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Abstract—Thanks to Mixed-Criticality (MC) scheduling, high
and low-criticality tasks can share the same execution platform,
improving considerably the usage of computation resources. Even
if the execution platform is shared with low-criticality tasks,
deadlines of high-criticality tasks must be respected. This is
usually enforced thanks to operational modes of the system:
if necessary, a high-criticality execution mode allocates more
time to high-criticality tasks at the expense of low-criticality
tasks’ execution. Nonetheless, most MC scheduling policies in
the literature have only considered independent task sets. For
safety-critical real-time systems, this is a strong limitation: models
used to describe reactive safety-critical software often consider
dependencies among tasks or jobs.

In this paper, we define a meta-heuristic to schedule multi-
processor systems composed of multi-periodic Directed Acyclic
Graphs of MC tasks. This meta-heuristic computes the scheduling
of the system in the high-criticality mode first. The computation
of the low-criticality scheduling respects a condition on high-
criticality tasks’ jobs, ensuring that high-criticality tasks never
miss their deadlines. Two implementations of this meta-heuristic
are presented. In high-criticality mode, high-criticality tasks
are scheduled as late as possible. Then two global scheduling
tables are produced, one per criticality mode. Experimental
results demonstrate our method outperforms approaches of the
literature in terms of acceptance rate for randomly generated
systems.

I. INTRODUCTION

With the adoption of multi-core architectures in safety-
critical real-time systems, more and more functionalities share
a common execution platform. In practice, due to safety
requirements, only functionalities with the same level of
criticality should share resources. This constraint limits the de-
ployment of functionalities on multi-core architectures, leading
to a potential waste of computation power.

To solve this problem, the Mixed-Criticality (MC) model [1]
has proposed an approach to execute high and low-criticality
tasks in a single platform. Thanks to operational modes,
MC systems are capable of executing tasks with different
criticalities in the same architecture. When the system is in a
nominal mode: tasks are executed with an “optimistic” timing
budget (e.g. a WCET estimated by the system designer). At
the same time, MC systems are also capable of limiting low-
criticality tasks’ execution in favor of high-criticality tasks to
ensure safety of the system. When a Timing Failure Event
(TFE) is detected, (i.e. a task did not complete its execution
within its low-criticality timing budget) the system switches to
a high-criticality mode and high criticality tasks are executed

with a “pessimistic” timing budget (e.g. a WCET enforced by
a certification authority).

Many contributions to schedule these type of systems with
real-time constraints (i.e. respecting deadlines in all opera-
tional modes) have been proposed in the literature [2]. How-
ever, most scheduling policies assume independent task sets:
no synchronization (e.g. lock-based communication, prece-
dence constraints) among tasks is considered by the sched-
ulers. This assumption is very restrictive: methods used to
develop reactive safety-critical systems often model such sys-
tems as data-flow graphs. Some examples of widely used tools
that follow graph representations for their systems are SCADE
from Esterel Technologies1 and Simulink from MathWorks2.
In practice, tasks have data dependencies and can only start
their execution when all their predecessors have completed
their execution. Such precedence constraints are usually mod-
elled with Directed Acyclic Graphs (DAGs) of tasks. Cyclic
dependencies among multi-periodic tasks can be resolved
thanks to deterministic periodic-delayed communications like
the one presented in [3].

In this paper, we aim at addressing this problem: how to
efficiently schedule multi-periodic DAGs of MC tasks on multi-
core architectures? Efficiency here refers to the capacity to
find a feasible scheduler on a given number of cores.

Scheduling DAGs on multi-core architectures is a difficult
problem [4] that becomes even more difficult when consider-
ing MC tasks. Precedence constraints, combined with the ex-
tension of timing budgets, induce a cascade effect propagating
potential time drifts to dependent tasks. As a consequence,
special care must be taken to ensure schedulability in both
modes, but also in case of a mode switch : when a TFE occurs,
enough processing time must be available for the remaining
tasks to be executed in high-criticality mode.

To tackle this problem, we present in this paper a suffi-
cient property to guarantee correct switches from low (LO)-
criticality mode to high (HI)-criticality mode in a multi-core
MC system with multi-periodic DAGs. Building on this prop-
erty, we propose MH-MCDAG, a meta-heuristic to produce
MC-correct schedules (as formally defined in [5]). We also
provide an efficient implementation of MH-MCDAG, called
G-ALAP-LLF. Based on Global-Least Laxity First (G-LLF),
G-ALAP-LLF executes HI-criticality tasks as late as possible,

1SCADE - http://www.esterel-technologies.com/products/scade-suite/
2Simulink - https://www.mathworks.com/products/simulink.html



giving more flexibility for the execution of LO-criticality
tasks. Last but not least, we provide an evaluation framework
to generate randomly configured multi-periodic MC-DAGs.
Experimental results we provide show that our scheduling
strategy has a promising acceptance rate when scheduling ran-
domly generated systems. We also provide evidence that our
method outperforms existing approaches of the literature [5].

To the best of our knowledge, the problem we address in this
paper has received very few contributions so far (i.e. [5], [6]
and [7]). MH-MCDAG, the meta-heuristic we propose, paves
the way for new contributions on this topic. In addition, our
evaluation framework could be reused and extended to evaluate
future contributions on this topic.

The remainder of this paper is organized as follows. Our
task model is presented in Section II. In Section III, we
define and prove a sufficient condition to guarantee correct
mode switches in the MC scheduling of our task model. We
also present MH-MCDAG, our meta-heuristic to schedule
DAGs of MC tasks. In Section IV we present G-ALAP-
LLF, an efficient implementation of MH-MCDAG, based
on G-LLF. We also describe how to adapt it to define an
implementation based on Global-Earliest Deadline First (G-
EDF). Our experimental results are given in Section V. In
Section VI we present related works, to finally conclude in
Section VII.

II. DUAL-CRITICALITY MULTI-PERIODIC MC-DAG
MODEL

We present in this section the notations of the system
model we consider throughout our contribution. A motivating
example representing an Unmanned Aerial Vehicle (UAV) for
field exploration is also presented in this section.

