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ABSTRACT. Let (Ti)i be a sequence of independent identically distributed (i.i.d.)

random variables (r.v.) of interest distributed as T and (Xi)i be a corresponding vector

of covariates taking values on Rd. In censorship models the r.v. T is subject to random

censoring by another r.v. C. In this paper we built a new kernel estimator based on the

so-called synthetic data of the mean squared relative error for the regression function.

We establish the uniform almost sure convergence with rate over a compact set and

its asymptotic normality. The asymptotic variance is explicitly given and as product

we give a confidence bands. A simulation study has been conducted to comfort our

theoretical results.

Keywords: Asymptotic normality. Censored data. Kernel estimate. Relative regression error. Uni-

form almost sure convergence. V-C classes.
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1 Introduction

Let (Xi, Ti)i be a Rd ×R∗+, (d ≥ 1) valued sequence of random vectors that we assume drawn from

the pair (X,T ) which is defined on a probability space (Ω,F ,P). The purpose of this work is to

study the effect of a random covariable X on a r.v. T which is subject to right censoring by another

r.v. C. This relation of regression is modeled by:

T = r(X) + ε, (1.1)

where r(·) is the regression function and ε a sequence of error independent to X. Usually, r(·) =

E[T |X] is estimated by minimizing the mean squared loss function E[(T −r(X))2
∣∣X]. However, this

loss function is based on some restrictive conditions that is the variance of the residual is the same

for all the observations, which is inadequate when the data contains some outliers. Therefore, in

order to overcome this drawback we consider an alternative approach allow to construct an efficient

predictor even if the data is affected by the presence of outliers. So, in this paper the limitations of

the classical regression are counteracted by estimating the regression function with respect to the

minimization of the following mean squared relative error, for T > 0,

E
[(T − r(X)

T

)2 ∣∣X]. (1.2)

The latter is a more meaningful measure of performance of a predictor than the usual error in the

presence of outliers. It is easy to see that the solution of the minimization problem of (1.2) is given

by

r(X) =
E
[
T−1|X

]
E
[
T−2|X

] . (1.3)

Park and Stefanski (1998) have shown that the solution given by (1.3) satisfies

E
[
T−1|X

]
E
[
T−2|X

] ≤ E
[
T
∣∣X] a.s. (1.4)

provided that the first two conditional inverse moments are finite. The authors consider parametric

approaches to estimate the regression function r(·) which focused on estimating the mean and
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variance functions modeling methods (Carroll and Ruppert, 1988) of the inverse response T−1 as

function of X. Without claiming to be exhaustive, we can quote Narula and Wellington (1977) who

studied an estimation method for minimizing the sum of absolute relatives residuals. Farum (1990)

developed an estimation method designed to reduce absolute relative error. Khoshgoftaar et al.

(1992) studied the asymptotic properties of the estimators minimizing the sum of squared relative

errors. In this contribution, we focus on nonparametric approach. To the best of our knowledge,

only the paper of Park et al. (2008) study the nonparametric regression using the relative error

as loss function. They studied the asymptotic properties of an estimator minimizing the sum of

squared relative errors by applying local linear approach.

In many estimation problems, it is not always possible, to make complete measurements when the

available sample data is incomplete in the sense that measures are not available for all members of

a random sample. For example, in medical follow-up studies, it often happens for various reasons,

that the duration of interest can not be observed. This may be due to the loss of view of the

patient at the beginning or end of the study period. These values are censored. The censored

values, although unknown, must be taken into account to obtain a correct estimate and precise

conclusions. For such practical observations, conventional statistical procedures are no longer valid

and more elaborate techniques are used to model such observations.

One of the classical cases for incomplete data is the right-censored data. In this case, we observe

another r.v. C with continuous distribution function (d.f.) G, we can only observe a sample

(Xi, Yi, δi) where Yi = Ti ∧ Ci and δi = 1{Ti≤Ci}, for i = 1, . . . , n, with ∧ denotes the minimum and

1A is the indicator function of the event A.

When we talk about censored data, several authors like Carbonez et al. (1995), Kohler et al. (2002),

Delecroix et al. (2008) and Guessoum and Ould Said (2008) uses the synthetic data that take into

account the effect of censorship on the distribution. For that we consider the sample (Yi, δi)i, for
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1 ≤ i ≤ n and we put :

T ∗,−`i =
δiY

−`
i

G(Yi)
, ` = 1, 2 (1.5)

where G is the survival function of the censoring rv C.

