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ABSTRACT

The Audio/Visual Emotion Challenge and Workshop (AVEC 2018)
“Bipolar disorder, and cross-cultural affect recognition” is the eighth
competition event aimed at the comparison of multimedia process-
ing and machine learning methods for automatic audiovisual health
and emotion analysis, with all participants competing strictly under
the same conditions. The goal of the Challenge is to provide a com-
mon benchmark test set for multimodal information processing and
to bring together the health and emotion recognition communities,
as well as the audiovisual processing communities, to compare the
relative merits of various approaches to health and emotion recog-
nition from real-life data. This paper presents the major novelties
introduced this year, the challenge guidelines, the data used, and the
performance of the baseline systems on the three proposed tasks:
bipolar disorder classification, cross-cultural dimensional emotion
recognition, and emotional label generation from individual ratings,
respectively.
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1 INTRODUCTION

The Audio/Visual Emotion Challenge andWorkshop (AVEC 2018) is
the eighth competition aimed at comparison of multimedia process-
ing and machine learning methods for automatic audio, visual, and
audiovisual health and emotion sensing, with all participants com-
peting strictly under the same conditions [59, 61, 71, 72, 78, 80, 81].

One of the goals of the AVEC series is to bring together multiple
communities from different disciplines, in particular the multimedia
communities and those in the psychological and social sciences
who study expressive behaviour. Another objective is to provide a
common benchmark test set for multimodal information processing,
to compare the relative merits of the approaches to automatic health
and emotion analysis under well-defined conditions, i. e. , with large
volumes of un-segmented, non-prototypical and non-preselected
data of fully naturalistic behaviour.
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AVEC 2018 is themed around two topics: bipolar disorder (for
the first time in a challenge), and emotion recognition. Major nov-
elties are introduced this year with three separated Sub-challenges
focusing on health and emotion analysis: (i) Bipolar Disorder Sub-
challenge (BDS), (ii) Cross-cultural Emotion Sub-challenge (CES),
and (iii) Gold-standard Emotion Sub-challenge (GES). We describe
in the following the novelties introduced in the Challenge and the
Challenge guidelines.

The Bipolar Disorder Sub-challenge (BDS) is a new challenge, the
first of its kind in the scope of mental health analysis. Whereas the
topic of depression analysis was featured in the previous editions
of AVEC [59, 78], we introduce this year the analysis of the manic
episodes of bipolar disorder (BD), using the BD corpus [11]. In the
BDS, participants have to classify patients suffering from BD and
admitted to a hospital after a mania episode into three categories of
mania, hypo-mania, and remission, following the Young Mania Rat-
ing Scale (YMRS) [85]. The participants estimate the classes from
audiovisual recordings of structured interviews recorded periodi-
cally from the day of admittance to discharge, and the performance
is measured by the Unweighted Average Recall (UAR), which is the
average of the recall in percentage obtained on each of the three
classes.

The Cross-cultural Emotion Sub-challenge (CES) is a major ex-
tension of the Emotion Sub-challenge previously run in AVEC
2017 [60], where dimensional emotion recognition was performed
on data collected ‘in-the-wild’ by the German participants of the
SEWA dataset1; audiovisual signals were recorded in various places,
e. g. , home, work place, and with arbitrary personal equipments,
thus providing noisy but realistic data. For the AVEC 2018 CES, an
extended version of the SEWA dataset, with new data collected in
the same conditions from Hungarian participants, is used as a blind
test set for the first ever cross-cultural emotion recognition compe-
tition task: participants have to predict the level of three emotional
dimensions (arousal, valence, and liking) time-continuously from
audiovisual recordings of dyadic interactions, and performance is
the total Concordance Correlation Coefficient (CCC) [45, 83] averaged
over the dimensions.

The Gold-standard Emotion Sub-challenge (GES) is a new task
focusing on the generation of dimensional emotion labels. The task
consists in the fusion of time-continuous annotations of dimen-
sional emotions consistently provided by several annotators. The
obtained labels are then used to train and evaluate a baseline mul-
timodal emotion recognition system on the RECOLA dataset [63],
which includes audiovisual and physiological recordings of dyadic
interactions from French speaking subjects, and annotations data
from six gender-balanced external annotators with the samemother
tongue. The performance obtained by the baseline system on the
test partition, for which the labels are generated by the algorithm
provided by the participants in a blind manner, is used for ranking
the contribution with the averaged CCC [83]. In order to avoid a
simple system ignoring the annotations but performing well, vi-
sual inspection and statistical analysis is performed on the labels
to ensure that the original variance found in the annotations is
sufficiently well preserved.

