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A new look at the uncontrollable linearized quaternion dynamics with
implications to LQR design in underactuated systems

Leandro R. Lustosa, Flávio Cardoso-Ribeiro, François Defaÿ and Jean-Marc Moschetta∗

Abstract— Quaternion algebra is frequently employed for
spacecraft attitude description due to its convenient numerical
properties when compared to minimal formulations. In parallel,
Linear Quadratic Control (LQR)-based attitude controllers are
often applied to underactuated vehicles due to its intuitive
tuning process and satisfactory stability robustness properties.
However, nonlinear quaternion differential equations of mo-
tion linearization yields non-stabilizable systems. Thus, LQR
techniques cannot be directly employed since the associated al-
gebraic Riccati equation is ill-posed. The commonplace solution
resorts to a reduced quaternion model where only three out of
four quaternion coordinates are exploited. The present work
shows that such choice exhibits numerically unstable regions
that impedes solving the LQR problem for all possible operating
points. Additionally, we propose two methods to obtain well-
posed LQR problems over all operating points. The first is based
on the reduced quaternion model with an appropriate change of
coordinates. The second is to append a virtual stabilizing input
(VSI) to the nonlinear system to attain controllable linearized
systems. The VSI direction should be appropriately chosen to
not disturb the controllable modes of the system. Finally, we
show that a class of constant angular velocity tracking problems
is time-invariant under an appropriate change of variables such
that time-invariant LQR techniques are applicable.

I. INTRODUCTION

The problem of spacecraft attitude determination and
control (ADCS) calls for simple and robust solutions in
view of strict fault tolerance and certification requirements.
Guidance, navigation and control (GNC) routines often run
on computers that are typically lag with what is commer-
cially available due to their elevated reliability, low power
consumption and high tolerance to vibration and radiation
commonly encountered during launch and cruise flight, re-
spectively.

Among the diverse attitude parametrization philosophies
existent in the literature, quaternion algebra stands out due
to its simplicity and uniform numerical stable appliance
in SO(3) in sharp contrast to Euler angles that possess
singularities that preclude their global employment and calls
for local charts switching that increases system complexity.
Furthermore, an increasing use of quaternion algebra in
the field of unmanned aerial vehicles (UAV) is apparent as
atmospheric vehicles become more acrobatic [1] and/or allow
for multiple flight modes [2].

On the control systems counterpart, undemanding con-
trol laws are available for quaternion attitude control in
both linear and nonlinear worlds. For instance, previous
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work [3] obtained globally exponentially stable proportional-
derivative control laws by means of energy-based Lyapunov
functions for the rigid-body tracking problem. Central draw-
backs that arrive, namely, quaternion unwinding (due to
double cover of SO(3)) and chattering (due to measurement
noise), can be efficiently handled by hysteresis mechanisms
[4]. However, the aforementioned techniques require fully-
actuated systems. Furthermore, controller tuning and stability
margins in view of plant uncertainties are not accounted for.

Linear techniques, on the other hand, are well-established
and capable of dealing with plant uncertainties and nonlin-
earities by means of linearization over a trajectory and gain
scheduling. Linear Quadratic Control (LQR)-based attitude
controllers are often applied to underactuated vehicles due to
its intuitive tuning process and reasonable stability robustness
properties. Furthermore, LQR scales and integrates well in
underactuated systems planning algorithms [5]. Although
unwinding can be handled by path-lifting techniques [8],
nonlinear quaternion differential equations of motion lin-
earization yields non-stabilizable systems that preclude LQR
techniques employment. Previous work on spacecraft [6]
and UAV [7] attitude control resort to a reduced quaternion
model where only three out of four quaternion coordinates
are exploited. Moreover, the latter proves global stability and
local optimality of the proposed approach.

