
acid free (≤0.02%), essentiallyglobulin free; since thedegree
of purity of theBSAwas higher than 98%, it was usedwithout
further purification and was dissolved directly into bidistilled
water.TheBSAmoleculeswerelabeledwiththefluorochrome
AF4 88 5-TFP (Alexa Fluor 4 88Carboxylic Acid, 2, 3, 5, 6—
Tetrafluorophenyl Ester), 5-isomer (A30005), which was
purchased from Molecular Probes Invitrogen.
The dye has excitation/emission of 495=515 nm and a

molar extinction coefficient of ε495 ¼ 71 000 M cm−1.
Both the protein and dye concentrations have been

determined by measuring their absorbance with a
Nanodrop 1000 Spectrophotometer (ThermoScientific)
at 280 nm with a molar extinction coefficient of
36 000 Mcm−1 and at 4 95 nm with a molar extinction
coefficient of 71 000 Mcm−1, respectively. The chemically
labeled BSA molecules were obtained by homemade
labeling using a 2 mg=mL aqueous solution concentration
of proteins with an initial ratio of concentrations [A4 88
5-TFP]/[BSA] equal to 8 in sodium bicarbonate at a
pH ≈8.5, during one hour. Unconjugated dye was
removed using a PD-mini-trap G25 (GE Health Care)
according to the instructions of the manufacturer, using
gravity protocol, and the degree of labeling was determined
spectroscopically. After purification, each BSA molecule
has between 5 and 6 fluorochromes attached.

B. Experimental detection of the collective mode

Two separated and different experiments, performed in
Montpellier (France) and in Rome (Italy), respectively, have
been performed to obtain the terahertz nonequilibrium
spectra of the model protein chosen. The former used a
microwire as a local probe, whereas the latter used a
nanorectenna.

1. Microwire-based THz spectroscopy

A constitutive element of the experimental setup is a
tunable and continuous-wave primary source from Virginia
Diodes Inc. [51], thus emitting in the 0.22–0.33-THz
frequency range with an average power of 1 mW. The
high spectral resolution (< 300 Hz) of the continuous-
wave source allows an accurate detection of resonances.
The emitted radiation beam is focused on the samples of
protein solutions on which a 4 88-nm light beam—pro-
duced by an argon laser—can be focused too and switched
on and off at willing. The blue light provides the proteins
with the necessary energy to activate a collective vibra-
tional state. The latter is an out-of-equilibrium state because
it is kept by a nonthermal energy supply.
The THz near-field scanning spectroscopy technique in

aqueous medium is performed by resorting to a homemade
microcoaxial (i.e., subwavelength) near-field probe put
inside a metallic rectangular waveguide connected to a
heterodyne head and an electrical spectrum analyzer. The
subwavelength diameter of the wire allows an extremely
focused enhancement of the longitudinal component of the
electric field at its end over a volume of 4 pL. In 1995,
Keilmann [52] highlighted the advantages of introducing a
metal wire in a circular metal waveguide to produce probes
for near-field microscopy in the far-infrared and microwave
frequency domains. The advantage of this method is to
avoid the frequency cutoff when the diameter of the guide is
a subwavelength one. The circular waveguide is trans-
formed into a coaxial waveguide, which does not have a
low-frequency cutoff and which makes superfocalization
and high-resolution imaging possible.
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FIG. 6. Differential transmission spectra of the microwire-
based absorption spectra. (a) Without blue light illumination
(laser OFF), obtained with solvated AF4 88 in water (red circles),
solvated nonlabeled BSA in water (green triangles), and BSA
labeled with AF4 88 solvated in water (blue squares). (b) With
blue light illumination (laser ON), obtained with solvated AF4 88
in water, at a concentration of 5 mg=mL (red circles); solvated
nonlabeled BSA in water (green triangles); and BSA labeled with
AF4 88 solvated in water (blue squares). Labeled and nonlabeled
BSA concentrations are kept equal to 1 mg=mL.
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However, for the experiments reported in the present
work, a rectangular waveguide is used, and this entails
some different phenomena since the microwire is soldered
along the long axis of the waveguide and bent to exit it.
This has two main consequences: On the one hand, the
microwire enables a modal transition, and on the other
hand, it serves as a waveguide. The bent portion of the
microwire allows the conversion of the fundamental mode
TE01 inside the rectangular waveguide into a TM01 mode
along the wire. To optimize the coupling efficiency between
the near field and the probe, special care is taken for the
positioning of the microwire inside the guide. More
precisely, the maximum of the near-field signal is theo-
retically attained for a wire positioned at Linside ¼
p½ðλTE01

