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Abstract
Whereas systems based on deep learning have been proposed to
learn efficient representations of emotional speech data, meth-
ods such as Bag-of-Audio-Words (BoAW) have yielded sim-
ilar or even better performance while providing understand-
able representations of the data. In those representations, how-
ever, context information is overlooked as the BoAW include
only local information. In this paper, we propose to learn
a novel representation ‘Bag-of-Context-Aware-Words’ that en-
capsulates the context with neighbouring frames of BoAW;
segment-level BoAW are extracted in the first layer which are
then utilised to create a final instance-level bag. Such a hier-
archical structure of BoAW enables the system to learn rep-
resentations with context information. To evaluate the effec-
tiveness of the method, we perform extensive experiments on
a time- and value-continuous spontaneous emotion database:
RECOLA. The results show that, the best segment length for
valence is twice of that for arousal, suggesting that the predic-
tion of the emotional valence requires more context information
than the prediction of arousal, and the performance obtained
on RECOLA with the proposed Bag-of-Context-Aware-Words
outperforms all previously reported results.
Index Terms: speech analysis, emotion recognition, bag-of-
audio-words, context-aware representations

1. Introduction
Emotion Recognition from Speech (ERS) plays an essential role
in establishing natural and friendly human-machine communi-
cation [1] in various applications such as healthcare [2, 3], ed-
ucation [4, 5], robotics [6, 7], and call-centres [8, 9]. Most tra-
ditional ERS systems have been focused on extracting statisti-
cal features of acoustic Low-Level Descriptors (LLDs) such as
pitch, log energy, formants, and Mel Frequency Cepstral Coef-
ficients (MFCCs). These statistical features are then fed into
various classifiers based on generative models such as naive
Bayes [10] or discriminative models such as Support Vector
Machines [11].

Recently, representation learning methods based on deep
learning have been proposed to learn an appropriate set of high-
level information directly from the raw speech signal, instead
of computing statistical measures of expert-based LLDs. In the
so-called end-to-end learning [12, 13], a system jointly learns
an emotion inference task, usually with a fully-connected re-
current network taking features as input, along with a feature
learning task, usually with a convolutional neural network tak-
ing a portion of the raw signal as input. Even though end-to-end
learning performs well for ERS [13, 14], the learnt representa-

tions are hard to interpret or understand.
In contrast, another novel approach, Bag-of-Audio-Words

(BoAW), has been proposed for ERS, with the aim to estimate
a meaningful and robust representation based, e.g., on MFCCs
and log-energy as LLDs [15]. In [15], these LLDs are quan-
tised, and histograms are computed with a random-selected
codebook as final representations which give one of the best
reported recognition performances on the popular spontaneous
emotional dataset RECOLA [16]. Moreover, BoAW has been
applied successfully in several other paralinguistic information
retrieval tasks, such as sound event classification [17], music
genre classification [18], and copy detection [19].

While BoAW has produced meaningful and robust repre-
sentations for ERS, it does not take context information into
consideration when creating the representations; since emo-
tional content is involved in multiple coherent frames, con-
text information is vital and needs to be dealt with care in an
ERS system. Contrary to the conventional BoAW approach,
we propose an approach to generate Bag-of-Context-Aware-
Words (BoCAW) representations in a hierarchical architecture,
to preserve the context information while learning the represen-
tations. More specifically, BoAW is applied twice but within
different temporal scales; a small local window containing a
number of context frames is first utilised, and then a global anal-
ysis window containing all frames of one instance is explored.

Such a hierarchical structure is conceptually similar to a
Deep Belief Net (DBN), where features with various granulari-
ties can be extracted from each layer of the DBN [20]. How-
ever, we extend the concept to BoAW, which is simpler to
train without massive hyper-parameter tuning, and also easier
for theoretical analysis than DBN. In addition, BoCAW is fur-
ther related to Dual-Layer Bag-of-Frames (DLBoF) proposed
in [18]. The DLBoF framework attempts to model a piece of
music with a two layer structure, where frame-level characteris-
tics and segment-level semantics can be captured and integrated
together for music information retrieval tasks.