All along this paper, we suppose that:

(Ti, Xi)i and (Ci)i are independent for 1 ≤ i ≤ n. (1.6)

Then from the equation (1.5) and the hypothesis (1.6), we get,

E[T ∗,−`1 |X1] = E
[
δ1Y

−`
1

G(Y1)
|X1

]
= E

{
E
[
δ1Y

−`
1

G(Y1)
|T1, X1

]
|X1

}
= E

{
T−`1

G(T1)
E
[
1{T1≤C1}|T1

]
|X1

}
= E[T−`1 |X1].

This paper offers then an alternative approach to traditional estimation models by considering the

minimization of the least relative error for regressions models when the data are randomly right

censored. We establish the strong and uniform consistencie (with rate) of the constructed estimator

and then the asymptotic normality has been shown. At the best of our acknowledge there is no

result concerning the nonparametric regression function for censoring data using the relative error.

The rest of the paper is organized as follows: Section 2 is devoted to the presentation of the new

estimator of the mean squared relative error of the regression function. The assumptions and main

results are given in Section 3. Simulations are drawn in Section 4. Finally, the proofs are relegated

to Section 5 with some auxiliary results.

2 Definition of the new estimator

Let (Ti)1≤i≤n be an i.i.d. n-sample of r.v. of interest with commun unknown continuous d.f. F and

let (Xi)1≤i≤n be a corresponding vector of covariates with joint density function f(·). As mentioned
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before the solution of (1.2) is given by

r(x) =
E
[
T−1|X = x

]
E
[
T−2|X = x

] :=
r̄1(x)

r̄2(x)
, (2.1)

with r`(·) =
r̄`(·)
f(·)

where r̄`(x) =

∫
R∗+
t−`fT,X(t, x)dt for ` = 1, 2.

Recall that, in the case of complete data, a well-known Nadaraya Watson (N-W) estimator of r(·)

is given by

r∗(x) =
n∑
i=1

TiWi,n(x)

with

Wi,n(x) =


K
(
x−Xi
hn

)
∑n

i=1K
(
x−Xi
hn

) , if
∑n

i=1 K
(
x−Xi
hn

)
6= 0;

1/n, otherwise,

where hn is a sequence of positive real numbers (bandwidth) that decreases to zero when n goes to

infinity and K is a kernel function defined in Rd. Thus, a natural estimator of (2.1) is given by

rn(x) =

n∑
i=1

T−1
i K

(
x−Xi

hn

)
n∑
i=1

T−2
i K

(
x−Xi

hn

) , (2.2)

this is the analogous N-W estimator which is nothing other than a special case of the censored case.

As mentioned before, when the r.v. T is subject to right censoring by another r.v. C, we define

r̃n(x) as a "pseudo-estimator" of r(x) that is, for any x ∈ R, we have,

r̃n(x) =

n∑
i=1

δiY
−1
i

G(Yi)
K

(
x−Xi

hn

)
n∑
i=1

δiY
−2
i

G(Yi)
K

(
x−Xi

hn

) =:
¯̃r1,n(x)
¯̃r2,n(x)

. (2.3)

The latter can not be calculated as G is unknown. Then to define a genuine estimator of r(·), we

replace G by its Kaplan-Meier (1958) estimator which is defined by

Gn(t) =


n∏
i=1

(
1− 1− δi

n− i+ 1

)1{Yi≤t}
if t < Y(n),

0 otherwise,

(2.4)
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where Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are the order statistics of the Yi and δi is the indicator of non-

censoring. The properties of Ḡn(t) have been studied by many authors. So a calculable estimator

of r(·) is given by

rn(x) =

n∑
i=1

δiY
−1
i

Gn(Yi)
K

(
x−Xi

hn

)
n∑
i=1

δiY
−2
i

Gn(Yi)
K

(
x−Xi

hn

) =:
r1,n(x)

r2,n(x)
(2.5)

where

r`,n(x) =
r̄`,n(x)

fn(x)
=

n∑
i=1

δiY
−`
i

Gn(Yi)
K

(
x−Xi

hn

)
n∑
i=1

K

(
x−Xi

hn

) , (2.6)

for ` = 1, 2 and fn(·) is the well-known kernel estimator of the joint density function f(·).

3 Hypotheses and main results

In order to state our results, we introduce some notations. For any d.f. L, let τL = sup{y, L(y) < 1}

be a upper endpoint of L. Assume that τF <∞, G(τF ) > 0. All along the paper, when no confusion

is possible, we denote by M any generic strictly positive constant such that M ≥ T−` and by

r`(·) = E[T−`|X = ·] the conditional `-inverse moments of T given X and ` = 1, 2. Furthermore

r̄`(·) = r`(·)f(·), with f is the density of X. On the other hand, log2(·) = log log(·) denotes the

iterated logarithm function. Finally denote C0 = {x ∈ R/f(x) > 0} the open set and C be a compact

subset of C0.