Þ=4& from the open side of the waveguide, where
λTE01

is the wavelength of the TE01 mode at the considered
frequency. At 0.3 THz, the microwire must be fixed at an
entire multiple p of 250 μm. The best compromise between
efficiency and technical possibilities is found for p ¼ 4,
which gives Linside ¼ 1 mm. The second parameter to take
into account is the angular positioning of the bent portion of
the microwire inside the rectangular waveguide. The
coupling is at a maximum when the wire is parallel to
the orientation of the electric field in the guide, that is,
along the long axis of the rectangular waveguide. Finally,
we note two relevant parameters, which are the total length
and the diameter of the wire. The intensity of the electric
field is roughly sinusoidal, and its maximum is attained
when the total length L is a multiple of the half-wavelength.
The best compromise between theory and technological
possibilities has given a total length of L ¼ 2 mm. Since
the electric-field intensity at the microwire extremity
increases when the diameter decreases, we use a wire of
12 μm diameter. All the previously mentioned parameters
have also been simulated using CSTmicrowaves studio®
(https://www.cst.com/products/cstmws) to ensure the best
coupling efficiency possible.
All the measurements have been performed at room

temperature. A drop of the protein solution sample is placed
under the near-field probe, which is directly immersed
inside the solution. A typical experiment consists in
measuring the near-field electric-field intensity through a
reference medium (water) and the protein solution sample.
A sweep through the frequency domain accessible to the
THz source is performed both when the blue light is
switched on and off to yield a difference spectrum showing
the absorption features that are attributed to collective
vibrations of each protein molecule.
Figure 7 displays the spectra, stabilized in time, obtained

by varying the power of the laser illuminating the solution
of labeled proteins at a constant concentration of 1 mg=mL.
Notice that the secondary peaks appear and develop
together with the main peak at 0.314 THz; therefore, these
secondary peaks are also vibrational modes of the entire
protein, giving some support to the hypothesis attributing

them to torsion modes. However, these kinds of modes
cannot be accounted for by our theoretical model because it
contains no explicit information about the geometry of the
molecule.

2. Rectenna-based THz spectroscopy

In order to minimize the optical depth of water, in the
second experiment (Rome), the probe domain was reduced
to a volume of 10 × 10microns in xy(horizontal plane) and
to about 2 microns in z (vertical axis). To confine the THz
radiation (wavelength λ around 1 mm) to such a deeply
subwavelength region, a plasmonic antenna is used [35].
This device is based on two main components: a planar
metal antenna with length close to λ=2 (bow-tie, broadband
type) that produces a high THz field region with an antenna
feed gap of 10 × 10 microns; and a plasma-wave FET
transistor, which is a THz nonlinear electronic device
integrated in the feed gap of the antenna that provides
an electric signal proportional to the THz field strength in
the feed gap only. The plasma-wave transistor was first
introduced by Dyakonov and Shur in 1993 [36] and further
developed by many authors [37], the main advantage being
that standard microwave transistor technology can be
employed for fabricating a device that is sensitive to
THz radiation. The device is mounted in a package with
a silicon lens pressed on the back of the semiconductor
substrate and illuminated from below with a tunable THz
oscillator (by Virginia Diodes Inc., 0.18–0.4 THz) through
a set of off-axis parabolic mirrors. The resolution of the
free-running oscillator is 2 GHz. After acquiring the empty-
channel response spectrum of the device, a drop of protein
solution was cast on the top (air) side of the device with a
micropipette (a volume of 1 microliter was drop-casted).
The drop extends over the entire antenna; however, the
radiation comes from below (i.e., from inside the substrate),
and it is not attenuated by the whole drop. In this
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FIG. 7. Differential transmission spectra of the microwire-
based absorption spectra obtained with different excitation power
of the laser. The labeled BSA concentration is kept fixed at
1 mg=mL. The first three spectra are exactly superposed.
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experiment, absorption from molecules outside the antenna
feed gap in the xy directions can be disregarded. In the z
direction, the field also extends for less than 2 microns
because of the plasma-wave properties (the extension of the
plasmonic field in the z direction is calculated by finite
element modeling simulations). Therefore, the number of
molecules probed in this setup is that present in a 10 ×
10 × 2 micron volume, 10−6 times less than the number of
molecules present in a 1-mm3 diffraction-limited focus.