The present work draws a numerical stability figure of
merit of the optimal solution of the LQR problem for
the aforementioned reduced quaternion model and presents
its numerically unstable regions. Additionally, we propose
two methods to obtain well-posed LQR problems over all
operating points. The first is based on the reduced quaternion
model with an appropriate change of coordinates. The second
is to append a virtual stabilizing input (VSI) to the nonlinear
system to attain controllable linearized systems. The VSI
direction should be appropriately chosen to not disturb the
controllable modes of the system. Finally, we show that a
class of constant angular velocity tracking problems are time-
invariant under an appropriate change of variables such that
time-invariant LQR techniques are applicable.

The paper layout is as follows: section II presents the
quaternion notation employed herein and reviews the per-
tinent linearized quaternion dynamics properties while pre-
senting the key coordinate transformation of the present
work. Section III reviews the relevant LQR concepts and
presents a numerical stability figure of merit for the associ-
ated algebraic Riccati equation. Sections IV and V derive the
two proposed methods for linearized quaternion attitude LQR
control design followed by concluding remarks in section VI.



II. QUATERNION ATTITUDE DYNAMICS

Quaternion algebra formulation varies to a small extent in
literature, but herein a quaternion q ∈ (RR,×) is defined as

q =

(
q0
q1

)
(1)

where q0 ∈ R and q ∈ R3 equipped with quaternion product
× operation defined as

p× q =

(
p0q0 − p1 · q1

p0q1 + q0p1 + p1 × q1

)
(2)

The ill-posed property that the present paper highlights
when performing LQR control design in the quaternion
formulation is present in both under and fully actuated
systems. Therefore, for presentation clarity, we shall focus on
the fully actuated version. Our proposed control techniques
are nonetheless seamlessly applicable to both cases. The fully
actuated spacecraft attitude dynamics equations of motion in
the quaternion formulation can be written as

q̇ =
1

2

[
0 −ωT

ω −[ω×]

](
q0
q1

)
(3)

where ω ∈ R3 denotes spacecraft angular velocity with
respect to inertial frame described in body-frame coordinates
and [v×] denotes matrix representation of vector product

[v×] =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (4)

A noteworthy property of (3) is that it preserves vector
norm. This can be concluded by analyzing the quaternion
Euclidean norm derivative as
d

dt
|q|2 =

d

dt

(
qTq

)
= 2qT dq

dt
= qT

[
0 −ωT

ω −[ω×]

]
q (5)

and by noticing that the quadratic form of any skew-
symmetric matrix is identically zero and therefore

d

dt
|q| = 04×1 ∀q ∈ R4 (6)

even though we are interested in only the unitary-norm
manifold. It will be shown that the technique figured in this
work is generalizable to norm-preserving systems.

Furthermore, ω evolves in time due to torques u ∈ R3

according to
ω̇ = J−1 (u− [ω×]Jω) (7)

where J ∈ R3×3 denotes spacecraft inertia matrix. An
appropriate choice of system state is therefore

x =

(
q
ω

)
(8)

with associated nonlinear affine control differential equation

ẋ = f(x) +Bu (9)

composed of (3) and (7) with B given by

B =

[
04×3
J−1

]
(10)

During LQR control design, the nonlinear dynamics are
linearized around a nominal trajectory (x(t),u(t)) yielding
the time-variant linear system

∆ẋ(t) = A(t)∆x(t) +B∆u(t) (11)

For the quaternion attitude dynamics, straightforward dif-
ferentiation yields

A(t) =
∂f

∂x
=

[
∂q̇
∂q

∂q̇
∂ω

∂ω̇
∂q

∂ω̇
∂ω

]
=

=

 1
2

[
0 −ωT (t)

ω(t) −[ω(t)×]

]
1
2

[
−qT

1 (t)
q0(t)I + [q1(t)×]

]
03×4 [ω(t)×]− J−1[ω(t)×]J


(12)

Controllability and stabilizability of the system play a
fundamental role in the design of LQR controllers and,
therefore, are studied in the following. Firstly, notice that
(6) implies that the reachable set of the nonlinear system is
included in