We will make use of the following hypotheses.

H. The bandwidth hn satisfies:

i) limn→∞ hn = 0, limn→∞ nhn = +∞, limn→∞
logn
nhn

= 0

ii) hn log2 n = o(1).
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iii) limn→∞ nh
5
n = 0.

K. The kernel K(·) is:

i) Continuously differentiable compactly supported density function.

ii)
∫
R |t|K(t)dt = 0 and

∫
R t

2K(t)dt <∞ holds.

iii)
∫
R tK

2(t)dt <∞

D. i) The function r̄`(·), for ` = 1, 2, is twice continuously differentiable and

supx∈C |r̄
′′

` (x)| < +∞.

ii) The function Υ`(·), for ` = 2, 3, 4, is continuously differentiable and

supx∈C Υ`
′
(x) < +∞.

iii) There exists Γ > 0 such that r̄2(x) > Γ for all x ∈ C.

3.1 Discussions on the hypotheses

1. The independence assumption between (Ci)i and (Ti, Xi)i may seem to be strong and one can

think of replacing it by a classical conditional independence assumption between (Ci)i and (Ti)i

given (Xi)i. However in the conditionally hypothesis we propose the following estimator for

the regression function r(x) where r`,n for ` = 1, 2 are given by

r`,n(x) =
n∑
i=1

δiY
−`
i

Gn(Yi
∣∣Xi)

K

(
x−Xi

hn

)
(3.1)

where Gn(Yi
∣∣Xi) is Beran’s estimator of the survival conditional distribution of the censored

r.v. C given X. Then we get an analogous estimator as in (2.5) using (3.1). As mentioned

before and as far as we know there is no rate of convergence for this estimate as in the

unconditional case (see Deheuvels and Einmahl, 2000). We think that this issue has to be

addressed if we aim to get rates of convergence. Moreover our framework is classical and
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was considered by Carbonez et al. (1995) and Kohler et al. (2002) among others. Note

finally that this assumption implies the independence between (Ci)i and (Ti)i which ensures

the identifiability of the model.

2. The hypothesis τF < τG is classical for asymptotic normality results in the censorship frame-

work. It implies that G(T ) ≥ G(τF ) > 0 a.s.

3. The Hypotheses H i) and K concern the smoothing parameter hn and the kernel K(.) and are

standard in nonparametric regression estimation for complete or incomplete data. Moreover,

D i) is needed to study the bias term. On another side, hypothesis D iii) is used to state the

uniform consistency of the constructed estimator. Finally, hypotheses H ii), iii) and D ii)

are needed for get asymptotic normality.

3.2 Results

We can now present our results. The proofs of these are established in Section 5. We first state a

uniform consistency result with rate for rn(·).

Theorem 1. Under hypotheses H i), K and D i), iii), we have:

sup
x∈C
| rn(x)− r(x) |= Oa.s.

{
max

((
log n

nh2
n

)1/2

, h2
n

)}
as n −→∞.

Remark 1. It is clear that we can give the same result in Rd, d > 1 without difficulties. The proofs

are analogous. Therefore, the Theorem 1 becomes:

sup
x∈C
| rn(x)− r(x) |= Oa.s.

{
max

((
log n

nhd+1
n

)1/2

, h2
n

)}
as n −→∞.

In what follows we will state the asymptotic normality result. For this, let

Σ(x) =

 Υ2(x) Υ3(x)

Υ3(x) Υ4(x)
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be the covariance matrix, with

Υ2`(x) =

∫
t−2`

G(t)
fT,X(t, x)dt and Υ3(x) =

∫
t−3

G(t)
fT,X(t, x)dt, for ` = 1, 2.

Now we are in position to give our asymptotic normality result.

Theorem 2. Suppose that hypotheses H , K and D i), ii) holds. Let A =
{
x ∈ C and r`(x) 6=

0, ` = 1, 2 and Υj(x) 6= 0, j = 2, 3, 4
}
, we have√

nhn(rn(x)− r(x))
D−−→ N (0, σ2(x)) as n −→∞

where

σ2(x) = κ
Υ2(x)r̄2

2(x)− 2Υ3(x)r̄1(x)r̄2(x) + Υ4(x)r̄2
1(x)

r̄4
2(x)

for κ =

∫
K2(t)dt and D−−→ denotes the convergence in distribution.