C. Spectroscopic detection of the collective mode

In both experiments, the collective oscillation of the
BSA protein is seen as a spectroscopic absorption feature.
At variance with standard absorption spectroscopy, where
the radiation entering the absorbing medium is responsible
for the creation of atomic or molecular excited states, in
the experiments reported here, the THz radiation is used to
detect an already-excited state of the molecules. Actually,
the collective oscillation of the proteins makes them
behave as very small antennas (Hertzian dipoles), with
the characteristic property of antennas simultaneously
absorbing and emitting electromagnetic radiation.
However, the absorption along the THz optical path
cannot be compensated by the radiation emitted by the
oscillating dipoles because it spreads over all the direc-
tions in space. The net result is an absorption feature. If
we denote by μ⃗ðtÞ the dipole moment of a protein and by
E⃗ðtÞ ¼ E⃗0 cosðωtÞ the electric field of the THz radiation,
the attenuation of the electric energy density within the
drop of protein solution is proportional to the work done
by the electric field, that is, L ¼ −μ⃗ðtÞ · E⃗ðtÞ. The oscil-
lation of the dipole moment is necessarily damped,
predominantly because of bremsstrahlung emission, so
that, denoting by τ the lifetime of the activated collective
oscillation and by ωc its frequency, we can set
μ⃗ðtÞ ¼ μ⃗0e−t=τ cosðωctÞ. Thus, after averaging over all
the relative orientations and all the phase differences ϕ
between μ⃗ðtÞ and E⃗ðtÞ such that the electric field does a
positive work, we obtain

LðωÞ ¼ 2

Z
π

0
dϕ

Z
∞

0
dtμ0E0e−t=τωc sinðωctÞ cosðωtþ ϕÞ:

ð52Þ

This is the elementary attenuation process of the THz
radiation. This process is repeated in time for each
molecule at a rate proportional to the intensity of the
drop illumination with the blue light. Moreover, the total
attenuation is proportional to the concentration of absorb-
ing molecules in the protein solution. Equation (52) gives,
for LðωÞ, a Lorentzian shape centered at ωc, the resonance
frequency of the collective oscillation of the BSA protein.
Figure 10 shows three different shapes of the function
LðωÞ obtained for different values of τ (in arbitrary units).

These line shapes show that an already-vibrating under-
damped dipole absorbs the weak terahertz-radiation probe
with the same frequency pattern as the 0.314 -THz
absorption line reported in Fig. 3. The latter is well fitted
by the LðωÞ function by using a Q factor of 50
(Q ¼ Δν=ν, that is, the ratio between the line width
and the line frequency).
In Figs. 6(a) and 6(b), some control spectra are reported,

which have been obtained with the microwire antenna. The
two groups of spectra refer to the blue light emitting laser
switched off and on, respectively. The observed absorption
line at 0.314 THz is clearly found only when the fluoro-
chrome AF4 88 is bound to the BSA molecules and in the
presence of 4 88-nm laser light illumination of the protein
solution. These spectra rule out any other origin of the
observed absorption feature besides the proposed one in the
main text of the present work.
In Fig. 8, the photoresponse spectra obtained with the