M = {q ∈ R4 : |q| = 1} $ R4 (13)

and therefore is not controllable. Additionally, the local linear
model is not controllable either. This can be seen by a
controllability normal form of the system which can be
obtained by the following change of coordinates

∆x′(t) = U(t)∆x(t) (14)

where

U(t) =

[
Uq(t) 04×3
03×4 I3

]
(15)

and

Uq(t) =

[
q0(t) qT

1 (t)
−q1(t) q0(t)I3 − [q1(t)×]

]
(16)

and therefore

∆ẋ′(t) = A′(t)∆x′(t) +B′(t)∆u(t) (17)

where1

A′(t) = U̇(t)U−1(t) + U(t)A(t)U−1(t) =

=

 1
2

[
0 0T

0 −[ω(t)×]

]
1
2

[
0T

I3

]
O3×3 [ω(t)×]− J−1[ω(t)×]J

 (18)

and

B′(t) = U(t)B =

[
04×3
J−1

]
(19)

Notice that (15) is a valid coordinate transformation since
the matrix Uq represents a conjugate left product in quater-
nion space and, therefore, it is invertible for all non-zero
quaternions. From the linear system form in (18) and (19),
we can conclude that the linear system is non-stabilizable

1The algebra is tedious and therefore omitted. If an adventurous reader
wishes to check the computations, the following identity is valuable:
[y×]2 + ||y||2I = yyT .



(therefore uncontrollable) for all trajectories by looking at
the first transformed state variable ∆x′1 dynamics, which is

∆ẋ′1 = 0 ∀x(t),u(t) (20)

Notice that the transformed system (A′, B′) is time-
variant in general. However, if we consider only reference
trajectories that are constant in ω(t) = ω0 (hereafter denoted
ω-trajectories), the system becomes time-invariant2. Further-
more, the linear system has 6 controllable modes for all ω-
trajectories. This can be seen by means of the transformed
system (A′, B′) Kalman controllability matrix K:

K =
[
B AB A2B · · ·

]
=

=

 0T 0T 0T · · ·
03×3

1
2J
−1 − 1

2J
−1[ω0×] · · ·

J−1 ∆J−1 ∆2J−1 · · ·

 (21)

where
∆ , [ω0×]− J−1[ω0×]J (22)

The lower triangular structure guarantees row rank 6 for
all ω-trajectories. The controllability properties exploited in
this section are fundamental notions in the LQR design to
follow.

III. THE TIME-INVARIANT LINEAR QUADRATIC
REGULATOR

Consider the time-invariant linear system in state-space
representation given by

ẋ(t) = Ax(t) +Bu(t) (23)

where x(t) : R → Rn, u(t) : R → Rm, A ∈ Rn×n and
B ∈ Rn×m are, respectively, state vector, input (or control)
vector, system matrix and input matrix. We are interested in
computing the optimal control policy u∗(t) that minimizes
the cost

J(x0,u) =

∫ ∞
0

(
xTQx + uTRu

)
dt (24)

where x0 = x(0), Q ∈ Rn×n, R ∈ Rm×m are, respectively,
initial state, positive semi-definite state penalty and positive
definite actuator penalty matrices. This strategy is called
the linear quadratic regulator (LQR) [11]. By means of the
Hamilton-Jacobi-Bellman equation, one can show [11] that
the control policy

u∗(t) = arg min
u

J(x0,u) (25)

for the system described by (23) is independent of x0 and
is given by

u∗(t) = −R−1BTPx(t) (26)

where P is the unique solution of the algebraic Riccati
equation (ARE)

PA+ATP − PBR−1BTP +Q = 0 (27)

2Notice that our approach yields an alternative to Floquet’s theorem
approach to computing U(t) for the present problem.

if (A,B) is stabilizable and (A,Q1/2) is detectable. The
solution can be numerically computed [12], [13] and a figure
of merit for its numerical stability, represented here by means
of its relative condition number, is [14]

crel(A,B,Q,R) =
1

||P ||F

(
||Q||F ||Z1||2+

+ ||A||F ||Z2||2 + ||BR−1BT ||F ||Z3||2
)

(28)

where
Z1 = T−1 (29)

Z2 = T−1
(
I ⊗ P + (P ⊗ I)Π

)
(30)

Z3 = T−1(P ⊗ P ) (31)

and

T = In ⊗ (A−BR−1BTP )T + (A−BR−1BTP )T ⊗ In
(32)

with || · ||F , || · ||2 and ⊗ denoting, respectively, Frobenius
norm, 2-norm and the Kronecker product.