3.3 Confidence interval

The determination of confidence interval requires the estimation of the unknown quantity σn(x). A

plug-in estimate and using the following estimate of Υ2`(x), for ` = 1, 2, and Υ3(x) given by

Υ̂2`(x) =
1

nhn

n∑
i=1

Y −2`
i

Gn(Yi)
K

(
x−Xi

hn

)
and Υ̂3(x) =

1

nhn

n∑
i=1

Y −3
i

Gn(Yi)
K

(
x−Xi

hn

)
respectively and (2.5) we get a consistent estimate of σ2(x). This yields a confidence interval of

asymptotic level 1− ζ for r(x) given by[
rn(x)− t1−ζ/2

σn(x)√
nhn

; rn(x) + t1−ζ/2
σn(x)√
nhn

]
where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution.

3.4 Comeback to complete data

At the best of our knowledge there are no analogous results for the complete.The analogous results

can be state by putting C = +∞ and therefore G(·) = 1.

To give an overview of the performance of our estimator, we graph it in the next section.
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4 Simulation Study

The main objective of this part is to evaluate the good behavior of our estimator for different

censoring rates and sample sizes and to show the efficiency of this approach compared to the

classical one.

4.1 Consistency

4.1.1 Simulations settings

For this purpose, simulation data are generated from model (1.1) where covariates X have normal

distribution on N (5, 2) and random effect ε have standard normal distribution. For the rest, we

proceed in the following way:

• Generate the censoring variable C according to the normal law with (µ = 11, σ = 1).

• Calculate the response variable T = αX + β + cε with (α = 2, β = 1 and c = 0.2).

• The censored data are calculated as Y = T ∧ C and δ = 1{T≤C}.The observed data therefore

becomes (X, Y, δ).

• The Kaplan-Meier estimator is calculated for the distribution function of censorship variable

C in (2.4).

• The choice of K is not decisive, we choose then the standard Gaussian kernel (K(u) =

1√
2π

exp (−u2

2
)). In contrast, the choice of bandwidth is crucial that’s why we take the optimal

one hn = 0.55
(
log(n)
n

)0.33

.

• Finally, we calculate the expression of our estimator obtained from (2.5) for a compact set

C = [1, 4].

Under each simulation setting, 100,300 and 500 replications are conducted.
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4.1.2 Simulation results

Effect of sample size with fixed censorship rate. From Figure 1, we can see that the quality

of fit increases with n when censoring rate (CR) and bandwidth kept unchanged.
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Relative error regression curve
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Figure 1: r(x) = 2x+ 1, CR ≈ 50% and n = 100, 300 and 500, respectively.

Effect of censoring rate (CR) with a fixed sample size. Figure 2 is obtained by varying the

censoring rate for a fixed sample size (n = 300) and for that we push the variable of interest on the

right by increasing the average of the normal distribution to observe more censorship variable (the

number of complete observation decreases). It can be seen that the forecasting quality decreases

when the CR rises in particular in the border.
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Figure 2: r(x) = 2x+ 1, n = 300 and CR ≈ 15%, 50% and 80%, respectively.
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Nonlinear functions We consider the case of nonlinear regression by choosing this three kinds

of model:

(1) Parabolic T = x2 + 1 + ε,

(2) Sinusoidal T = sin
(

1
2
x
)2

+ 1 + ε,

(3) Exponential T = exp
(

1
2
x
)

+ ε.

The curves are shown in Figure 3. Note that the quality of fit deteriorates when the period is very

small.
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Figure 3: CR ≈ 50%, n = 500 for parabolic, sinus and exponential, respectively.

Classical regression versus Relative error regression with respect to the censorship rate

In order to highlight the efficiency of relative error estimation, we draw up a comparative study.

For that, we simulated the classical regression estimator for randomly right censored data defined

in Guessoum and Ould Saïd (2008) by

r̂(x) =

n∑
i=1

δiYi
Ḡn(Yi)

K

(
x−Xi

hn

)
n∑
i=1

K

(
x−Xi

hn

) ,

for the same parameters listed below. From Figure 4 below, it is clear that the classical regression

estimator deteriorates when the censorship rate increases considerably.
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Figure 4: r(x) = 2x+ 1, n = 100 and CR ≈ 15%, 50% and 75%, respectively.

Effect of outliers for the two methods with a fixed sample size and censorship rate.

To show the robustness of our approach, we generate the case where the data contains outliers.

For that we set both that sample size and censorship rate (n = 500 and TC ≈ 50). To create this

outlier effect, 20 values of this sample are multiplied by a factor called MF . From Figure 5, we can

see that our estimator is very close to the theoretical curve with respect to the classical one. Then,

it is very clear that our approach is widely better than the classical one in the presence of outliers.
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Figure 5: r(x) = 2x+ 1, n = 500, CR ≈ 50% and MF = 10, 50 and 100 respectively.
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Table of mean squared error. To close this part, we compare the values of the mean squared

error (MSE) for the classical regression (MSE1) and the relative error regression (MSE2) methods

represented by

MSE1 =
1

n

n∑
i=1

(Ti − r̂(Xi))
2 and MSE2 =

1

n

n∑
i=1

(Ti − rn(Xi))
2

for three sample sizes and censoring level.