rectenna probe highlight the same phenomenology: The
absorption line at 0.314 THz is present only when the
aqueous solution of AF4 88-labeled BSA molecules is
illuminated with 4 88-nm laser light. A clear difference is
again observed between the spectra when the blue light
illumination is switched off and on. Artifacts possibly
due to blue-light-illuminated water alone, or possibly due
to the blue-light-illuminated AF4 88 dye in aqueous
solution, are ruled out by the control spectra reported
in Fig. 9 and are in agreement with the analogous
controls performed with the microwire antenna reported
in Figs. 6(a) and 6(b).
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FIG. 8. Raw data of the rectenna-based absorption spectra.
Black squares correspond to the THz emitting source spectrum
without the protein solution. Red circles correspond to the
absorption spectrum of the BSA protein solution without blue
light illumination. Green triangles correspond to the absorption
spectrum of the BSA protein solution recorded after 10 min of
blue light illumination. Blue triangles correspond to the absorp-
tion spectrum of the BSA protein solution recorded after 15 min
of blue light illumination. BSA concentration is equal to
1 mg=mL.
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D. Experimental activation timescale
of the collective mode

In both Montpellier and Rome experiments, the absorp-
tion feature, which is attributed to the activation of an out-
of-equilibrium collective oscillation of the protein,
appeared after several minutes of blue light irradiation:
about 4 min in the Montpellier experiment and after 10 min
in the Rome experiment (though, in this latter case, no
measurement was performed before 10 min). In what
follows, we provide a consistency estimate of this long
activation time with the physical conditions of the experi-
ments. Going beyond a qualitative estimate is hardly
feasible and, in any case, would not affect the meaning

of the experimental outcomes reported in the present work.
Thus, we proceed by estimating the balance between the
energy input rate and the energy loss rate of each molecule.
As we discuss at the end of this section, this long time is not
a hindrance to the biological relevance of the phenomenon
reported in the present work.
An elementary account of the balance between energy

gain and loss for each protein can be given by the equation

dE
dt

¼ −
2

3

ðZeÞ2jẍj2

c3
− ΓþW; ð53Þ

where E in the lhs is the numerical value of the energy of
the system described by the Hamiltonian (2) of the previous
section, the first term in the rhs represents the radiative
losses (bremsstrahlung) of the accelerated dipole of
moment Zex (where Z is the number of elementary charges
e and x is the separation between the center of positive and
negative charges), andW is the energy input rate due to the
4 88-nm light irradiation. Note that Γ stands for other kinds
of energy losses leading to thermalization of the protein
with its aqueous environment.
For what concerns the energy input rate W, the energy

difference between the entering photons, of wavelength
4.88 × 10−5 cm, and the fluorescently emitted photons, of
wavelength 5.3 × 10−5 cm, amounts to 3.18 × 10−13 erg ¼
0.19 eV. When the argon laser operates at 500 μW, the
number of emitted photons per second is 1.2 × 1015.
The cross section of the fluorochrome Alexa4 88 is
3.2 × 10−16 cm2 (free dye in water) [53], so assuming a
Gaussian beam section (at 1=e2) of 7.8 × 10−3 cm2 (cor-
responding to a diameter of about 0.1 cm), we find that each
Alexa4 88 molecule receives approximately 50 photons per
second. Each protein molecule has an average number of
5–6 fluorochromes bound to it so that, if we consider that
some of them could be partly shadowed by the protein
itself, we can assume that the average number of photons
received by each protein per second is in the interval
120–300. Hence, the upper bound for W is estimated to be
between 3.8 × 10−11 erg s−1 and 9.5 × 10−11 erg s−1. This
estimate is obtained under the assumption that all the
photons hitting the Alexa4 88 molecules are absorbed; the
quantum yield of these dye molecules is high (92%), so
practically all of the harvested photons are converted into
fluorescence, thus providing an upper bound of the energy
available for the protein excitation. Of course, part of this
energy can be dissipated in the surrounding environment in
the form of heat.
For what concerns the radiation losses, we proceed to

estimate the time average value of jẍj2. Since 63% of the
N-isoform of the BSA protein consists of α helices, we can
assume that the so-called accordionlike vibrational modes
of these helices provide the largest contribution to the
protein extension and thus to the variation of the protein’s
dipole moment. At thermal equilibrium, we can assume that
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FIG. 9. Control data of the rectenna-based absorption spectra.
We show the difference spectra obtained with and without blue
laser illumination of water (red triangles) and of an aqueous
solution of AF4 88 fluorochrome at a concentration of 5 mg=mL
(blue triangles). The spectra have been recorded after 10 min of
blue light illumination.
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the dipole elongation xðtÞ is the result of an incoherent
superposition like xðtÞ ¼

P
30
i¼1 Ai cosðωitþ ξiÞ, where the

ξi are random phases and the sum runs over the 30α helices
of which the protein is composed. To compute the time
average of jẍj2, we have to estimate the quantityP

30
i¼1

1
2A

2
iω

4
i (since the mixed terms average to zero).