A. Notations

We define a MC system (MCS) S = (G,Π), as a set G
of Mixed-Criticality DAGs (MC-DAGs) and an architecture
Π with m identical processors. We consider dual-criticality
systems: the system has two execution modes HI and LO.
We adopt the discard approach [8], i.e. if a TFE occurs, LO-
criticality tasks are no longer executed and HI-criticality tasks
have an extended timing budget.

A MC-DAG Gj ∈ G, is defined as follows:
• Tj ∈ N and Dj ∈ N are respectively the period and

deadline of the DAG Gj . Without loss of generality,
we consider implicit deadlines (i.e. Dj = Tj) for the
remainder of this paper.

• Vj is the set of vertices of Gj . Each vertex τi ∈ Vj
is a MC task, characterized by two WCET parameters
Ci(LO) and Ci(HI). Each task is also characterized with
a criticality level χi ∈ {HI, LO}. LO-criticality tasks have
a Ci(HI) = 0, since we adopt the discard approach. In
addition, note that a task τi ∈ Vj has the same period
(Tj) and deadline (Dj) as its DAG Gj .

• Ej ∈ (Vj × Vj) is the set of edges between vertices. If
(τi, τj) ∈ Ej , then task τi must finish its execution before
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Fig. 1: UAV system S with two MC-DAGs: a Flight control
system FCS and an image processing workload Montage.

task τj can begin. A vertex is ready to be executed as
soon as all of its predecessors have been executed.

We define succ(τi) (resp. pred(τi)) the set of successors
(resp. predecessors) of a task. The predecessors of a HI-
criticality task cannot contain a LO-criticality task: for safety
reasons, a HI-criticality task cannot depend on the execution
of a LO-criticality task. If a mode switch occurs, the LO-
criticality task might never be executed and the precedence
constraints would never be satisfied.

Task jobs refer to the activations of a periodic tasks of a
given DAG. ji,k denotes k-th job of a task τi. A task job
is said to be released at time instant ri,k = k × Tj and has
to complete its execution before di,k = (k + 1) × Dj : the
release time (respectively deadline) of a task job is also the
release time (resp. deadline) of a DAG job. We define the
utilization rate for a MC-DAG (Gj) in the execution mode
χ: Uχ(Gj) =

∑
τi∈Gj

Ci(χ)/Tj . For a system S with multi-
periodic MC-DAGs, the utilization rate of S in mode χ is
given by: Uχ(S) =

∑
Gj∈S Uχ(Gj). To have a schedulable

system, we know that the condition m ≥ dUχ(S)e must be
satisfied in HI and LO-criticality modes.

B. Motivating Example: Unmanned Aerial Vehicle

In the remainder of this paper we describe our contribution
using a motivating example of an UAV for field exploration.
Its graphical representation is presented in Fig. 1.

The UAV is composed of two MC-DAGs: the first one
takes care of the Flight Control System (FCS), noted GFCS ,
the representation is extracted from the services presented
in [9]. The second MC-DAG represents a scientific workflow
used for image processing [10], noted GMontage. Vertices in
gray represent HI-criticality tasks, while white vertices are
LO-criticality tasks. Vertices are annotated with their timing
budgets: a single value is given for LO-criticality tasks since
they are not executed in the HI-criticality mode. Full edges
represent data dependencies between tasks, while dashed edges
represent where data is coming from/being sent to. The idea
behind this motivating example is to demonstrate that the FCS



could be executed next to an image processing workflow on
a tri-core architecture, the lower bound of required processors
(dUmax{HI,LO}(S)e = 3).

This motivating example is interesting for several reasons.
First, embedded systems like UAVs have limited processing
power due to energy consumption and weight constraints. De-
ploying a large number of distinct processors has an important
impact in terms of energy required to power the architecture
and lift the vehicle from the ground. Yet, nowadays, an
UAV like the one illustrated in Fig. 1 would include two
distinct processors: one for the FCS and another for the image
processing. By incorporating a multi-core architecture we gain
in energy consumption and weight. Second, the HI-criticality
mode of the FCS ensures the safety of the UAV by keeping it
on the air. At last, by having HI-criticality tasks in the image
processing MC-DAG, we are capable of delivering a degraded
version of its application.

III. MC-CORRECT SCHEDULING

An MC-correct scheduling for DAGs was defined in [5]:

Definition 1. A MC-correct schedule is one which guarantees
1) Condition LO-Mode: If no vertex of any MC-DAG in
G executes beyond its Ci(LO) then all the vertices
complete execution by the deadlines; and

2) Condition HI-Mode: If no vertex of any MC-DAG in G
executes beyond its Ci(HI) then all the vertices that are
designated as being of HI-criticality complete execution
by their deadlines.

Condition LO-Mode in Definition 1 ensures the schedula-
bility in LO mode: as long as LO tasks execute within their
Ci(LO) (i.e. no TFE occurs), a MC-correct scheduling satis-
fies task deadlines and precedence constraints. Condition HI-
Mode in Definition 1 states that when HI-criticality vertices
need to execute until their Ci(HI) (i.e. when a TFE occurs),
a MC-correct scheduling satisfies deadlines and precedence
constraints of HI tasks.

In this section, we present and prove a sufficient condition
that guarantees Condition HI-Mode of MC-correct schedul-
ing. Building on this result, we define a meta-heuristic for
MC-correct scheduling of DAGs.

A. Safe mode transition, a sufficient property

For each task τi executing in mode χ, we define the function
ψχi as follows:

ψχi (t1, t2) =

t2∑
s=t1

δχi (s). (1)

where

δχi (s) =

{
1 if τi is running at time s in mode χ,
0 otherwise

.

This function defines the execution time allocated to task τi
in mode χ from time t1 to time t2.

Definition 2. Safe Transition Property

ψLOi (ri,k, t) < Ci(LO)⇒ ψLOi (ri,k, t) ≥ ψHIi (ri,k, t). (2)

Safe Trans. Prop. states that, while the k-th activation of HI
task τi has not been fully allocated in LO mode, the budget
allocated to this job in LO mode must be greater than the
one allocated to it in HI mode. Intuitively, this guarantees that
whenever a TFE occurs, the final budget allocated to the job
of τi is at least equal to its WCET in HI mode.