1https://db.sewaproject.eu/

All Sub-challenges allow contributors to find their own features
to use with their own machine learning algorithm. In addition, stan-
dard feature sets are provided for audio and video data (cf. section 4),
along with scripts available in a public repository2, which partic-
ipants are free to use for reproducing both the baseline features
and recognition systems. The labels of the test partition remain
unknown to the participants, and participants have to stick to the
definition of training, development, and test partition. They may
freely report on results obtained on the development partition, but
are limited to five trials per Sub-challenge in submitting their results
on the test partition.

Ranking relies on the scoring metric of each respective Sub-
challenge, i. e. , UAR for the BDS, total CCC for the CES, and av-
eraged CCC for the GES. The UAR better reflects classification
performance when the distribution of instances in the classes is not
balanced, and is thus used as ranking metric for the BDS. Regarding
the two regression tasks (CES and GES), the CCC is preferred over
the Pearson’s Correlation Coefficient (PCC), because it is sensitive
to bias and scaling, and permit discriminative training when used
as cost function [83]. The averaged CCC differs from the total CCC
in that the former necessarily enforces accurate prediction of the
target contour within each sequence, while the latter could assign
a good score to over-smoothed regression outputs that only predict
the average label right [76, 83]. Therefore, we used the total CCC
as metric for the CES, as an overall accurate prediction is desired
for the cross-cultural paradigm, and the averaged CCC for the GES,
as the focus is on a detailed description of the labels.

To be eligible to participate in the challenge, every entry had
to be accompanied by a paper submitted to the AVEC 2018 Data
Challenge and Workshop, describing the results and the methods
that created them. These papers underwent peer-review by the
technical program committee. Only contributions with a relevant
accepted paper and at least a submission of test results were eligible
for challenge participation. The organisers did not participate in
the Challenge themselves, but re-evaluated the findings of the best
performing system of each Sub-challenge.

The remainder of this article is organised as follows. We sum-
marise relevant related work in Section 2, introduce the challenge
corpora in Section 3, the common audiovisual baseline feature sets
in Section 4 and the developed baseline recognition systems with
the obtained results in Section 5, before concluding in Section 6.

2 RELATEDWORK

We summarise below the state-of-the-art in the automatic analysis
of affect with a focus on: (i) the population of BD, (ii) dimensional
analysis in cross-cultural paradigms, and (iii) generation of emotion
labels from individual annotations.

2.1 Bipolar Disorder

BD is a serious, persistent (possibly lifelong) mental health disor-
der, with subjects experiencing intermittent episodes of mania and
depression that can last from days to months, and cause unusual
shifts in mood, energy, activity levels, and the ability to carry out
day-to-day tasks. While one in four people in the world will be
affected by mental or neurological disorder at some point in their
2https://github.com/AudioVisualEmotionChallenge/AVEC2018
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lives [54], BD lifelong prevalence is about 2.1 % worldwide [49], and
suicidal risk amongst BD patients is around 15%. Consequently,
World Health Organisation has ranked BD among the top ten dis-
eases for young adults according to the Disability-Adjusted Life
Year (DALY) indicator [55].

Access to treatment and treatment resistance have been iden-
tified as one of the big challenges for medical care in BD [8]. In
addition, many patients with BD are seen exclusively in primary
care [43], due to a lack of access to specialised mental health care
services, and the stigma associated with receiving care in a mental
health setting [42, 57]. Recent advances in the automatic recogni-
tion of human behaviours from multimodal data [7, 31] constitute
thus promising avenues for facilitating the monitoring of patients
suffering from BD. Some studies have investigated the use of auto-
mated methods for the analysis of BD.

Multimodal data passively collected from smartphones, such
as location, distance travelled, conversation frequency, and non-
stationary duration, by seven BD patients for four weeks, were used
to assess the Social RhythmMetric (SRM) in [2], which is a measure
of stability and periodicity for individuals with BD [29]. Authors
reported that the SRM score (0-7) could be predicted by Support
Vector Machines (SVMs) with a Root Mean Square Error (RMSE) of
1.40, and further improved to 0.92 when using personalised models.

Another study exploited data collected from smartphones for
twelve weeks to classify 28 patients into manic or mixed states [25],
following the YMRS [85]. In addition to metadata, such as the num-
ber of text messages and phone calls emitted per day, they used
speech features (6.5k acoustic measures computed with the openS-
MILE toolkit [22] – emolarge feature set) collected during phone
calls. Random forests were exploited to perform the classification
task and speech features provided the best performance with an
area under the curve (AUC) of 0.89.

In [39], long-term monitoring (6-12 months) of mood of 43 sub-
jects suffering from BD was investigated from speech data collected
with cellular phones. The authors further developed a program
termed PRIORI (Predicting Individual Outcomes for Rapid Inter-
vention), to analyse acoustics of speech as predictors of mood state
from mobile smartphone data [41]. Subject-specific mood variation
was captured in an i-vector space and then used with SVMs as
features to classify euthymia vs. depression state of BD patients.
The system performed best with a soft decision fusion and obtained
an AUC of 0.78.