In the present work, however, we utilise only the segment-
level features from the second layer, and we demonstrate by an
empirical analysis that these features can ameliorate the perfor-
mance of ERS. Furthermore, we explore and find the proper
length of the local window that best fits a time- and value-
continuous ERS system for the emotional dimensions arousal
and valence, respectively. To the best of our knowledge, this
is the first work that learns features from a hierarchical BoAW
structure for ERS. Also, this bridges the gap between frame-
based features and long-term emotional speech by introducing
segment-level words with context information, so as to enhance
the regular BoAW approach.
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Figure 1: Diagram of the bags-in-bag approach pipeline.

2. Generation of Context-Aware Bags
The framework of our proposed BoCAW feature generation ap-
proach is depicted in Figure 1 and consists of two layers. In
the first layer, sub-bag (or segment-level) features are generated
by applying the conventional BoAW approach to input frame-
level features within a sliding window. Note that, each sliding
window contains several successive frames of features and can
be much smaller than the total length of an instance to be anal-
ysed. After that, in the second layer, these sub-bag features
are further utilised as context-aware words to generate a final
context-aware bag for each given instance. Herein, BoAW is
again applied as in the first layer but within a global window,
the length of which equals to the total length of the instance
to be analysed. We implement the whole framework with our
open-source toolkit OPENXBOW [21]; the details of each sys-
tem component are described below.

2.1. Bag of Audio Words Model

Let us denote a frame-level feature vector as xn ∈ RD such that
n = 1, ..., N , where N is the total number of frames from the
entire training set, and D is the dimension of the vector. There-
fore, {xn}n∈Ni denotes a set of features for a given audio file
which is composed of Ni frames. Next, as shown in Figure 1,
once the series of {xn} is extracted from all audio files, the tra-
ditional BoAW approach is conducted in layer 1, which contains
the following three steps:

Codebook generation: a codebookC is a set of codewords
c learnt from the feature space {xn}, and the codebook genera-
tion problem can be formulated as:

C = {ck}Kk=1, ck ∈ RD, (1)

where ck denotes the k-th codeword, and in total K codewords
form the codebook C ∈ RD×K .

Normally, C can be created by a clustering algorithm such
as k-means. In addition, random sampling has also been pro-
posed in [22] and utilised with success for ERS [15]. In this
work, we build the frame-level codebook C1 in layer 1 by ran-
dom sampling, which is much faster than k-means but delivers
comparative performances at the same time.

Vector Quantisation: once the codebookC1 has been gen-
erated, each xn can be assigned to its closest (Euclidean dis-
tance) codeword ck in C1, and be encoded as the corresponding
index k. This process is referred to as the vector quantisation
step, and can be formulated as φn = f(xn, C1) , where the
function f : RD → RK encodes each feature xn into the code-
book space, resulting in a corresponding k-dimension feature
φn ∈ RK while its k-th coefficient φn,k with k = 1, ...,K is
defined as follows:

φn,k =

{
1, if k = argmink ‖xn − ck‖22
0, otherwise

. (2)

However, during the quantisation step, there might be the
case that one feature vector is nearly equidistant to several code-
words, and therefore single assignment is ambiguous. Hence,
instead of choosing the nearest codeword, it is also possible to
assign a feature to a certain number Na of closest codewords.
This variant can be referred to as multiple assignments, and is
used here as it has proven to perform better than a single assign-
ment [15].

BoAW Aggregation: given an audio segment s spanning
several frames, a ‘bag’ can then be created by simply comput-
ing a histogram of codewords. More specifically, a histogram
representation hs is formed to describe the distribution of the
features, i. e., how and to what extent each codeword has con-
tributed to represent s. This process is referred to as the BoAW
aggregation step, and can be formulated as hs = g({φn}n∈Ns),
where a pooling function g : RK×Ns → RK aggregates occur-
rences of each codeword represented by φn in all Ns frames
for a given segment s. Thus, its k-th component hs,k can be
computed as:

hs,k =

Ns∑
n=1

{φn,k}. (3)

At this point, with the learnt first-layer codebook C1, origi-
nal features {xn} are encoded into segment-level features {hs}
which contain context information. Thus, we refer to these fea-
tures as context-aware words.