Definition 3. A correct schedule in a given mode χ, is a
schedule that respects the deadline and precedence constraints
on all task jobs of the MCS considering their Ci(χ).

We propose the following sufficient condition to ensure
Condition HI-Mode of MC-correct scheduling : the schedul-
ing of tasks is correct in HI mode and Safe Trans. Prop. is
enforced in LO mode (Definition 3). This result is formalized
in Theorem 1 and proved in the remainder of this subsection.

Theorem 1. To ensure Condition HI-Mode of MC-correct
scheduling (Definition 1), it is sufficient to define a correct
schedule in HI mode and from this, define a correct schedule
in LO mode respecting Safe Trans. Prop.

Proof. Assume a TFE occurs at time t, and consider the job
ji,k of any HI task τi. At time t, ji,k has been executed for
ψLOi (ri,k, t) (see Eq. 1).

Case 1. If ψLOi (ri,k, t) = Ci(LO), ji,k has completed its
execution at time t. τi was completely executed in LO mode,
and met its deadline. Indeed, the scheduling in LO mode is
correct and ensures that all tasks meet their deadlines if they
all execute within their Ci(LO).

Case 2. If ψLOi (ri,k, t) < Ci(LO), as a TFE occurs, the
scheduling strategy triggers the HI mode. Basically, it stops the
LO-criticality scheduling to start the HI-criticality one at time
instant t. The WCET of ji,k is also updated to Ci(HI). At time
instant t, job ji,k in LO mode has already been executed for
ψLOi (ri,k, t). At the time instant t, when the TFE occurs, the
job ji,k has Ci(HI)−ψHIi (ri,k, t) of execution time available
to complete its execution in HI mode. We want to know if the
allocated budget is large enough to respect the deadline di,k
after the mode switch.

We define Bi,k(t) as the budget allocated to job ji,k in LO
mode in time interval [ri,k, t], plus the budget allocated to it
in HI mode in time interval [t, di,k] (remember that t is the
time the TFE occurred). More formally,

Bi,k(t) = ψLOi (ri,k, t) + ψHIi (t, di,k)

Since Ci(HI) = ψHIi (ri,k, t) + ψHIi (t, di,k), we have:

Bi,k(t) = ψLOi (ri,k, t) + Ci(HI)− ψHIi (ri,k, t)

Enforcing Safe Trans. Prop. in LO mode, we know that
ψLOi (ri,k, t) ≥ ψHIi (ri,k, t). Therefore:

Bi,k(t) ≥ ψHIi (ri,k, t) + Ci(HI)− ψHIi (ri,k, t)

≥ Ci(HI).



Fig. 2: Illustration of case 2: ψLOi (ri,k, t) < Ci(LO).

We conclude that the budget allocated to job ji,k when a TFE
occurs, is large enough to complete its execution within its
HI-criticality WCET.

To better understand the proof, Fig. 2 illustrates the behavior
of the scheduling strategy respecting Safe Trans. Prop. and
being schedulable in LO and HI modes. The red rectangles
represent the available computation time for a job ji,k when
a TFE occurs. It is clear from the figure that this computation
time is large enough for the job to complete its execution
within its Ci(HI).

B. Meta-heuristic for multi-periodic MC-DAG scheduling
In this subsection we define MH-MCDAG, a meta-heuristic

to schedule multiprocessor systems executing multi-periodic
MC-DAGs. The meta-heuristic computes two time-triggered
(TT) scheduling tables [11], SLO and SHI , one for each
criticality mode. These tables are computed off-line to ease
the calculus of Eq. 1 (i.e. ψχi (t1, t2)). In order to enforce Safe
Trans. Prop., we have to schedule HI-criticality tasks in LO
mode by taking into account how these tasks are scheduled in
HI mode. The first step calclates the schedule of the system
in HI mode by applying a suitable scheduling algorithm off-
line, G-EDF for instance [12]. If the schedule is correct in
HI mode, we then compute the schedule in LO mode (the
same scheduling algorithm can be used again) but we enforce
Safe Trans. Prop. to guarantee Condition HI-Mode of MC-
correctness (Definition 1). If the resulting schedule is correct
in LO mode, Condition LO-Mode of MC-correctness is also
satisfied and therefore the schedule is MC-correct. Thanks to
the TT scheduling tables, when a TFE occurs, the mode switch
to the HI-criticality mode just consists in changing scheduling
tables from SLO to SHI . Note that, for safety reasons, reactive
and safety-critical systems like the UAV illustrated in Fig. 1
are often scheduled with TT tables.

Definition 4. MH-MCDAG Meta-heuristic for multi-periodic
MC-DAG scheduling

1) Compute the scheduling table in HI mode and check its
correctness.

2) Compute the scheduling table in LO mode, enforcing
Safe Trans. Prop. Check correctness of the schedule in
LO mode.

To the best of our knowledge, [5], [6] and [7] are the
only works considering multi-periodic MC-DAGs. These ap-
proaches, called federated scheduling, create clusters (i.e.

set of cores) in the multi-core architecture and allocate an
exclusive cluster to each heavy DAG (i.e. a MC-DAG with
a utilization greater than 1, Definition 2 of [5]). A heuristic
to schedule heavy DAGs on their clusters is then applied.
The remaining DAGs, with an utilization rate inferior to 1,
are allocated to the remaining cores scheduled as a set of
independent tasks: all tasks of a DAG are executed sequentially
and are considered to be part of a single bigger task. These
bigger tasks are then scheduled using existing methods for
independent MC tasks [2].

As a matter of fact, the federated approach presented in [5]
fits in our meta-heuristic: it first schedules tasks in HI mode
with a non-preemptive List Scheduling (LS), and checks its
correctness. Then tasks are scheduled in LO mode with a
Preemptive LS. The HI-criticality jobs in LO mode have the
priority ordering they had in HI mode and all HI-criticality
jobs have a higher priority than LO-criticality jobs. Thus, HI-
criticality jobs always execute earlier in LO mode than in HI
mode and Safe Trans. Prop. is implicitly verified.