It can be seen from Table 1 that the variability of the mean squared error (MSE) of the two

methods for a low censoring rate is not significantly considerable, i.e. the performance is the same

for both methods. However, when the data is affected by the presence of censoring the MSE of

relative error regression becomes smaller than the classical regression. It means that the relative

error regression model is more stable than the classical regression in the presence of censorship.

Sample CR MSE1 MSE2

size (≈ %) (Classical Regression) (Relative Error Regression)

20 0.0150 0.0027

n=100 50 0.0802 0.0339

80 0.4009 0.0885

20 0.0103 0.0057

n=300 50 0.0275 0.0138

80 0.1284 0.0425

20 0.0078 0.0008

n=500 50 0.0138 0.0032

80 0.1359 0.0136

Table 1: The MSE errors according to the censoring rates.
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4.2 Asymptotic normality

The purpose of this part is to highlight the theoretical results obtained in Theorem 2, by studying

by simulation the asymptotic normality. To do this, we compare the shape of the estimated density

to that of the standard normal density in the case of a linear regression model:

T = 2X + 1 + ε,

we reproduce the same steps as in the previous subsection for X  exp(1.5) and C  exp(3).

Throughout this subsection, we fix x = 0 and replicate m independent n-sample size. Then, we

calculate the asymptotic variance. For that we replace the Υk(.) for k = 2, 3, 4 by their estimators

in (3.3) and r̄`,n(.) for ` = 1, 2 by their estimators in (2.6). A calculable estimator of the normalized

deviation is given by:

σ2
n(0) = κ

Υ̂2(0)r̄2
2,n(0)− 2Υ̂3(0)r̄1,n(0)r̄2,n(0) + Υ̂4(0)r̄2

1,n(0)

r̄4
2,n(0)

,

we consider now the sequence:

Aj =

(
nhn
σ2
n,j(0)

)1/2

(rn,j(0)− 1),

which under Theorem 2, Aj follows asymptotically to N (0, 1). Then, we build a kernel density

estimator for the Ak that we compare with the standard normal law for different values of n and

h∗ = c
(

log(m)
m

)0.2

where the constant c is chosen appropriately. Finally, for a sample size m = 200

and a censorship rate (CR ≈ 66%), we conduct n = 100, 300 and 500 replications. The figure 6

show the quality of goodness of fit.
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Figure 6: CR ≈ 66% and n = 100, 300 and 500, respectively.

5 Auxiliary results and proofs

Proof. Using (2.1), (2.3), (2.5), (2.6) and for x ∈ R, we consider the following decomposition :

rn(x)− r(x) =
1

r̄2,n(x)

{[(
r̄1,n(x)− ¯̃r1,n(x)

)
+ (¯̃r1,n(x)− E[¯̃r1,n(x)]) + (E[¯̃r1,n(x)]− r̄1(x))

]
+ r(x)

[
(¯̃r2,n(x)− r̄2,n(x)) + (E[¯̃r2,n(x)]− ¯̃r2,n(x)) + (r̄2(x)− E[¯̃r2,n(x)])

]}
which by triangle inequality, we have

sup
x∈C
|rn(x)− r(x)|

≤ 1

infx∈C |r̄2,n(x)|
{sup
x∈C
{|r̄1,n(x)− ¯̃r1,n(x)|+ |¯̃r1,n(x)− E[¯̃r1,n(x)]|+ |E[¯̃r1,n(x)]− r̄1(x)|}

+ sup
x∈C
|r(x)|{|¯̃r2,n(x)− r̄2,n(x)|+ |E[¯̃r2,n(x)]− ¯̃r2,n(x)|+ |r̄2(x)− E[¯̃r2,n(x)]|}}.

In the sequel, we give a sequence of lemmas that are helpful in proving our results.

Lemma 1. Under hypotheses H i) and K , we have, for ` = 1, 2, that

sup
x∈C
|r̄`,n(x)− ¯̃r`,n(x)| = Oa.s.