2.2 Cross-cultural Emotion Recognition

The other theme of AVEC 2018 – obviously – relies on emotion,
but on two different facets never explored in a challenge: (i) cross-
cultural inference of emotional dimensions in-the-wild and (ii) gen-
eration of emotional labels from individual ratings. The generalis-
ability of recognising emotion expression across different cultures
has continually been highlighted as an open research challenge in
affective computing [19, 20, 56]. Indeed, it was observed in a recent
meta-review into multimodal affect detection systems [17], that
only minimal research efforts have been made into assessing the
performance and robustness of state-of-the-art affective computing
approaches across cultures.

A common idiom in facial expression recognition is that, due in
part to consistencies across all humans in terms of the make-up of
our facial muscles [12], emotional expressions – especially within
the basic emotions of happiness, sadness, fear, anger, disgust, and
surprise – have a large degree of universality across cultures [12, 18].
However, it is very difficult to find works in the affective computing
recognition literature, particularly for dimensional affect represen-
tations, which support this claim [17]. Furthermore, it has also been
argued that the results of facial expression perception studies can be
easily biased by the manner in which the answers are elicited [65].

Despite the apparent complexity, some efforts have been made
for the empirical evaluation of emotion recognition systems’ per-
formance in cross-cultural settings. Accuracies achieved in such
settings are, in general, less than those achieved within-culture,
and training with cultures from similar language families has been
shown to improve the accuracy [28, 67]. Moreover, as cross-culture
testing is more often performed in a cross-corpus scenario, transfer
learning [86, 87] and domain adaptation techniques [40, 66] can be
leveraged to deal with aspects such as channel effects and covariate
shift [87].

2.3 Generation of Emotion Labels

Emotion recognition, as many other supervised machine learn-
ing tasks, requires a large amount of labels of sufficient quality
to train systems learning the appropriate mapping between in-
put data – usually collected from sensors like web-cameras – and
the labels describing the emotion. Because those labels are at the
core of the machine learning, they need a careful attention in their
definition, especially when they consist in human judgements of
human behaviours, which are by nature, highly variable and sub-
jective [77]. Whereas humans seem to be more efficient at discrimi-
nating among options than assigning absolute values to subjective
variables [50, 84], the dominant approach in affect modelling relies
on absolute values of dimensional attributes, such as arousal or va-
lence [64], that are annotated time-continuously over the recordings
by a pool of annotators using a tool like Feeltrace [13].

Even though individual ratings of emotion can be modelled all
together in a multi-task learning framework [58], the dominant
practice is to summarise the annotations for each recording into a
single time-series, referred as gold-standard in the literature3, that
can be then easily processed by any machine learning algorithm.
However, many difficulties arise during the fusion of the individual
annotations, as inconsistencies appear between values reported by
the annotators [77], and a delay is present between the emotional
event expressed in the data and the corresponding annotation value,
which is due to the reaction time and other related cognitive factors.

Some studies have investigated methods to process noisy time-
continuous labels reported by humans on dimensional attributes of
emotion, in order to learn more reliable predictive models of hu-
man behaviours. A notable work is the winning contribution of the
AVEC 2012 Challenge [71], where authors proposed to maximise
the PCC between audiovisual features and the gold-standard to

3The term gold-standard is preferred over the more common terminology of ground-
truth, as there is not a direct and unique mean to measure the expressed emotions in a
natural interaction; only subjective evaluations of those emotions are available, hence
there is no truth in the definition of emotion labels.
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estimate the delay used to compensate the reaction time of annota-
tors [53]. This approach was further investigated by maximising
the Mutual Information (MI) instead of the PCC, which was re-
ported to be less reliable and more sensitive to noise present in
the data in comparison with MI [47, 73]. Some participants of the
AVEC 2015 Challenge [61] proposed to estimate an overall reaction
time for each emotional dimension by maximising the recognition
performance while varying the delay in a grid search [35, 36]; this
method has been used since then in the baseline system of the
AVEC Challenge as reaction time compensation.

Dynamic Time Warping (DTW) [51], which is a popular method
to performmonotonic time-alignment between two time-series, has
also been successfully employed to compensate reaction time using
different variants of the method, such as Canonical Time Warp-
ing [26, 52], Generalised Time Warping [27], and Deep Canonical
Time Warping [75]. Additional comparative rank-based informa-
tion with triplet embedding [82] was also proposed for warping
dimensional annotations in [10].

Alternative strategies explored in the literature consist in
minimising the distortions amongst the annotators using the
expectation-maximisation algorithm [33], smoothing the annota-
tion values [74], or exploiting measures of inter-rater agreement
as joint predictive information [34]. In addition, it is worth to note
that, as emotions are dynamic by nature, the prediction of a change
in emotion has been proven to perform better than predicting the
value itself in some cases [37, 46, 48].