In this section, we have proposed a meta-heuristic to
schedule multi-periodic MC DAGs. This approach requires a
scheduling algorithm for periodic tasks and task precedences
as well as the enforcement of a specific condition to guarantee
a safe switch from LO mode to HI mode. In the next section,
we propose to instanciate this meta-heuristic with a specific
scheduling algorithm in order to optimise the acceptance ratio.

IV. G-ALAP-LLF, AN ALAP INSTANCE OF MH-MCDAG

Like we mentioned in the previous section, the federated
approach [5] fits the definition of MH-MCDAG. However,
while this approach has the benefit of being quite simple,
it leads to poor resource usage: for example, if a system is
composed of a heavy DAG with a utilization rate of 3.1 and a
DAG with a utilization of 0.2, 5 cores will be needed (a cluster
of 4 cores for the heavy DAG and 1 core for the other DAG),
while we can expect to find a MC-correct schedule on 4 cores.
For this reason, we aim at defining more efficient scheduling
methods in terms of usage of multi-core architectures.

In this section, we present G-ALAP-LLF, an implementa-
tion of MH-MCDAG, which aims at optimizing the accep-
tance rate for MCS. This implementation is based on G-LLF,
and we explain in this section how it can be adapted to an
implementation of MH-MCDAGbased on G-EDF. As opposed
to the federated techniques [5], [6], [7], we adopt a global
scheduling approach.

A. Motivation and overview

To design an efficient scheduling strategy for multi-
processor MCS composed of multi-periodic MC-DAGs, we
instantiate the meta-heuristic described in the previous section.

In order to have a good acceptance rate for the implemen-
tation of MH-MCDAG, we have to:

1) Adapt an efficient scheduling algorithm, in terms of
acceptance rate, for periodic tasks with precedence con-
straints. The scheduling policy is used off-line to obtain



the scheduling tables. The scheduling policy is applied
to each of the criticality modes;

2) Enforce Safe Trans. Prop. without reducing the explo-
ration space of the possible schedules in LO mode; for
instance not limiting ourselves to schedules where HI-
criticality jobs have priority over all LO-criticality jobs.

In our implementation, we consider a global scheduling
algorithm for each operational mode. In general, to adapt a
scheduling algorithm to fit in our meta-heuristic, the algorithm
needs to be applied off-line in order to obtain scheduling
tables. It also needs to be compatible with the enforcement of
Safe Trans. Prop., i.e. we need to be capable of counting time
slots allocated to tasks’ jobs in each operational mode. G-LLF
and G-EDF are global algorithms respecting these conditions.

To ease the computation of the LO scheduling table, we
want to ease the enforcement of Safe Trans. Prop. To do so,
ψHIi (ri,k, t) should be kept minimal as long as ψLOi (ri,k, t) <
Ci(LO). In other words, HI-criticality tasks in HI mode should
be scheduled as late as possible (ALAP) and not as soon as
possible (ASAP). This gives a good scheduling flexibility for
HI-criticality tasks in LO mode and as a consequence, a good
scheduling flexibility for LO-criticality tasks in LO mode.

To obtain such a behavior on HI-criticality tasks in HI mode
(i.e. the HI-criticality task is ready to be executed but waits
until the last possible instant to be allocated) we perform a
common transformation in task graph theory [4] on our MCS.
To schedule the HI mode task set with a ALAP strategy, we
produce the dual task graph and schedule this new task
set with an ASAP strategy. This transformation consists in
substituting ALAP deadlines (resp. arrival times) as ASAP
arrival times (resp. deadlines) and inverting the precedence
constraints on all MC-DAGs.

In order to compute scheduling tables in each mode using
G-LLF, we have to define a laxity formula in the context of
tasks with precedence constraints. Let us first consider the
common concept in task graph theory, the critical path. The
critical path (CPχi ) of a vertex τi in mode χ is the longest
path, considering the Ci(χ) of vertices, to reach an exit vertex
(i.e. a vertex with no successors). Let now define the laxity of
task τi, at time instant t, in the criticality mode χ as follows:

Lχi,k(t) = di,k − t− (CPχi +Rχi,k) (3)

di,k is the deadline of the job ji,k. Rχi,k is the remaining exe-
cution time of the job ji,k, i.e. Rχi,k = Ci(χ)−ψχi (ri,k, t−1).

A similar approach is used to compute scheduling tables
using G-EDF. We define the priority for each task job Pi,k as
follows, where di is the relative deadline for the job ji,k:

Pχi,k = di − CPχi . (4)

For space limitation reasons, we only develop the G-LLF
version in the remainder of the paper. Theoretically, this
version is expected to dominate the G-EDF version in terms of
acceptance rate [13]. Here, theoretically means that preemp-
tion and migration costs are ignored.
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Algorithm 1 Computation of the HI scheduling table

1: function CALCSHI(S: MCS to schedule)
2: Transform system S to S?
3: Rlist ← ∅ . List of ready tasks
4: for all HI tasks τi do
5: RHIi ← Ci(HI) . Remaining execution time
6: Rlist ← Rlist ∪ {τi | pred(τi) = ∅}
7: end for

8: for all timeslots t < H do
9: SORTHI(Rlist, t)

10: if VERIFYCONSTRAINTS(Rlist, t) = ⊥ then
11: return NOT SCHEDULABLE
12: end if
13: for all cores c ∈ Π do
14: τi ← head of Rlist not being allocated
15: SHI [t][c]← τi . Allocate task τi
16: RHIi ← RHIi − 1
17: end for
18: Rlist ← Rlist ∪

{succ(τi) | ∀τj ∈ pred(succ(τi)), R
HI
j = 0}

19: Rlist ← Rlist \ {τi ∈ Rlist | RHIi = 0}
20: for all Gj ∈ G do . Reactivation of Gj
21: if t+ 1 mod Tj = 0 then
22: ∀τi ∈ Gj , RHIi ← Ci(HI)
23: Rlist ← Rlist ∪ {τi ∈ Gj | pred(τi) = ∅}
24: end if
25: end for
26: end for
27: Reverse the scheduling table SHI
28: return SHI scheduling table
29: end function

B. Computation of the HI scheduling table

The first step to obtain a HI scheduling table consists in
transforming the MCS S into its dual S?, as illustrated on
Fig. 3 for our UAV use-case. Only HI-criticality tasks are
represented with their respective timing budget Ci(HI). A
scheduling table is computed on S? using G-LLF. We then
obtain the scheduling table of S by reversing the table obtained
for S? (i.e. we perform a horizontal flip). The algorithm
used to compute the SHI table is presented by Alg. 1. This
algorithm uses a ready list of jobs and orders its element
based on their laxity computed as described in Formula 3.