The LQR can be extended [11] to time-varying linear
systems with an increase of algorithm complexity and re-
quired look-up table memory for implementation in space-
craft embedded systems. Fortunately, section II proved that
the spacecraft attitude regulation and ω-trajectory tracking
problems are time-invariant under appropriate change of
coordinates. Be that as it may, quaternion linearization was
shown to suffer from lack of controllability in all operating
points precluding a theoretical LQR solution to exist or a
numerically stable computational solution to be found. This
short-coming is addressed in the next two sections.

IV. THE REDUCED QUATERNION MODEL REVISITED

Intuitively, the lack of controllability in quaternion systems
arrives from its non-minimal representation that lives in a
proper subset of R4. To address this issue, previous work
[6] rewrites (12) with, for instance, the first coordinate q0 of
a quaternion in terms of the other components such that

q0 = ±
√

1− q21 − q22 − q23 (33)

and drops the redundant associate q0 lines and columns
from the system. In a neighborhood of an operating point
in {(q,ω) : qTq = 1,ω ∈ R3} the signal ambiguity can be
resolved.3 Furthermore, previous work assumes a regulation
problem, i.e., reference trajectory with ω(t) = 0 for all t.
These yield the so-called reduced quaternion model (Ar, Br)
given by

Ar =

[
03×3

1
2

[
±
√

1− q21 − q22 − q23I + [q1×]
]

03×3 03×3

]
(34)

and
Br =

[
03×3
J−1

]
(35)

3The careful reader will notice that a neighborhood of q0 = 0 might
yield an ill-defined ambiguity. Nevertheless, one can argue that we should
never choose such points as trimming points and proceed with controller
design.



such that (
∆q̇1
∆ω̇

)
= Ar

(
∆q1
∆ω

)
+Br∆u (36)

Notice that the regulation problem assumption reduces
the model to a linear time-invariant system whereas the
deletion of redundant columns and lines potentially renders
the system controllable (and therefore eligible for LQR
framework employment). Indeed, the controllability matrix
Kr of the reduced system yields

Kr =
[
Br ArBr A2

rBr · · ·
]

=

=

[
03×3

1
2ΘJ−1 03×3 · · ·

J−1 03×3 03×3 · · ·

]
(37)

where
Θ , ±

√
1− q21 − q22 − q23I + [q1×] (38)

Therefore, full row rank of Kr is conditioned to

det

(
1

2

(
±
√

1− q21 − q22 − q23I + [q1×]

)
J−1

)
=

=
1

8 detJ

∣∣∣∣∣∣
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

∣∣∣∣∣∣ =
±
√

1− q21 − q22 − q23
8 detJ

(39)

which allows one to conclude that the quaternion reduced
model is globally controllable except for q0 = 0 operating
points. It is expected therefore a variable numerical stabil-
ity in the space of configurations. Figure 1 illustrates the
condition number crel(Ar, Br, I, I) of the associated Riccati
problem in function of different ZYX-order Euler angles
{ψ, θ, φ}, respectively, yaw, pitch and roll. We conclude that
near-uncontrollable operating points are numerical unstable
delivering unreliable local optimal controllers.

Previous work [6] regulates for q = (1, 0, 0, 0), and, there-
fore, does not encounter problems. However, a wide attitude
envelope spacecraft quaternion operating point controller
can run into numerical problems calling for a more stable
description. Furthermore, numerical stability over the whole
configuration space is one of the most attractive properties of
quaternions that is undermined by the present LQR workflow.