3 CHALLENGE CORPORA

The AVEC 2018 Challenge relies on three corpora: (i) the BD cor-
pus [11] for the BDS, (ii) SEWA dataset1 for the CES, and (iii)
RECOLA dataset4 [63] for the GES. We provide below a short
overview of each dataset and refer the reader to the original work
for a more complete description.

3.1 Bipolar Disorder Corpus

The BD corpus [11] used for the AVEC 2018 BDS includes audiovi-
sual recordings of structured interviews performed by 46 Turkish
speaking subjects. All the subjects suffered from BD and were re-
cruited from a mental health service hospital, where they were
diagnosed by clinicians following DSM-5’s inclusion criteria [1].
Only bipolar patients at mania episode were included in the study,
while being in depressive episode was part of the exclusion criteria.
Other exclusion criteria included being younger than 18 years or
older than 60 years, showing low mental capacity during interview,
expression of hallucinations and disruptive behaviours during inter-
view, presence of severe organic disease and diagnosis of substance
or alcohol abuse in the last three months. Participants of the BD
corpus were asked to complete seven tasks guided by a presentation,
inspired by the collection of the Audio-Visual Depressive Language
Corpus (AVDLC) used in former AVEC challenges [80, 81]. The
tasks included explaining the reason to participate in the activity,
describing happy and sad memories, counting up to thirty, and
explaining two emotion eliciting pictures. The video recordings are
given in their entirety, without task-based segmentation, but a tone
is played when the task is switched, produced by the system that
presented the instructions on the screen.

Table 1: Number and duration (minutes : seconds) of video

clips of the BD corpus used for the AVEC 2018 BDS; details

are blinded on the test partition.

Category Training Development Test

Remission 25 – 64:52 18 – 42:47 –
Hypomania 38 – 167:42 21 – 62:24 –
Mania 41 – 189:29 21 – 71:01 –

All 104 – 422:04 60 – 176:13 54 – 207:07

Table 2: Number of subjects and duration (minutes : seconds)

of the video chats of the SEWA database used for the AVEC

2018 CES.

Culture Partition # Subjects Duration

German Training 34 93:12
German Development 14 37:46
German Test 16 46:38
Hungarian Test 66 133:12

All 130 310:48

The full corpus was collected from over 100 subjects, half of
which forming the healthy control group, and under ethical com-
mittee approval. In the scope of the challenge, we focus on the
portion collected from 35 male and 16 female bipolar subjects from
the psychiatry inpatient service. Out of 51 patients, five subjects did
not give consent for sharing their data publicly, thus the number of
subjects present in this challenge is 46 (30M, 16 F). Video recordings
and session level annotations were carried out during hospitaliza-
tion, in every follow up day (0th- 3rd- 7th- 14th- 28th day) and
after discharge on the 3rd month. Presence of manic features were
evaluated after each session using the Young Mania Rating Scale
(YMRS) [85]; scores obtained at time t are grouped into three levels:
Remission (YMRSt <= 7), hypomania (7 < YMRSt < 20), and mania
(YMRSt >= 20).

For the purpose of the AVEC 2018 BDS, the BD corpus was seg-
mented into three subject-independent partitions (training – 22
subjects development – 12 subjects, and test – 12 subjects, respec-
tively), while preserving the first two statistical moments of gender,
age, and level of mania over the partitions. Details such as number
and duration of video clips (except test) are given in Table 1.

3.2 SEWA database

The SEWA database consists of audiovisual recordings of spon-
taneous behaviour of participants captured using an in-the-wild
recording paradigm. Subjects from German and Hungarian cultures
(pairs of friends or relatives) were recorded through a dedicated
video chat platform which utilised participants’ own – standard –
web-cameras and microphones. After watching a set of commer-
cials, pairs of participants were given the task to discuss the last
advert watched (a video clip advertising a water tap) for up to three
minutes. The aim of this discussion was to elicit further reactions
and opinions about the advert and the advertised product.
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In addition to the audio and video modalities, manual transcrip-
tion of the speech is available for the whole dataset. The transcrip-
tion was done by a native speaker, providing timestamps for each
utterance. The video chats of both cultures have been annotated
w. r. t. the emotional dimensions arousal and valence, and a third
dimension describing liking (or sentiment), independently by six
(German) or 5 (Hungarian) native speakers. The annotation con-
tours are combined into a single gold-standard using the same
evaluator weighted estimator (EWE)-based approach that was used
in AVEC 2017 [60]. Table 2 shows the number of subjects and the
duration of the recordings for each partition.