The ready list is initialized (lines 3-7 in Alg. 1) with
source vertices (i.e. vertices with no entry edges) of S?:



Altitude Ctrl, Data Acq and Concat in Fig. 3. We then
proceed to allocate tasks at each time slot until we reach the
hyper-period (H = 20 for S?). For each time slot t, we call the
function SORTHI that considers the results of Eq. 3 to sort the
list (l. 9). Once the tasks have been ordered, the function VER-
IFYCONSTRAINTS is called. This function checks if obtaining
a feasible schedule is still possible. Constraints that need to be
respected are: (i) vertices do not have negative laxities, (ii) no
more than m vertices have zero laxities, and (iii) the sum of
remaining times for all jobs needs to be inferior to the number
of available slots remaining in the table.

In order to obtain another implementation of MH-MCDAG,
we just need to redefine SORTHI and VERIFYCONSTRAINTS.
For a G-EDF based implementation, SORTHI uses Formula 4
and VERIFYCONSTRAINTS only checks that jobs’ deadlines
are respected since there are no laxities.

After performing the sorting in the list and checking that
the scheduling tables are still obtainable, the heuristic grabs
the m-first ready jobs of the list and allocates the tasks to the
multi-core architecture (l. 13-17). Once the allocation for this
timeslot has been performed, the ready list can be updated in
two ways: (i) new jobs can become ready to execute because
their precedence constraints are satisfied (l. 18) and (ii) jobs
that finished their execution are removed from the list (l. 19).

We illustrate the algorithm on our motivating example. At
time slot 0, for example, LHIAltitude(0) = 3 − 0 − 3 = 0,
LHIData(0) = 3 − 0 − 3 = 0 and LHIConcat(0) = 13 − 0 − 4 =
9. They are the only three ready tasks until time slot 3, so
Altitude Ctrl and Data Acq are fully allocated. At time slot
3, Altitude Ctrl and Data Acq have finished their executions,
activating the Flight Ctrl task. At time slot 4, the Concat
task finishes its execution, activating Diff1 and Diff2. We
have enough cores to execute all active tasks until time slot
7. At time slot 7, the Receiver and GPS tasks from the
FCS become active, as well as the Cap1 and Cap2 tasks
from the Montage MC-DAG. We have the following laxities
LHIReceiver(7) = 10− 7− 3 = 0, LHIGPS(7) = 10− 7− 3 = 0,
LHICap1(7) = 20− 7− 4 = 9 and LHICap2(7) = 20− 7− 4 = 9.
Receiver, GPS are going to run since they have the lower
laxities. The tie is broken arbitrarily for Cap2 and Cap1, so
Cap2 will execute first.

MC-DAGs can have new activations during the computation
of the tables: if the slot considered corresponds to the period
of a MC-DAGs, its sources are added to the list once again
and all RHIi are reset to Ci(HI) (l. 20-25). At time slot 10,
MC-DAG GFCS starts a new execution since it is executed
twice during the hyper-period. The final HI scheduling table is
presented in Fig 4a. Tasks belonging to GFCS are illustrated
in blue, while tasks belonging to GMontage are illustrated in
orange. The last step (l. 27) performs the horizontal flip on
the the scheduling table as illustrated in Fig 4b.

C. Computation of the LO scheduling table

The algorithm used to compute the SLO table is presented
by Alg. 2. It is very similar to the algorithm used to schedule
the dual system S?. The main difference relies on the fact that

(a) HI scheduling on the dual system S?

(b) HI scheduling of S with maximized response time

Fig. 4: HI scheduling table inversion

Algorithm 2 Computation of the LO scheduling table

1: function CALCSLO(S: MCS to schedule)
2: Rlist ← ∅ . List of ready tasks
3: for all τi do
4: RLOi ← Ci(LO) . Remaining execution time
5: Rlist ← Rlist ∪ {τi | pred(τi) = ∅}
6: end for

7: for all timeslots t < H do
8: SORTLO(Rlist, t)
9: if VERIFYCONSTRAINTS(Rlist, t) = ⊥ then

10: return NOT SCHEDULABLE
11: end if
12: for all cores c ∈ Π do
13: τi ← head of Rlist not being allocated
14: SLO[t][c]← τi . Allocate task τi
15: RLOi ← RLOi − 1
16: end for
17: Rlist ← Rlist ∪

{succ(τi) | ∀τj ∈ pred(succ(τi)), R
LO
j = 0}

18: Rlist ← Rlist \ {τi ∈ Rlist | RLOi = 0}
19: for all Gj ∈ G do . Reactivation of Gj
20: if t+ 1 mod Tj = 0 then
21: ∀τi ∈ Gj , RLOi ← Ci(LO)
22: Rlist ← Rlist ∪ {τi ∈ Gj | pred(τi) = ∅}
23: end if
24: end for
25: end for
26: return SLO scheduling table
27: end function

Safe Trans. Prop. must be ensured to follow the definition of
our meta-heuristic (Definition 4).

To respect Safe Trans. Prop. during the computation of
our scheduling table, we define SORTLO, the sorting function
for jobs in the LO-criticality mode. It defines the following
priority ordering:

1) HI-criticality tasks that would invalidate Safe Trans.



Prop. if they are not allocated at time slot t, are
considered as tasks with zero laxity.

2) The rest of ready tasks are sorted according to their
laxity (Formula 3).