{(
log2 n

n

)1/2
}

as n −→∞. (5.1)
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Proof. For ` = 1, 2, we have

|r̄`,n(x)− ¯̃r`,n(x)| = 1

nhn

∣∣∣∣∣
n∑
i=1

δiY
−`
i

Gn(Yi)
K

(
x−Xi

hn

)
− δiY

−`
i

G(Yi)
K

(
x−Xi

hn

)∣∣∣∣∣
=

1

nhn

∣∣∣∣∣
n∑
i=1

T−`i
Gn(Ti)

1{Ti≤Ci}K

(
x−Xi

hn

)
− T−`i
Gn(Ti)

1{Ti≤Ci}K

(
x−Xi

hn

)∣∣∣∣∣
≤ 1

nhn

n∑
i=1

∣∣∣∣T−`i K

(
x−Xi

hn

)∣∣∣∣ ∣∣∣∣ 1

Gn(Ti)
− 1

G(Ti)

∣∣∣∣
≤ 1

nhn

n∑
i=1

∣∣∣∣T−`i K

(
x−Xi

hn

)∣∣∣∣ ∣∣∣∣Gn(Ti)−G(Ti)

Gn(Ti)G(Ti)

∣∣∣∣
≤

supt<τF | Gn(t)−G(t) |
Gn(τF )G(τF )

M

nhn

n∑
i=1

∣∣∣∣K (x−Xi

hn

)∣∣∣∣ ,
then by using the strong law of large numbers (SLLN) and law of iterated logarithm (LIL) on the

censoring law (see formula (4.28) in Deheuvels and Einmahl, 2000), we get,

sup
x∈C
| r̄`,n(x)− ¯̃r`,n(x) |≤ M

G
2
(τF )

E
(∣∣∣∣ 1

hn
K

(
x−X1

hn

)∣∣∣∣)
√

log2 n

n
.

Then hypotheses H i) and K complete the proof of the lemma.

Lemma 2. Under hypotheses H i), K and D i), we have, for ` = 1, 2, that:

sup
x∈C
| E[¯̃r`,n(x)]− r̄`(x) |= O(h2

n) as n −→∞. (5.2)

Proof. Using the conditional expectation properties, we get,

E [¯̃r`,n(x)] =
1

hn
E
[
δ1Y

−`
1

G(Y1)
K

(
x−X1

hn

)]
=

1

hn
E
[
K

(
x−X1

hn

)
E
(
δ1Y

−`
1

G(Y1)
|X1

)]
=

1

hn

∫
K

(
x− u
hn

)
E
[
δ1Y

−`
1

G(Y1)
|X1 = u

]
f(u)du,

and as 1{T1≤C1}Y
−`

1 = 1{T1≤C1}T
−`
1 , we get

E
[
T−`

G(T1)
E
[
1{T1≤C1}|T1

]
|X1 = u

]
= r`(u). (5.3)
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By a change of variable and using r̄`(·) = r`(·)f(·), we get∣∣∣∣E( 1

hn

δ1Y
−`

G(Y )
K

(
x−X
hn

))
− r̄`(x)

∣∣∣∣ =

∣∣∣∣∫ 1

hn
K

(
x− u
hn

)
r`(u)f(u)du− r̄`(x)

∣∣∣∣
=

∣∣∣∣∫ 1

hn
K

(
x− u
hn

)
r̄`(u)du− r̄`(x)

∣∣∣∣
=

∣∣∣∣∫ K(t)[r̄`(x− hnt)− r̄`(x)]dt

∣∣∣∣ .
We use a Taylor expansion to r̄`(·) for ζ ∈]x− hnt, x[, we get

sup
x∈C
|(E(¯̃r`,n(x))− r̄`(x)| = sup

x∈C

∣∣∣∣∫ K(t)[−hntr̄
′

`(x)− h2
nt

2

2
r̄
′′

` (ζ)]dt

∣∣∣∣
≤ hn sup

x∈C

∣∣∣∣∫ tK(t)r̄
′

`(x)dt

∣∣∣∣+ h2
n sup
x∈C

∣∣∣∣∫ t2

2
K(t)r̄

′′

` (ζ)dt

∣∣∣∣
≤ hn sup

x∈C

∣∣∣∣∫ tK(t)r̄
′

`(x)dt

∣∣∣∣+
h2
n

2
sup
x∈C

∣∣∣∣∫ r̄
′′

` (ζ)t2K(t)dt

∣∣∣∣ .
Under Hypotheses H i) and K ii), the first term is equal to zero. The second term goes to zero for

n→∞ from hypotheses D i) and K ii). The last result complete the proof of the lemma.

Lemma 3. Under hypotheses H i) and K i), we have, for ` = 1, 2

sup
x∈C
| ¯̃r`,n(x)− E[¯̃r`,n(x)] |= Oa.s.