2.2. Bag of Context-Aware Words Model

In regular BoAW, the histogram representation hs that cov-
ers the entire instance (i. e., a very long segment) is the final
high-level representation, which then can be exploited for au-
dio classification or regression tasks. In contrast, we propose to
treat series of the histogram feature {hs} generated from much
shorter segments as mid-level representations, and apply a sec-
ond BoAW layer to form final high-level representations. Our
concern is that, typical emotion patterns may exist among a se-
quence of several coherent frames, and therefore features gener-
ated based on segments rather than frames may perform better
for ESR.

As depicted in Figure 1, after layer 1, each given audio file
a is now represented by a set of context-aware words {hs} with
hs ∈ RK . Next, in layer 2, similar as demonstrated in Sec. 2.1,
we build a second-layer codebook C2 by random sampling K
codewords over all hs from training files. After that, vector
quantisation with MA is applied to convert hs into indices of
the Na closest codewords from C2. At the end, for each a, a
final BoCAW representation ha is computed by counting the
occurrences of corresponding second-layer codewords for all
segments in it. This process is referred to as the BoCAW aggre-
gation step.

Note that audio files of variable lengths can be encoded



into BoCAW features with an equal and fixed length, and in
the meanwhile short-term temporal information is preserved in
these features.

3. Experiments and Results
To evaluate the effectiveness of the proposed bags of context-
aware words approach for ERS, we conducted extensive exper-
iments on a widely used database in the affective computing
community.

3.1. Data and Features

We chose RECOLA [16], a standard database that was pre-
viously used in the Audio/Visual Emotion Challenge (AVEC)
for dimensional emotion recognition in 2015 and 2016 [23,24].
This database was created with the aim to study socio-affective
behaviours from multimodal data in the context of remote col-
laborative tasks. More specifically, the corpus consists of
spontaneous and natural interactions from 46 French-speaking
participants involved in a dyadic collaborative task. Multi-
modal signals including audio, video, and peripheral physiol-
ogy recordings such as electro-cardiogram and electro-dermal
activity were recorded continuously and synchronously over
time. In this study, however, only audio recordings were utilised
for the emotion recognition task. To obtain the annotations,
time- and value-continuous dimensional affect ratings in terms
of arousal and valence were performed by six annotators. The
obtained annotations were then resampled with a constant frame
rate of 40 ms to align with the frame rate of the recordings.
The ‘gold standard’ was then estimated by averaging all six an-
notations while considering the inter-evaluator agreement as a
weighting factor [25].

In order to ensure speaker-independence, the dataset was
further divided into three disjoint partitions, i. e., training (16),
development (15), and test (15), by balancing the gender, age,
and mother tongue of the participants. Note that, we employed
the same partitions as in [15,26–30]. As a result, the total num-
bers of overlapping segments in the train, development, and test
partitions are 120.0 k, 112.5 k, and 112.5 k, respectively.

Furthermore, to extract acoustic features, we used our open-
source OPENSMILE toolkit [31] to extract 13 LLDs, i. e.,
MFCC 0-12 and the logarithmic energy, with a frame window
size of 25 ms and a step size of 10 ms, as the inputs of the pro-
posed framework, which are exactly the same as the ones of a
previous framework proposed in [15].

3.2. Implementation and Evaluation

Before learning the BoCAW representations, an online stan-
dardisation was conducted on all LLDs. Specifically, the mean
and variance of each LLDs was calculated on the training set,
which were then applied over the development and test sets for
standardisation.