Once the sorting is obtained for the ready list, like for the
HI-criticality mode, we call the VERIFYCONSTRAINTS func-
tion to check if a feasible schedule can be obtained, constraints
are the same than in the HI-criticality mode. To obtain the
G-EDF implementation we just need to redefine SORTLO to
consider Formula 4 when HI-criticality tasks do not risk to
invalidate Safe Trans. Prop. VERIFYCONSTRAINTS is also
adapted to check if deadlines are respected.

We illustrate the computation of the SLO applied to system
of Fig. 1. At time slot 0, we have the following laxities:
LLOGPS(0) = 2 − 0 − 2 = 0, LLOReceiver(0) = 2 − 0 − 2 = 0,
LLOCap1(0) = 9 − 0 − 4 = 5 and LLOCap2(0) = 9 − 0 − 4 = 5.
Tasks of GFCS have the lowest laxity and they are allocated
first. The third processor is shared by tasks Cap1 and Cap2
until time slot 2, when GPS and Receiver have completed
their execution. The algorithm continues to allocate tasks in
function of their laxities until slot 17. At this time slot, tasks
Altitude Ctrl, Trans Grd, Trans F leet and Trans are in
the ready list. However, Altitude Ctrl in the HI scheduling
table is allocated at this time slot and this job has not started
to be allocated. The application of SORTLO puts Altitude at
the beginning of the list.

The final scheduling table is presented in Fig 5. As we
can see, our scheduling strategy respects the deadline of the
system in both modes, and satisfies Safe Trans. Prop. during
the computation of the LO scheduling table. The computed
scheduling tables are therefore considered as MC-correct in a
tri-core architecture (the minimal number of cores required to
schedule the system).

Fig. 5: LO scheduling table
D. Analysis of G-ALAP-LLF

In this subsection, we explain the expected advantages of G-
ALAP-LLF over the federated approach [5]. Fig. 6 illustrates
the scheduling tables obtained by the federated approach [5].
As we can see, this approach requires five cores to find a
feasible schedule in the LO mode, whereas we found a MC-
correct one using three cores.

First, in G-ALAP-LLF, MC-DAGs are scheduled using a
global algorithm in both LO and HI modes. To use a different
algorithm, like G-EDF, the only necessary change is to modify
the functions SORTHI, SORTLO and VERIFYCONSTRAINTS
of Algorithm 1 and 2 in order to use Formula 3 (G-LLF) or 4
(G-EDF). The fact that our scheduling is global, is one of the
two major reasons for obtaining a better resource utilization.

Fig. 6: LO scheduling table produced by the federated ap-
proach [5]

Indeed, the G-ALAP-LLF method can schedule any task on
any core whereas the federated approach clusterizes cores for
heavy DAGs and execute light DAGs as sequential tasks. The
second major source of optimization comes from the com-
putation of the HI scheduling table. Scheduling HI-criticality
tasks in HI mode ALAP preserves the possibility to allocate
LO-criticality tasks on more timeslots. More formally the
ψHIi (ri;k, t) of G-ALAP-LLF has higher chances to increase at
a later point t, as opposed to the ψHIi (ri;k, t) of the federated
approach, which schedules HI-criticality tasks ASAP.

Nonetheless, an advantage of the federated approach over
ours, is that if tasks complete their execution before their
Ci(χ), their successors can start their execution sooner. This
is possible thanks to the priority ordering that was computed.
Our approach, on the other hand, executes the system in a TT
fashion. As demonstrated in [14], if the TT approach is much
more predictable, it offers a less efficient resource utilization
compared to the event-triggered approach. In addition, the fed-
erated approach will generate less preemptions and migrations
than G-ALAP-LLF.

V. EXPERIMENTAL RESULTS

In this section we present our experimental results. The
objective is to evaluate the performance of G-ALAP-LLF. We
proceed to this evaluation by (i) generating random sets of
MC-DAGs and (ii) measuring the ratio of systems for which
our method finds a MC-correct schedule.

Following this method, we also compare G-ALAP-LLF to
the federated scheduling [5]. To our knowledge, it is the
only contribution that considers a task model similar to ours,
composed of (i) MC tasks, (ii) precedence constraints, and
(iii) multiple deadlines for DAGs. The approaches of [6], [7]
have very restrictive MC-DAGs were all vertices belong to the
same criticality level and thus, do not correspond to the type
of applications we consider.

A. Experimental setup - MC-DAG Framework

For our experiments, we implemented the G-ALAP-LLF
algorithm in an open-sourced framework3. In addition, since
works in [5] have only presented theoretical results, we also
implemented the federated approach. Last but not least, we
developed a MCS generator in order to produce many MCS
with random properties. Thanks to these tools, we generated a

3MC-DAG Framework - https://github.com/robertoxmed/MC-DAG



set of MCSs and measured the ratio for which each scheduling
method finds a MC-correct schedule.

The random generation needs to be unbiased and uni-
formly cover the possible timing configurations of MCS. To
design this random generation, we first integrated existing
methods to generate DAGs with unbiased topologies [15]. This
is an important aspect, since certain DAG-shapes tend to be
more schedulable than others. The distribution of execution
time for tasks is not controlled by this DAG generation
approach. Yet, the utilization of the system is the most
important factor used to perform benchmarks on real-time
scheduling techniques. To overcome this limitation, we have
integrated existing methods achieving a uniform distribution
of utilizations for tasks [16], [17].

Parameters for the generation of MCS are as follows: • U :
Utilization of the system in both criticality modes. • |G|:
Fixed number of MC-DAGs per system. • |Vj |: Fixed number
of vertices per MC-DAG, i.e. all MC-DAGs have the same
number of vertices. • ρ: Ratio of HI criticality tasks. • f :
Reduction factor for the utilization of HI tasks in LO mode.
• e: Probability to have an edge between two vertices.

Once these parameters are set, we first distribute uniformly
the utilization of the system to each MC-DAG. We use the
uniform distribution described in [16] to assign a utilization for
each MC-DAG. The period/deadline for each MC-DAG is then
assigned randomly: this period is chosen from a predefined
list of numbers in order to avoid prime numbers4 (which are
also avoided in the industrial context). With the assignment
of the period and the utilization of the MC-DAG, we can
distribute the utilization to tasks of the DAG. We use UUnifast-
discard [17] in this case. As opposed to the utilization that
can be given to DAGs, a vertex cannot have a utilization
greater than 1 since it is a sequential task (parallel execution
for a vertex is not possible). UUnifast-discard is therefore an
apropriate method. The utilization available for LO-criticality
tasks is given by the difference between the utilization of HI
tasks in HI mode and the utilization of HI tasks in LO mode,
the difference being controlled by parameter f .