We propose a solution to this problem by means of the
transformation given in (14). The associated controllability
matrix is given by

K ′r =
[
B′r A′B′r (A′r)2B′r · · ·

]
=

=

[
03×3

1
2J
−1 03×3 · · ·

J−1 03×3 03×3 · · ·

]
(40)

which is clearly full row rank thus controllable. Additionally,
we obtain constant numerical stability log(log(log(c))) =
−0.49688 over the entire configuration space. Based on
the foregoing discussion, algorithm 1 illustrates how the
proposed transformation enters in a typical LQR design
workflow for arbitrary spacecraft attitude control problems
containing quaternion formulation. Notice that this design
workflow requires Jacobian matrices A′ and B′ that are
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Fig. 1. Numerical stability of the reduced formulation of the linearized
quaternion LQR by means of the contour curves of log(log(log(c))). Three
log levels are employed due to ill-conditioning and exponentially growing
conditioning number of the reduced model Riccati equation. The two other
methods yield constant conditioning over all configuration space and are
equal to crel = −0.49688 and crel = −0.42785 for the transformed
reduced and VSI models, respectively.

not the original system derivatives and, therefore, precludes
employment of automated LQR controller generators (i.e.,
automatic tools that deliver LQR controllers for arbitrary
nonlinear systems by means of numerical Jacobian compu-
tation and direct insertion of those in LQR gain computation
routines). The next section proposes an alternative solution to
the non-stabilizable quaternion LQR problem that allows for
automatic tools application and yields a cleaner workflow.

Finally, in section II, we concluded that the quaternion
system tracking problem (with constant velocity trajectory
ω(t) = ω0) is time-invariant in transformed coordinates
allowing for time-invariant LQR design. Therefore, a small
modification of algorithm 1 allows for tracking control as
illustrated in algorithm 2. Figure 2 illustrates a simple ω-
trajectory tracking in the y-axis with magnitude |ω0| = 20
deg/s with initial errors of 30deg and 0.5|ω0| in each Euler
angle and each angular velocity component, respectively.



Data: given ẋ = f(x,u), x = (q,ω, . . . ) ∈ Rn

Result: find LQR control ∆u = −K∆x
operating points to be regulated:
x ∈ X0 = {(q,0, . . . ) : q ∈ Q} and u ∈ U0;

for xi ∈ X0, ui ∈ U0 do
compute Jacobians A = ∂f

∂x , B = ∂f
∂u ;

compute U =

[
Uq(qi) 0

0 In−4

]
;

compute A′ = UAUT and B′ = UB;
compute K ′ = lqr(A′, B′, Q,R);
remove first line of U ;
compute K = −K ′U ;

end
Algorithm 1: LQR reduced regulation controllers for a set
Q of desirable attitude points.

As expected, the LQR controller converges to the desired
trajectory notwithstanding initial large tracking errors.

Data: given ẋ = f(x,u), x = (q,ω, . . . ) ∈ Rn

Result: find LQR control ∆u = −K∆x
operating points to be regulated:
x ∈ X0 = {(q,0, . . . ) : q ∈ Q} and u ∈ U0;

for xi ∈ X0, ui ∈ U0 do
compute Jacobians A = ∂f

∂x , B = ∂f
∂u ;

compute U =

[
Uq(qi) 0

0 In−4

]
;

compute A′ = UAUT and B′ = UB;
compute K ′ = lqr(A′, B′, Q,R);
remove first line of U ;
compute K = −K ′U ;

end
Algorithm 2: LQR reduced regulation controllers for a set
Q of desirable attitude points.