3.3 RECOLA database

The Remote Collaborative and Affective Interactions (RECOLA)
database [63], which is available on-line4, was recorded to study
socio-affective behaviours from multimodal data in the context
of computer-supported collaborative work [62]. Spontaneous and
naturalistic interactions were collected during the resolution of
a collaborative task that was performed in dyads and remotely
through video conference. Multimodal signals, i. e. , audio, video,
electro-cardiogram (ECG) and electro-dermal activity (EDA), were
synchronously recorded from 27 French-speaking subjects, who did
not know each other well inmost cases. The database was annotated
time-continuously for the dimensions of arousal and valence by six
gender-balanced French speaking annotators. The gold-standard is
generated with the same evaluator weighted estimator-based [32]
approach as used in the previous editions of AVEC [61, 79]. Par-
titioning of the dataset into training, development, and test sets
(with exactly nine subjects and an overall duration of 45minutes
per partition) was performed while preserving the distribution of
mother tongue, age and gender, and is exactly the same as used in
the preceding editions of the AVEC Challenge [61, 79].

4 BASELINE FEATURES

Emotion recognition from audiovisual signals usually relies on
feature sets whose extraction is based on knowledge gained
over several decades of research in the domains of speech
processing and vision computing. Along with the recent trend of
representation learning, whose objective is to learn representations
of data that are best suited for the recognition task [9], there has
been some noticeable efforts in the field of affective computing
to learn representations of audio/visual data in the context of
emotion [14, 15, 30, 68, 76]. In order to better reflect those advances,
we introduce for the AVEC 2018 Challenge an ensemble of three
methods that use a different level of supervision in the way expert
knowledge is exploited at the feature extraction step: (i) supervised:
features rely directly on expert-knowledge based representations,
i. e. , the usual approach [6, 21], (ii) semi-supervised: features are
learned from expert-knowledge based representations [30, 68],
and (iii) unsupervised: features are directly learned from the raw
signals [76], or generated [16], with eventual use of out-of-domain
data [14, 15].

4http://diuf.unifr.ch/diva/recola

4.1 Supervised: Expert-knowledge

The traditional approach in time-continuous emotion recognition
consists in summarising low-level descriptors (LLDs) of speech and
video data over time with a set of statistical measures computed
over a fixed-duration sliding window. Those descriptors usually
include spectral, cepstral, prosodic, and voice quality information
for the audio channel, appearance and geometric information for
the video channel. Features can be either brute-forced with a large
ensemble of LLDs that are all combined with a large set of statistical
measures, e. g. , the ComParE acoustic feature set [70], or they can
be reduced to smaller, expert-knowledge based information. As
visual features, we extract the intensities of 17 Facial Action Units
(FAUs) for each video frame, along with a confidencemeasure, using
the toolkit openFace5 [6], as the FAUs have proven to perform well
for facial emotion recognition. Recommendations for the definition
of a minimalistic acoustic standard parameter set have led to the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS) [21], and
to an extended version (eGeMAPS), which contains 88 measures
covering the aforementioned acoustic dimensions, and used here as
baseline. In addition, Mel-frequency cepstral coefficients (MFCCs) 1-
13, including their 1st- and 2nd-order derivatives (deltas and double-
deltas) are computed as a set of acoustic LLDs. The open-source
toolkit openSMILE6 [22] is used to extract the acoustic features.

4.2 Semi-supervised: Bags-of-X-Words

The technique of bags-of-words (BoW), which originates from text
processing, can be seen as a semi-supervised representation learn-
ing, because it represents the distribution of LLDs according to a
dictionary learned from them. As a front-end of the bags-of-words,
we use the MFCCs for the acoustic data, and the intensities of the
FAUs for the video data; MFCCs are standardised (zero mean, unit
variance) in an on-line approach prior to vector quantisation, while
this step is not required for the FAU intensities. To generate the
XBoW-representations, both the acoustic and the visual features are
processed and summarised over a block of a fixed length duration,
for each step of 100ms or 400ms, in order to match the frequency
of the gold-standard of the CES and GES, respectively. Instances
are sampled at random to build the dictionary, and the logarithm is
taken from resulting term frequencies in order to compress their
range. The whole XBoW processing chain is executed using the
open-source toolkit openXBOW7 [69].

4.3 Unsupervised: Deep Spectrum

As unsupervised audio baseline feature representation in this year’s
challenge we have included Deep Spectrum8 features, which were
first introduced for snore sound classification [4], and are extracted
using deep representation learning paradigm heavily inspired by
image processing. Deep Spectrum features have been shown to be
effective in tasks highly related to the presented Sub-challenges,
including emotion recognition [14], sentiment classification [3, 15]
and autism severity recognition [5].