Using the formula ωi ¼ 2πð1=2LiÞðE=ρÞ1=2 for the
frequencies of the accordionlike modes of the α helices
[54 ], where 1=ρ ¼ 0.74, E ¼ 2.31 × 1011 dyne cm−2 for α
helices, Li ¼ 1.5N Å, whereN is the number of amino acid
residues, and assuming that Ai belongs to the interval
0.05Li–0.1Li, and Ze ¼ −13 × 4.803 × 10−10 Fr for the
BSA protein at neutral pH [55], we finally find

2

3

ðZeÞ2

c3
jẍj2 ≃3.25 × 10−12–1.7 × 10−11 erg s−1: ð54 Þ

The range of values of the energy input rate and that of
the radiative losses are thus almost overlapping. Making
these estimates more precise is hardly feasible and is
beyond the aim of the present work. What matters here
is that, since we experimentally observe the activation of
the collective mode of the BSA molecules, the energy input
rate W must exceed the rate of all the losses, radiative and
nonradiative; if this happens only by a small amount, then
dE=dt can be so small as to require some minutes in order
to accumulate enough energy in each molecule [this can be
thought of as a steady increase of the value of the third term
of the unperturbed part of the Hamiltonian in Eq. (2)].
When the energy accumulated exceeds a critical threshold
value, the system undergoes a condensation transition,
channeling the largest fraction of the input energy into
the lowest-frequency mode(s). An elementary estimate of
the rate of energy losses due to the bremsstrahlung in the
condensed phase is obtained by entering into the Larmor
formula (54 ) the dipole acceleration jẍj computed from
xðtÞ ¼ A cosðωCtÞ, putting ωC ¼ 0.314 THz (which is the
frequency of the collective mode), and assuming that the
dipole elongation A is about 10 Å. The break-even point
between the energy input and the radiative losses is then
found for a dipole moment in the range 14 500–23 000
Debye, corresponding to an effective number of charges Z
approximately in the range 290–4 60. In other words, in the
condensed phase, the total dipole of the protein oscillates at
a low frequency (with respect to the accordionlike modes of
the α helices), so the collective oscillation can be stable
with respect to radiative losses up to the activation of large
values of the protein dipole moment.
We have neglected any estimate of the collisional losses

—represented by Γ in Eq. (53)—because their estimate as
viscous losses—on the basis of the Stokes formula—gives
an unreasonably high energy dissipation rate with respect to
the energy input rate. If this were the case, no collective
vibration would be observed at all. There is a vast amount
of literature about relaxation phenomena, and thus

thermalization, of proteins subject to different kinds of
radiative excitations. The typical relaxation timescales are
in the range of picoseconds to nanoseconds, with a
remarkable exception—recently reported in Ref. [31]—
where the thermalization of terahertz photons in a protein
crystal happens on a microsecond to millisecond timescale,
which is interpreted as being due to Fröhlich condensation
(either quantum or classical). On the contrary, typical
picosecond to nanosecond relaxations usually pertain to
side-chain relaxations or small groups of atoms. Also, in
the case of relaxations of collective modes detected with
FIR spectroscopy or with THz time domain spectroscopy
[56,57], the physical conditions are very different with
respect to our present experiments. In the mentioned
literature, the collective modes of proteins are probed at
thermal equilibrium—thus, in the presence of all the other
vibrational modes and under the action of weak excitation
fields. In our experiments, the protein molecules are out of
thermal equilibrium and are strongly excited through an
internal cascade of mode-mode couplings stemming from
the fluorescence decay of the attached fluorochromes, and
the THz radiation is only used to see the presence of the
collective oscillation (see the preceding subsection).
On the other hand, it has recently been found that the