Once the utilization of the system is distributed among MC-
DAGs and the utilization of MC-DAGs is distributed among
tasks, we start the generation of the topology for the MC-
DAGs. We start by creating the HI-criticality vertices. These
vertices are connected following the probability e given by
the user and without creating cycles among vertices. After
the HI-criticality tasks have been created, we create the LO-
criticality tasks. Again vertices are connected following the
probability e chosen by the user and without creating cycles.
The higher the probability e, the more dense is the resulting
graph: vertices have more precedence constraints to satisfy,
making the scheduling of the system more difficult.

The benchmarks we perform to assess statistically G-ALAP-
LLF compared to the federated approach [5] follow these two
steps: first, we generate a large number of random MCSs.
Second, we measure the percentage of systems for which G-

4Possible periods: {100, 120, 150, 180, 200, 220, 250, 300, 400, 500}.

ALAP-LLF and the federated approach find feasible schedules.

B. Acceptance rate

In the remainder of this section, we present and analyze
our experimental results. The objective of these experiments
is to evaluate the performance of our method in terms of
acceptance rate, measured as the percentage of MCS for which
our heuristic finds a MC-correct schedule.

Experimental parameters: We control the parameters of
the MCS generator so as to measure their influence on the
performance of our method. We expect the following param-
eters to make the scheduling problem more difficult: (i) the
density of the graphs, (ii) the utilization of the system, (iii)
the utilization per task of the system, (iv) the number of MC-
DAGs. Our experiments aim at measuring the effect of these
parameters on G-ALAP-LLF’s performance.

Our experimental results are presented in Fig. 7. The x-
axis of the plots is the normalized utilization of the system
(Unorm = U(S)/m), and the y-axis is the acceptance rate. For
each point of the graphs, we tested 1000 randomly configured
MCS. In our experiments, the ratio of HI tasks is set to ρ =
50% and reduction factor of HI tasks utilization in LO mode
is set to f = 2. In addition, we generate MC-DAGs with
three configurations in terms of number of tasks |Vj | per MC-
DAG: MC-DAGs are composed of 10, 20 and 50 tasks in
each configuration. This setup allows us to see how the two
scheduling approaches perform when a large number of tasks
is considered (up to 200 when considering 4 MC-DAGs).

Influence of the number of vertices: Fig. 7a presents the
results obtained with an edge probability e = 20%, two MC-
DAGs (|G| = 2), and an architecture of four cores (m = 4).
Note that a MC-DAG with e = 20% is already dense enough
to represent industrial systems with their usual precedence
constraints. This first experiment provides promising results:
G-ALAP-LLF found MC-correct schedules for over 50% of
systems with a utilization up to 70%. For the federated
approach the utilization of the system needs to be below 55%
to schedule over 50% of MCS. We also notice that, for G-
ALAP-LLF, the acceptance rate increases with the number of
tasks per MC-DAG (e.g. G-ALAP-50 is above G-ALAP-20).
This is due to the fact that for a given system utilization and
an increasing number of tasks, the uniform distribution tends
to give less utilization to each task: tasks become smaller and
therefore easier to schedule with G-ALAP-LLF. We can also
notice that the performance of the federated approach is less
sensitive to the number of tasks per DAG, which was expected
since the federated approach first assigns DAGs to clusters of
cores, and then schedules heavy DAGs on their clusters.

Influence of the number of MC-DAGs: To confirm these
observations, we also increased the number of MC-DAGs.
As a consequence, tasks become smaller but they are also
scheduled with more heterogeneous periods. Fig. 7b provides
the results obtained with four MC-DAGs (instead of two in
the previous configuration). As we can see, the performances
tend to improve for both methods, which tends to demonstrate
that (i) the utilization per DAG has a strong influence on the
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Fig. 7: Comparison between our scheduling strategy and the federated approach [5]

performance of the federated approach, and (ii) the utilization
per task has a strong influence on performance of the G-ALAP
method. Conversely, the number of MC-DAGs and thus the
heterogeneity of periods seems to have a lower influence.

Influence of the number of cores: Keeping this last
configuration, we increase the utilization per task by increasing
the number of cores: we consider an architecture of eight
cores (m = 8). Experimental results are reported in Fig. 7c.
As expected, the scheduling problem is more difficult (the
utilization per DAG and per task increases with respect to
the previous configuration) and the measured performance is
degraded. However, we remark that the measured performance
is lower than for the initial configuration (Fig. 7a) whereas the
utilization per DAG and per task is similar. This is due to the
link between two parameters of our experimental setup: when
increasing the number of tasks, we increase the number of
edges as well. However, the number of potential edges grows
quadratically with the number of tasks.

Going from results reported in Fig. 7a to those reported
in 7b, the number of tasks increases linearly but the number
of edges grows quadratically. Yet, the performances improve
because the utilization per DAG and per task becomes smaller.
Going from results reported in Fig. 7a to those reported in
Fig. 7c, the utilization per DAG and per task remains the same,
but the number of edges grows fast. As a consequence, the
performance is degraded.

As a conclusion of these first experiments, we can see
that the following parameters have a strong influence on the
performances of both methods: the utilization of the system

and the density of the graphs. In addition, the utilization per
tasks influences the performance of the G-ALAP-LLF method
while the utilization per DAG influences the performance of
the federated approach.

Influence of the probability to have an edge between two
vertices: In Fig. 7d, Fig. 7e, and Fig. 7f, we report the results
using the same configurations as before, except for the edge
probability: in these configurations, e = 40%. These results
confirm our previous conclusions: the density of the graph
has a strong impact on the performance of the method, as well
as the system utilization. Besides, the G-ALAP-LLF method
continues to outperform the federated approach.