5https://github.com/TadasBaltrusaitis/OpenFace/
6http://audeering.com/technology/opensmile/
7https://github.com/openXBOW/openXBOW
8https://github.com/DeepSpectrum/DeepSpectrum

http://diuf.unifr.ch/diva/recola
https://github.com/TadasBaltrusaitis/OpenFace/
http://audeering.com/technology/opensmile/
https://github.com/openXBOW/openXBOW
https://github.com/DeepSpectrum/DeepSpectrum
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To generate Deep Spectrum features, the speech files are first
transformed into mel-spectrogram images using Hanning windows
(default configuration: 1 s duration and hop-size of 100ms) and a
power spectral density computed on the dB power scale. For this
and the generation of the plots with a viridis colour mapping, the
matplotlib python package [38] is used. The plots are then scaled
and cropped to square images of size 227 × 227 pixels without axes
and margins to comply with the input needs of AlexNet [44]
– a deep CNN pre-trained for image classification. Afterwards,
the spectral-based images are forwarded through AlexNet. Fi-
nally, 4 096-dimensional feature vectors are extracted from the
mel-spectrogram images using the activations from the second
fully-connected layer (fc7 ) of AlexNet.

5 BASELINE SYSTEMS

All baseline scripts are provided in the GitHub repository2 of the
AVEC Challenge, enabling participants to reproduce both the fea-
ture extraction and machine learning from the raw audiovisual
files. Baseline systems rely exclusively on existing open-source
machine learning toolkits to ease the reproducibility of the results.
We describe in the following the systems developed for each Sub-
challenge, and then present the obtained results.

5.1 Bipolar Disorder Sub-challenge

The baseline recognition system of the BDS consists of a late fusion
of the best performing audio and video representations using linear
SVMs with the liblinear toolkit [24]; training instances of the
minority classes are duplicated to be balanced with the majority
class, and the type of solver and the value of complexity C are
optimised by a grid search, using a logarithmic scale for the latter,
with C ∈ [1.10−5, 2.10−5, 5.10−5, 1.10−4, ... , 100].

For audio data, the MFCCs are computed at the frame level, and
the eGeMAPS set at the speaker turn level. The turns are estimated
automatically by a voice activity detection based on Long Short-
Term Memory Recurrent Neural Networks (LSTM-RNN) [23], and
timings are further post-processed to ignore pauses shorter than
500ms and speech segments shorter than 1 s . In addition, the tone
played when switching the task is detected automatically by tem-
plate matching, but is only utilised for ignoring the corresponding
acoustic LLDs, and not for topic-based segmentation, because the
number of clearly audible tones present in the data varied across ses-
sions. Bags-of-audio-words (BoAW) are generated with a window
size of 2 s (best duration obtained by a grid search) and a hop-size
of 1 s , and 20 soft assignments are performed on a codebook size
of 1000 instances. The Deep spectrum features are computed with
the default configuration.

For video data, frames are filtered in order to keep the estima-
tions of the FAUs’ intensity that were obtained with a minimum
confidence level of 95 %, which removed 2.71% of the frames. The
intensity of the FAUs are then summarised over each recording
session by using the mean, standard-deviation, and the relative po-
sition of the maximum as statistical measures. Bag-of-video-words
(BoVW) are generated with a window size of 11 s (best duration
found in a grid search) and a hop-size of 1 s , and the same parame-
ters for soft assignments and codebook size as defined for the audio
data are used.

On-line standardisation of the features is performed only for
the supervised representations, i. e. , eGeMAPS for audio and the
FAUs for video; values of BoW and Deep Spectrum representations
are processed directly. Final decision is based on majority voting
for all audiovisual representations, except for the statistics of FAU
intensity, which are computed at the session level.

5.2 Cross-cultural Emotion Sub-challenge

For the baseline system of the CES, we employ a 2-layer LSTM-
RNN as a time-dependent regressor for each representation of the
audiovisual signals, and SVMs (liblinear with L2-L2 dual form
of the objective function) for the late fusion of the predictions. To
limit the complexity of the LSTM-RNN based approach, only two
recurrent layers consisting of 64 / 32 LSTM units each have been
employed. The three targets are learned together. The model is
implemented using the Keras framework. The network is trained
for 50 epochs with the RMSprop optimiser, and the model providing
the highest CCC on the development set (German culture) is used to
generate the predictions for the test sets (Hungarian culture). The
predictions of all test sequences from each culture are concatenated
prior to computing the performance, i. e. , total CCC whose the
opposite is used as loss function for training the networks [76, 83].

In order to perform time-continuous prediction of the emotional
dimensions, audiovisual signals are processed with a sliding win-
dow of 4 s length, which is a compromise to capture enough infor-
mation to be used with both static regressors, such as SVMs, and
context-aware regressors, such as RNNs; even though we utilised
frame-stacking for the SVM-based late fusion of the audiovisual rep-
resentations with either past, future, or past and future context. As
supervised representations, the MFCCs and FAUs are summarised
with mean and standard-deviation, and the eGeMAPS set is com-
puted on each window. BoW are extracted from the three sets of
LLDs with one hard assignment on a codebook size of 100, to reduce
the complexity. Deep Spectrum features are extracted with default
parameters.