(√
log n

nhn

)
as n −→∞. (5.4)

Proof. Let us consider the i.i.d sequence (X1, Y1, δ1), . . . , (Xn, Yn, δn) and define

Φn =

{
θx : R× R∗+ × {0, 1} → R+/θx(u, y, δ) =

δy−`

nhnG(y)
K

(
x− u
hn

)
, x ∈ R

}
.

By Lemma (3b) in Giné and Guillou (1999), Φn is Vapnik-Cervonenkis (V-C) class of no-negative

measurable functions. These are uniformly bounded with respective envelopes Θ =
M‖K‖∞
nhnG(τF )

.

Moreover,

sup
x∈C

E [θx(X1, Y1, δ1)] ≤ M‖K‖∞
nhnG(τF )

=: Un

In the same way, we get

sup
x∈C

V ar [θx(X1, Y1, δ1)] ≤ sup
x∈C

E
[
θ2
x(X1, Y1, δ1)

]
≤ M2‖K‖2

2‖f‖∞
n2hnG

2
(τF )

=: σ2
n

18



with σn ≤ Un for n large enough.

Now applying Talagrand’s inequality [see Proposition 2.2 in Giné and Guillou (2001)], with t ≥

A
√

logn
nhn

, there exist two positives constants L and B such that

P

[
sup
θx∈Φn

∣∣∣∣∣
n∑
i=1

(θx(Xi, Yi, δi)− E[θx(X1, Y1, δ1)])

∣∣∣∣∣ > A

√
log n

nhn

]

≤ L exp

−
A
√

logn
nhn

L M‖K‖∞
nhnḠ(τF )

log

1 +
A
√

logn‖K‖∞
(nhn)3/2Ḡ(τF )

L

(
M‖K‖2

√
‖f‖∞√

nhnG(τF )
+ M‖K‖∞

nhnḠ(τF )

√
logB ‖K‖∞√

hn‖K‖22
√
‖f‖∞

)2



 ,

and using log(1 + x) ≈ x( for x→ 0), the right-hand of the last equation becomes an order of

L exp

−AḠ(τF )
√

logn
nhn

LM‖K‖∞
nhn

A
√

logn‖K‖∞
(nhn)3/2Ḡ(τF )

L

(
M‖K‖2

√
‖f‖∞√

nhnG(τF )

)2

 = Ln
− G

2
(τF )

M2‖K‖22‖f‖∞
(AL )

2

,

which by an appropriate choice of the constant A, can be made O(n−3/2). The latter being a general

term of summable series and by Borel-Cantelli’s lemma we conclude the proof.

Then Lemma 1- Lemma 3 permit to conclude the proof of the Theorem 1.

Next we proceed to the proof of the Theorem 2.

Proof. Our goal is to show

√
nhn(rn(x)− r(x))

D−−→ N (0, σ2(x)) as n −→∞.

Note that, for ` = 1, 2,√
nhn(r̄`,n(x)− r̄`(x)) =

√
nhn (r̄`,n(x)− ¯̃r`,n(x)) +

√
nhn (¯̃r`,n(x)− E[¯̃r`,n(x)])

+
√
nhn (E[¯̃r`,n(x)]− r̄`(x))

=: Λ`,n(x) + Γ`,n(x) + Σ`,n(x).

First, we consider the negligible terms Λ`,n and Σ`,n.
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Lemma 4. Under H ii),iii) and by Lemma 1, Lemma 2, both
√
nhnΛ`,n(x) and

√
nhnΣ`,n(x) are

o(1) as n→∞.

Proof. From Lemma 1, under H ii), we get,

Λ`,n(x) =
√
nhn (r̄`,n(x)− ¯̃r`,n(x)) = Oa.s.

(√
hn log2 n

)
= oa.s.(1). (5.5)

In the same way, from Lemma 2, under H iii), we have,

Σ`,n(x) =
√
nhn (E[¯̃r`,n(x)]− r̄`(x)) = O

(√
nh5

n

)
= o(1). (5.6)

Now we consider the dominant terms Γ`,n(x) for ` ∈ {1, 2} and prove Lemma 5.

Lemma 5. Under hypotheses H i),K and D i), ii), we have

(Γ1,n(x),Γ2,n(x))T
D−−→ N (0, κΣ(x)) as n→∞.

Proof. We first estimate the asymptotic variance, for ` = 1, 2, we get

V ar [Γ`,n(x)] = nhn
{
E
[
¯̃r2
`,n(x)

]
− E2 [¯̃r`,n(x)]

}
= h−1

n

{
E

[
δ1Y

−2`
1

G
2
(Y1)

K2

(
x−X1

hn

)]
− E2

[
δ1Y

−`
1

G(Y1)
K

(
x−X1

hn

)]}

= V1 − V2.