However, with these configurations, we can make the fol-
lowing observations. First, the number of tasks per DAG has
less influence on the performance of G-ALAP-LLF than in
the previous experiments (e.g. G-ALAP-50 and G-ALAP-10
get closer). This reduction is however less visible in Fig. 7e
where the number of tasks is important and the utilization per
task is small. In other configurations, the utilization per task is
too high to compensate the difficulty to schedule DAGs with
such a density (e = 40%). Second, the gap of performances
obtained with each method gets smaller (e.g. G-ALAP-10 and
FED-10 get closer). This tends to show that the configurations
considered push our method towards its limits: scheduling
problems considered are very hard, which was expected since
graphs generated with e = 40% are very dense. Still, with a
high number of tasks and a low utilization per tasks, our results
are very good: G-ALAP-50 on Fig. 7e exhibits an acceptance
rate above 70% for a system utilization of 90%.



Other values were tested for the parameters of our experi-
ments: number of MC-DAGs, cores, tasks, reduction factor and
HI-tasks ratio. All these tests showed a general tendency: G-
ALAP-LLF it is capable of scheduling more systems compared
to FEDMCDAG [5]. However, we acknowledge that this result
remains valid only if we do not account for preemption and
migration costs. Indeed, a well-known weakness of laxity
based algorithms is that they increase the number of preemp-
tions and migrations. Nevertheless, in these experiments, it
would have been difficult to define the timing overhead of
preemptions or migrations. In future works we plan to evaluate
an implementation of our meta-heuristic, MH-MCDAG, with
another scheduling criteria than tasks laxity.

In conclusion, G-ALAP-LLF shows very good perfor-
mance in terms of acceptance rate, even when comparing
the results obtained with G-ALAP-LLF to results obtained
on MC scheduling for independent task sets. Indeed, when
Unorm = 0.8, G-EDF-VD applied on independent tasks has
an acceptance rate of 80% [18], while our approach reaches
70% on dependent tasks with e = 20% and |G| = 4. We
expect to have a lesser schedulability rate but the difference
is acceptable considering the utilization of the system and the
fact that we have precedence constraints.

VI. RELATED WORKS

In this paper, we propose a multi-core scheduling heuris-
tic for real-time systems using the mixed-criticality model.
Our heuristic leverages a common limitation regarding MC
scheduling [2]: most contributions only consider independent
task sets. In our case, we considered applications modeled
thanks to DAGs in order to represent data dependencies:
a common practice for real-time systems. In the following
section we present some relevant related works from the
different scientific communities mentioned.

The only contributions considering MC tasks and multiple
DAGs are [5], [6] and [7] which compute federated schedulers.
The closest task model to ours is the one presented in [5] and
as demonstrated in previous sections, our scheduling approach
outperforms their method in terms of number of cores required
to schedule a system and in schedulability when the number
of cores is fixed. In [6], [7], the task model is very restrictive:
each DAG belongs to a criticality level, i.e. all tasks of
the DAG have the same criticality HI or LO. The approach
calculates virtual deadlines for HI-criticality DAGs in order to
respect mode switches. Nonetheless, our experimental results
showed that a global approach tends to schedule more systems
in a given number of cores.

Real-time scheduling for multiple DAGs has seen recent
interesting contributions in the cloud computing domain.
Workflows of tasks often in the form of DAGs are distributed
into heterogeneous computing clusters. While the execution
platforms are different than simple multi-core architectures,
some heuristics take into account deadlines for DAGs. In [19]
the authors propose a deadline distribution and planning algo-
rithm that aims to minimize the execution time of a workflow.
In [20], the authors calculate an urgency factor for each vertex

of the DAG by taking into account the execution charge of
its successors and the deadline of the DAG. An extension to
the Heterogeneous Execution Time First heuristic is presented
in [21], in which priorities are assigned to tasks in order
to satisfy as many deadlines as possible. While these works
consider deadlines for multiple DAGs, the execution budgets
for each vertex cannot change during the execution of the
system and no mode switches need to be ensured.

The construction of TT scheduling tables for MC systems
has been studied in [22]: scheduling tables are constructed
by exploring the solution space. This exploration is guided
by a leeway parameter allowing the detection of unfeasible
schedules to perform backtracking when needed. Nonetheless
the approach presented was only tested for mono-processors
and our experimentations with Constrained programing con-
sidering data-dependencies between tasks and multi-core ar-
chitecture were not capable of scaling for randomly generated
systems. An online mechanism to incorporate MC aspects into
TT tables is presented in [23]. It relies on the fact that a
scheduling table already exists for the LO-criticality mode and
tries to use remaining time slots of the table to handle mode
transitions and timing extensions for HI-criticality table. Since
our approach computes two compatible scheduling tables, we
do not rely on time slots that remained unused in the LO-
criticality mode.

VII. CONCLUSION

In this paper, we have presented four contributions. First,
we have defined a sufficient property to guarantee correct
switches from LO mode to HI mode in a multi-core Mixed-
Criticality scheduling for multi-periodic DAGs. Second, based
on this property, we have defined and proved MH-MCDAG,
a meta-heuristic produce MC-correct schedules for multi-
periodic MC-DAGs. The computation of these schedules is
performed off-line to ease the enforcement of the safe tran-
sition property. Third, we have defined and evaluated G-
ALAP-LLF, an instantiation of MH-MCDAG, based on a
global scheduling for multi-core execution platforms. Our
experimental results have demonstrated that G-ALAP-LLF
exhibits very good performances (in terms of acceptance rate)
compared to the state-of-the-art. We also have explained how
G-ALAP-LLF can be adapted to obtain an implementation
of MH-MCDAG based on G-EDF. At last, we proposed an
experimental platform to generate multi-periodic MC-DAGs
with random configurations. This platform can be used to
evaluate MC scheduling methods in terms of acceptance rate.

In the future we plan to extend MH-MCDAG to support an
arbitrary number of criticality levels by applying our 2-levels
approach by induction. We also plan to study the number
of preemptions and migrations produced by G-ALAP-LLF
and to use/evaluate other global algorithms entailing fewer
preemptions and migrations. Indeed, solutions based on LLF
scheduling are known to generate a lot of preemptions and
migrations.
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