hydration shell of the BSA protein is 25 Å thick [4 0], and
this seems to be a generic property of solvated proteins [7].
The microrheology [58] of this kind of water-protein
system—and, in particular, its high-frequency viscoelas-
ticity—is still an open research subject, making a quanti-
tative estimate of the term Γ in Eq. (53) hardly feasible.
A comment about the prospective biological relevance of

the observed phenomenology is in order. The main energy
source within living cells is provided by ATP hydrolysis.
The typical intracellular concentration of ATP molecules is
given around 1 mM, implying that a protein molecule in the
cell undergoes around 106 collisions with ATP molecules
per second [59]. Given the standard free energy obtained
from ATP hydrolysis estimated around 50 kJ:mol−1 ¼
8.306 × 10−13 erg, if we assume that only 1% or 2% of
the collisions with ATP provide energy, a power supply
between 8.306 × 10−9 erg s−1 and 1.6 × 10−8 erg s−1 is
potentially available. This could be at least 2 orders of
magnitude larger than the power supplied to each protein in
our experiments, but reasonably, it could be much more
than 2 orders of magnitude because we have assumed 100%
conversion efficiency of the energy supplied by the laser
into internal vibrations of the protein. However, this cannot
be the case; thus, the condensation mechanism in vivo can
be considerably faster.

V. CONCLUDING REMARKS

In the present paper, we have studied a classical version
of a quantum model put forward many years ago by
Fröhlich [9,10,12]. The classical model displays the same
phenomenon of a Bose-like phonon condensation of the
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normal vibrational modes of a macromolecule that was
predicted by the original quantum model. Even though our
classical model (just like its quantum predecessor) is very
idealized, that is, even if our model cannot be quantitatively
predictive, it can nevertheless qualitatively observe the
presence of a robust and generic phenomenon undergone
by open systems with internal nonlinear interactions: a
nonequilibrium phase transition when a control parameter
exceeds a critical threshold value. This kind of phase
transition corresponds to a channeling into the lowest-
frequency mode of almost all the energy pumped into the
system, that is, to a collective global molecular vibration.
This theoretical result has motivated an experimental—and
successful—attempt at confirming it. So, in the second
part of the present paper, we have reported—for a model
protein—the unprecedented observation of an out-of-
thermal-equilibrium collective oscillation, which is in
qualitative agreement with the theoretical model and in
excellent quantitative agreement with the theoretically
expected value of a spheroidal collective vibration of the
whole protein.
The novelty is not the collective oscillation itself because

several terahertz spectroscopic studies have reported col-
lective modes of proteins; however, all of these studies were
performed at thermal equilibrium and mainly carried out
using dry or low-hydrated powders because of the very
strong absorption of water [2–5], even though more recent
studies also addressed solvated proteins [6,7]. We stress at
this point that the novelty of both our theoretical and
experimental contributions consists of considering out-of-
thermal-equilibrium conditions. On the other hand, recent
studies on solvated BSA in the THz [60] and sub-THz
frequency range have shown [4 0] broad resonances due to
an efficient coupling of low-frequency modes of the protein
with the surrounding water; though all of these works were
performed at thermal equilibrium, as in these previous
studies, the experimental part of our present work confirms
the relevance of the coupling of the protein with the
surrounding water molecules. In fact, the strong absorption
feature that we observed in an aqueous solution of the BSA
protein placed out of thermal equilibrium reveals that the
protein vibrating in its collective mode has to be dressed by
ordered layers of water molecules in order to attain an
effective dipole moment sufficiently large enough to over-
come the strong absorption of bulk water.
We anticipate that the theoretical and experimental

sides of the work presented in this paper could open a
broad domain of systematic investigations about out-of-
equilibrium activation mechanisms and properties of col-
lective oscillations of different kinds of biomolecules.
Furthermore, as already mentioned in the Introduction,
the possibility of exciting out-of-thermal-equilibrium
collective oscillations of macromolecules is specifically
interesting as a necessary condition to activate resonant
long-distance electrodynamic intermolecular interactions

[8]. Thus, our results explain why electrodynamic inter-
actions between biomolecules have hitherto eluded detec-
tion; in fact, no attempt has ever been done to detect them
by involving biomolecules vibrating out of equilibrium.
Consequently, our work also motivates new efforts to detect
these electrodynamic intermolecular interactions [61,62].
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