Note that transcriptions have not been taken into account for the
baseline system of this year for several reasons. First, for the cross-
cultural evaluation, transcriptions would need to be translated and
there is a multitude of options to fuse the modalities. This leads to a
complex model with many hyper-parameters, whose tuning would
already offer a lot of room for improvement above the baseline
results. However, the organisers wanted to offer the participants
the option to propose a system handling the translation problem,
even though it is not required to exploit those transcriptions.

5.3 Gold-standard Emotion Sub-challenge

Baseline emotion recognition systems were previously developed
in the context of the AVEC Challenge [61, 79] for the RECOLA
dataset [63]. They were based on SVMs used as static regressors of
multimodal feature sets including audio, video, and physiological
data. Because the objective of the GES is to generate emotion labels
that maximise the recognition performance, while minimising the
unexplained variance from the individual ratings, we re-designed
the baseline system by incorporating a hierarchical fusion of the
different representations of the modalities, which allows for more
flexibility in the learning of the gold-standard emotion labels.
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Table 3: Baseline results for the AVEC 2018 BDS. Unweighted Average Recall (%UAR) of the three classes of BD (remission,

hypo-mania, and mania) is used as scoring metric; DeepSpec: Deep Spectrum; best result on the test partition is highlighted

in bold.

Audio Video Late fusion

Partition MFCCs eGeMAPS BoAW-MFCCs DeepSpec FAUs BoVW eGeMAPS + FAUs DeepSpec + FAUs

Development 49.47 55.03 55.03 58.20 55.82 55.82 60.32 63.49
Test – 50.00 – 44.44 46.30 – 57.41 44.44

Table 4: Baseline results for the AVEC 2018 CES. Concordance correlation coefficient (total CCC) is used as scoring metric;

Devel: development; BoAW-M/e: bags-of-audio-words with MFCCs/eGeMAPS; DeepSpec: Deep Spectrum; best result on the

test partition is highlighted in bold.

Audio Video Contextualised fusion

Culture Partition MFCCs eGeMAPS BoAW-M BoAW-e DeepSpec FAUs BoVW past future past+future

Arousal

German Development .253 .124 .282 .421 .332 .486 .500 .577 .565 .581
German Test – – – .247 .101 .524 .450 – – .470
Hungarian Test – – – .226 .238 .436 .426 – – .418

Valence

German Development .217 .112 .306 .398 .276 .549 .536 .649 .625 .646
German Test – – .229 .268 – .577 .507 .563 – –
Hungarian Test – – .098 .166 – .405 .363 .343 – –

Liking

German Development .136 .001 .143 .003 .150 .212 .188 .288 .244 .271
German Test – – .060 – .004 .038 .041 .035 – –
Hungarian Test – – -.006 – .023 -.036 -.031 -.003 – –

Table 5: Baseline results achieved by the individual models for the AVEC 2018 GES. Concordance correlation coefficient (aver-
aged CCC) is used as scoring metric; DeepSpec: Deep Spectrum; best regression model (E: Elastic Net, L: Lasso, ML:Multi-task
Lasso, R: Ridge or S: SVMs) is given in superscript; best result on the test partition is highlighted in bold.

Audio Video Physiology

Part. eGeMAPS BoAW DeepSpec Appearance Geometric FAUs BoVW ECG HRHRV EDA SCL SCR

Arousal

Devel .749 S .760 S .621 L .483 ML .344 L .309 L .197 R .118 S .193 S .064 S .083 S .109 S

Test .628 S
.651

S .495 L .312 ML .241 L .233 L .230 R .065 S .153 S .029 S .038 S .056 S

Valence

Devel .319 S .364 L .220 E .416 S .506 S .482 S .395 ML .085 S .177 S .083 S .129 S .090 S

Test .195 S .346 L .158 E .382 S
.438

S .373 S .433 ML .043 S .108 S .058 S .099 S .096 S

As dimensional regressors, we explored various linear models
using SVMs from the liblinear toolkit [24], and Generalised Linear
Models (GLMs) such as Ridge regression, Lasso, Elastic Net from the
scikit-learn toolbox9; multi-task formulation of the Lasso and
Elastic Net algorithms are also used to take benefits of correlations

9http://scikit-learn.org/

between the dimensions. Optimisation is performed on the devel-
opment partition by a grid-search over the following parameters:
window size, time delay uniformly applied to the gold-standard,
regularisation coefficients (C for SVMs, α for the GLMs), and post-
processing parameters (bias and scaling factor), respectively. Two
different late fusion strategies are then exploited: one that fuses
all predictions obtained by the different modalities (audio, video,

http://scikit-learn.org/
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Table 6: Baseline results achieved by the hierarchical fusion

for the AVEC 2018 GES. Concordance correlation coefficient

(averaged CCC) is used as scoring metric; MT-Lasso: Multi-
task Lasso, MT-E. Net: Multi-task Elastic Net; best result on
the test partition is highlighted in bold.