For V2 proceeding as in Lemma 2 and under H i),K and D i), we have

V2 = h−1
n

[
hn

∫
K(s)r̄`(x− hns)ds

]2

= o(1). (5.7)
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Furthermore for V1, we get,

V1 = h−1
n E

[
δ1Y

−2`
1

G
2
(Y1)

K2

(
x−X1

hn

)]
= h−1

n E
[
K2

(
x−X1

hn

)
E
[
T−2`

1

G(T1)
|X1

]]
= h−1

n

∫
K2

(
x− u
hn

)∫
t−2`

G(t)
fT1|X1(t|u)dtf(u)du

= h−1
n

∫
K2

(
x− u
hn

)∫
t−2`

G(t)
fT1,X1(t, u)dtdu

= h−1
n

∫
K2

(
x− u
hn

)
Υ2`(u)du

by a change of variable and Taylor expansion, by K iii), we get,

= h−1
n

∫
K2(t)Υ2`(x− hnt)hndt

= Υ2`(x)

∫
K2(t)dt+ o(hn)

= Υ2`(x)κ+ o(hn)

(5.8)

which together with (5.7) and (5.8) gives under D ii), for ` = 1, 2

V ar [Γ`,n(x)] −→ Υ2`(x)

∫
K2(t)dt as n→∞.

In addition under D ii) and K iii), we get easily

Cov(Γ1,n(x),Γ2,n(x)) = E[Γ1,n(x)Γ2,n(x)]− E[Γ1,n(x)]E[Γ2,n(x)]

= h−1
n

{
E

[
δ1Y

−3
1

G
2
(Y1)

K2

(
x−Xi

hn

)]
− E

[
δ1Y

−1
1

G(Y1)
K

(
x−X1

hn

)]
E
[
δ1Y

−2
1

G(Y1)
K

(
x−X1

hn

)]}

= Υ3(x)κ+ o(1).

Next, we will show that any linear combinations are asymptotically gaussian. For let (z1, z2)t be a

real numbers, we put

∆n(x) =
2∑
`=1

z`Γ`,n(x) =:
n∑
i=1

(
z1∆1

i,n(x) + z2∆2
i,n(x)

)
(5.9)

where

∆`
i,n(x) := (nhn)−1/2

{
δiY

−`
i

G(Yi)
K

(
x−Xi

hn

)
− E

[
δiY

−`
i

G(Yi)
K

(
x−Xi

hn

)]}
for ` = 1, 2.
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Now in order to show that (5.9) is asymptotically normal we verify the Berry-Essèen condition

(Chow and Teicher (1997), p. 322). For that we need to prove :

ρ3
n :=

n∑
i=1

E
[∣∣∆`

i,n(x)
∣∣3] −→ 0 (5.10)

with

E
[
|∆`i,n(x)|3

]
=
(hn
n

)3/2

E
[ ∣∣∣∣ δiY −`i

hnG(Yi)
K

(
x−Xi

hn

)
− E

[
δiY

−`
i

hnG(Yi)
K

(
x−Xi

hn

)]∣∣∣∣3 ].
Applying the Cr inequality (see Loève (1963), p. 155), we get

E
[∣∣∆`

i,n(x)
∣∣3] ≤ 4

(hn
n

)3/2
{
E

[
δi|Yi|−3`

h3
nG

3
(Yi)

K3

(
x−Xi

hn

)]
+

∣∣∣∣E [ δiY
−`
i

hnG(Yi)
K

(
x−Xi

hn

)]∣∣∣∣3
}

≤ 4
(hn
n

)3/2

{M1 +M2} .

and asM1 andM2 are bounded under K which gives that ρ3
n = O

((h3
n

n

)1/2)
= o(1). Now, under

H i) the property (5.10) is satisfied which proves the asymptotic normality of Γ`,n(x) and, together

with (5.5) and (5.6), complete the proof of Lemma 5.

Now to complete the proof of Theorem 2, consider the mapping θ from R×R∗+ to R defined by

θ(x, y) = x/y. We deduce from Mann-Wald’s Theorem (see Rao 1965, p. 321) that:

√
nhn(rn(x)− r(x))

D−−→ N (0, κ∇θTΣ(x)∇θ)

where the gradient ∇θT =

(
∂θ

∂x
,
∂θ

∂y

)
is evaluated at (r̄1(x), r̄2(x)). Simple algebra gives then the

variance

σ2(x) = κ
Υ2(x)r̄2

2(x)− 2Υ3(x)r̄1(x)r̄2(x) + Υ4(x)r̄2
1(x)

r̄4
2(x)

,

which completes the proof.
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