To demonstrate the effectiveness of the proposed method
for ERS, we utilised Support Vector Regression (SVR) imple-
mented in the LIBLINEAR toolkit [32] with a linear kernel and
trained with an L2-regularised L2-loss dual solver. The com-
plexity C was optimised on the development set in the range of
[10−5, 100].

We also performed a grid-search over the parame-
ters of the BoCAW which include the local window size
(W1) and the time step size (Ts1) of layer 1. More
specifically, a best setting was determined on the best
performance achieved on the development set by a grid

search over [0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6] forW1 and
[0.05, 0.1, 0.2, 0.4] for Ts1 when training (Ts1 for develop-
ment and test is fixed to be 40ms to match the granularity
of the annotations). Furthermore, for a fair comparison with
our previous work in [15], we fixed other hyper-parameters
of the model, maintaining the settings for the codebook size
(Cs=1000), number of assignments (Na=20), and the global
window size (W2=8.0 s) and the time step size (Ts2=800ms
for training to achieve a fast process or 40ms for development
and test to match the granularity of the annotations) of layer 2.

Additionally, we performed the same post-processing chain
on all predictions as in [15, 24, 28]: smoothing, centring, scal-
ing, and time-shifting. All the modification parameters were
optimised on the development set and then applied on the test
set.

To evaluate the performance of our methods, we use Con-
cordance Correlation Coefficient (CCC), which is a standard
evaluation metric for time- and value-continuous prediction of
emotion; it measures the agreement between the gold standard
and the predictions. Given two time series x and y, their CCC
is calculated as follows:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)
2 , (4)

where ρ is the Pearson’s Correlation Coefficient (PCC) between
two time series (e.g., prediction and gold-standard); µx and µy

are the means of each time series; and σ2
x and σ2

y are the corre-
sponding variances. In contrast to the PCC, CCC takes not only
the linear correlation, but also the bias between the two tempo-
ral series, i.e., (µx − µy)

2, into account. Hence, the value of
CCC is within the range of [−1, 1], where±1 represents perfect
concordance and discordance while 0 means no correlation. In
other words, a higher CCC indicates a better performance.

To further assess the significance level of performance im-
provement, a statistical evaluation was carried out over all pre-
dictions obtained with the BoCAW approach and with other
benchmark methods such as BoAW, by means of the Fisher’s
r-to-z transformation [33]. Unless stated otherwise, a p value
lower than .05 indicates statistical significance.

3.3. Results and Discussion

In our experiments, we carried out two regression tasks, i.e.,
arousal and valence prediction from speech. Table 1 presents
result performances in terms of CCC for the proposed BoCAW
features. Results are reported on both the development and test
sets over different window sizes W1 for arousal and valence,
respectively. It can be seen from the table that, the best results
on the development set for the arousal and valence dimensions
is .800 and .603, respectively, and the best results obtained on
the test set are .757 for arousal and .497 for valence.

Moreover, our results also show that predictions of arousal
and valence are differently influenced by the length of W1.
Therefore, to better illustrate the effect of W1 for the prediction
of emotions, we compute the performance (in CCC) averaged
over all four selected time step sizes Ts1 for each predefined
window size, as shown in Figure 2. WhenW1=0.01 s, i.e., only
one frame is included in each segment on layer 1, then, the steps
conducted on layer 1 equal to quantising original features, de-
livering only a slight improvement. When the window size in-
creases, i.e., an increasing number of frames are contained in a
segment, the performance of emotion prediction improves un-
til a point where information of different emotional nature are



Table 1: Performances in terms of Concordance Correlation
Coefficient (CCC) of the proposed BoCAW features with vari-
ous window sizes of the first layer (W1), for both arousal and
valence regressions, evaluated on the devlopment and test parti-
tions. Note that, for eachW1, only the best performance among
four examined time step sizes (Ts1) is reported, by calculating
the averaged predictions of arousal and valence on the develop-
ment set. The best results achieved are highlighted. The symbol
of ∗ indicates the significance of the performance improvement
over the bag-of-audio-words (BoAW) method.