Part. Ridge Lasso MT-Lasso Elastic Net MT-E. Net

Arousal

Devel .770 .775 .588 .588 .587
Test .647 .657 .494 .496 .494

Valence

Devel .493 .492 .570 .555 .568
Test .335 .333 .515 .513 .513

and physiological) and their corresponding representation(s)10, and
another that fuses the representations of each modality in a first
stage, and then the fused predictions from the different modalities
in a second final stage. Optimisation of the regression models used
for the fusion includes only the regularisation parameter, and the
best performing series of predictions is replicated in case the fusion
deteriorates the performance. As we use static regressors, we in-
troduce context by staking frames from either past, future, or past
and future, with different sizes of context; type and size of context
are optimised each as hyper-parameters.

5.4 Baseline results

The official baseline results for the AVEC 2018 BDS and CES are
displayed in Table 3 and 4, respectively, and results of the AVEC
2018 GES are given in Table 5 for the individual models, and in
Table 6 for the hierarchical fusion. Details are not given for the
the fusion of all representations of all modalities and the fusion
of all representations for each modality, as no improvement was
observed over the individual models.

All the approaches investigated for the BDS perform above the
chance score, which is 33 %. Interestingly, the unsupervised repre-
sentation of audio data based on Deep Spectrum performs best on
the development set (58.2%), followed by the two representations
of video data (FAUs and BoVW) that perform equally, which shows
the interest of unsupervised representation of speech data based
on deep learning in the context of BD. As trials for test results eval-
uation, we use the best two representations of audio data, and the
best representation of video data; the supervised representations
are preferred over the semi-supervised representations because
of their reduced complexity. Evaluations show that the eGeMAPS
acoustic set performs best on the test set as individual descriptor.
The last two trials amongst the allowed five consist in the fusion
of the best two models obtained on the audio data, with the best
model of video data; results show that fusion of the two supervised
representations provides the best results on the test partition, cf.
Table 3.

10Only the supervised representation of the physiological signals is used, and the sets
of video features based on appearance and geometric descriptors, as previously defined
in AVEC 2015 [61], are also utilised.

In the CES, the LSTM-based system outperforms the baseline
results of the SVMs-based baseline of AVEC 2017 [60] for arousal
and valence in the German culture. The worse performance for
liking is mainly due to the disuse of the linguistic information from
the transcriptions, which turned to be themost suitable information,
despite a bias due to the absence of noise in the transcriptions,
unlike audio and video data [60]. Concerning the acoustic feature
representations, the BoAW representations outperform the set of
statistics for both sets of LLDs, while similar results are achieved
with Deep Spectrum features in most cases. For the video domain,
BoVW is not superior to using only statistics of the FAUs. Fusion of
the different representations of the modalities only improved the
performance on the German training partition. Overall, results show
that arousal and valence can be well predicted in the Hungarian
culture from audiovisual data captured in-the-wild, by using only
knowledge from the German culture as training and development
material.

Best results obtained for the GES are slightly lower than those
reported in AVEC 2016 [79] for both arousal and valence, which
is partly due to the reduced range of hyper-parameters used to
optimise the system in order to reduce computation time, as the
system needs to be fully evaluated for each gold-standard submitted
by participants, and the use of a more challenging scoring metric,
i. e. , averaged CCC vs. total CCC [83]. The introduced novelties
yet showed some interest, such as the hierarchical fusion and the
contextualised fusion, which performed best for valence.

6 CONCLUSIONS

We introduced AVEC 2018 – the fifth combined open Audio/Visual
Emotion and Health assessment challenge. It comprises three Sub-
challenges: (i) BDS, where the level of mania of patients suffering
from bipolar disorder has to be classified into three classes from
audiovisual recordings of structured interviews, (ii) CES, where
the level of affective dimensions of arousal, valence, and liking has
to be inferred – for the first time – in a cross-cultural paradigm
from audiovisual data collected in-the-wild, and (ii) GES, where
dimensional labels of emotion have to be generated from individual
annotations. This manuscript described AVEC 2018’s challenge con-
ditions, data, baseline features and results. By intention, we opted
to use open-source software and the highest possible transparency
and realism for the baselines, by using less or the same number
of trials as given to participants for reporting results on the test
partition. In addition, baseline scripts have been made available in
a public data repository2, which should help the reproducibility of
the baseline results.
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