V. THE VIRTUAL STABILIZING INPUT SOLUTION

An alternative intuitive solution to the problem is to ap-
pend an extra control input ua(t) to turn the non-stabilizable
mode of the system into a controllable one. This control input
is not part of the physical system and must be orthogonal
to the system modes to not disburb real physical dynamics
while affecting the zero dynamics found in (18). A natural
direction is given, therefore, by the first line of the U(t)
matrix given by (15) yielding the augmented system(

q̇
ω̇

)
= A

(
q
ω

)
+

[
B

q
0

](
u
ua

)
(41)

Notice that it matches our intuition in the sense that
the virtual input should point in the direction in which we
have no control, which is the direction of the quaternion
itself. The reasoning behind this is illustrated by (5) and (6).
Quaternions live in a 4-dimensional sphere and its derivatives
are restricted to the tangent of the sphere in a given point of
operation q. Therefore, the direction q is, indeed, the most
suitable direction for the artificial input.

Additionally, we observe that instead of appending the
virtual input at the linearized mode, one can add it directly
in the nonlinear model such that

ẋ = f(x,u) +

[
q(t)
0

]
ua(t) (42)

since its linearization yields (with respect to operating point
ua = 0)

∆ẋ =
∂f

∂x
∆x +

∂f

∂u
∆u +

[
q(t)
0

]
ua(t) (43)

which results in a linearized artificial input in the desirable
direction. The resulting linearized dynamics are given by

Aa = A, Ba =

[
B

q
0

]
(44)

with controllability matrix (for the regulation problem) given
by

Ka =
[
Ba AaBa A2

aBa · · ·
]

=

=

04×3 q 1
2

[
−qT

1 (t)
q0(t)I + [q1(t)×]

]
J−1 · · ·

J−1 0 0 · · ·

 (45)

Therefore, full row rank of Ka is conditioned to

det

([
q 1

2

[
−qT

1 (t)
q0(t)I + [q1(t)×]

]
J−1

])
6= 0 (46)

since ∣∣∣∣∣∣∣∣
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

∣∣∣∣∣∣∣∣ = 1 (47)

which allows one to conclude that the quaternion virtual
input method is globally controllable. Additionally, its asso-
ciated ARE condition number in the space of configurations
is contant and equal to log(log(log(c))) = −0.42785 thus
numerically stable for all operating points with only a
marginal difference when compared to the reduction model
due to the increase of the matrices orders involved. The major
gain in this strategy is when integrated in a LQR automated
design workflow. If the nonlinear model is assumed with
virtual input, than no modifications on the LQR flow are
required, i.e., Jacobians can be numerically computed and
readily inserted in the ARE solver as the algorithm 3 illus-
trates. The simplicity and clarity of the proposed approach is
evident. We reinforce that ua(t) is not related to any physical
input in any sense and its corresponding component in the
LGR gain K should be disregarded.

Finally, notice that the present technique is restricted
to the regulation problem. The tracking problem requires
transformation of coordinates to be eligible to time-invariant
LQR design.
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Fig. 2. Tracking of an ω-trajectory with transformed reduced quaternion model.

Data: given ẋ = f(x,u) + (q,0, · · · )Tua,
x = (q,ω, . . . ) ∈ Rn

Result: find LQR control ∆(u, ua)T = −K∆x
operating points to be regulated:
x ∈ X0 = {(q,0, . . . ) : q ∈ Q} and u ∈ U0;

for xi ∈ X0, ui ∈ U0 do
compute Jacobians A = ∂f

∂x , B = ∂f
∂u ;

compute K = lqr(A,B,Q,R);
end

Algorithm 3: LQR virtual regulation controllers for a set
Q of desirable attitude points.

VI. CONCLUSION

The present paper revisits the problem of employing LQR
design in quaternion-based linearized systems for local con-
trol of complex underactuated systems. We warn of numeri-
cally unstable regions in a popular algorithm and propose two
alternative solutions that yield constant low relative condition
numbers for the entire configuration space. The first solution
is built on top of the commonplace solution whereas the
second one is an elegant and simple reformulation suited for
applications that require minimal intrusion in the classical
LQR design workflow. We also demonstrate how to adapt
the first solution to the constant angular velocity tracking
problem.
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