settings arousal valence
W1(s) Ts1(s) dev test dev test

BoAW [15] .789 .738 .550 .430

0.01 0.1 .791 .746∗ .557∗ .432
0.02 0.1 .791 .753∗ .581∗ .497∗
0.05 0.1 .800∗ .750∗ .572∗ .463∗

0.1 0.2 .797∗ .757∗ .603∗ .465∗

0.2 0.4 .787 .752∗ .546 .455∗

0.4 0.2 .780 .747∗ .543 .492∗

0.8 0.4 .775 .738 .540 .459∗

1.6 0.4 .765 .733 .532 .423

contained in the window, and thus performances starts to de-
crease. To this end, we need to identify a proper analysis win-
dow size W1 for the task at hand. We can observe from the
figure that, the best window size is 0.05 s for arousal, whereas
the best performance for valence is obtained with a longer win-
dow (0.1 s). This result is coherent with other findings in the
literature [15, 25], and confirms that more context information
is essential for valence than arousal when generating context-
aware bags. Interestingly, as for human annotators, people are
also slower to give valence ratings, compared to arousal [34].

Additionally, to further highlight the advantages of the Bo-
CAW approach, we compared the best performance it achieved
on the RECOLA dataset with seven others systems from the
state-of-the-art. In [26], CCC was exploited as the cost function
instead of standard mean squared error when training a deep
model, whereas an end-to-end framework that learns represen-
tations directly from raw signals was implemented in [27]. Be-
sides, by compensating the weakness of a model itself or incor-
porating the strength of different models, the Reconstruction-
Error-based (RE-based) learning framework and prediction-
based learning framework were proposed in [29] and [30], re-
spectively. More recently, an adversarial training approach was
investigated for emotion regression problems in [28] for the
first time. The last framework to compare with is obviously
BoAW [15], which is the fundamental of this work as well. A
comparison of the best performances of all above mentioned
approaches and our BoCAW on the RECOLA dataset is pre-
sented in Table 2. It can be seen that, when using BoCAW
representations, the CCC performance is significantly improved
for both arousal and valence predictions (statistical evaluation
via a Fisher’s r-to-z transformation as outlined in Section 3.2)
compared to original BoW framework. Also, to the best of our
knowledge, the BoCAW features we proposed yield the best re-
sults to date on the RECOLA database from speech.

4. Conclusions
This paper proposes a hierarchical framework that ameliorates
Bag-of-Audio-Words (BoAW) with context information main-
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Figure 2: The effect of the sub-bag’s window size on the perfor-
mance (CCC) when predicting arousal and valence separately.
Performances are averaged over all examined time step sizes on
the development partition.

Table 2: Performances in terms of CCC of the proposed
method comparing with other state-of-the-art approaches on
the RECOLA dataset. The best results achieved are highlighted.
The symbol of ∗ indicates the significance of the performance
improvement over the bag-of-audio-words (BoAW) method.

approaches arousal valence
dev test dev test

CCC-objective [26] .412 .350 .242 .199
end-to-end [27] .752 .699 .406 .311
RE-based [29] .785 .729 .378 .360
prediction-based [30] .774 .744 .440 .393
adversarial training [28] .797 .737 .501 .455
BoAW [15] .789 .738 .550 .430

BoCAW (proposed) .800∗ .750∗ .603∗ .465∗

tained on segment-level features, named as Bag-of-Context-
Aware-Words (BoCAW). In this framework, BoAW is first ap-
plied on a sequence of segments, and then, these segment-level
features are fed into a second BoAW layer to extract an higher-
level representation of the information captured in the first layer.
Evaluations have been conducted on the RECOLA database to
assess the system performance. Results show that, the pro-
posed BoCAW obtains state-of-the-art performance for ERS
while providing understandable representations.

Further, the proposed BoCAW representations based on
segments are also applicable to other pattern recognition tasks
where a specific pattern lasts a period of time, such as laugh-
ter detection [35], engagement recognition [36], acoustic scene
classification [37], and language identification [38].
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