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Novel semi-analytical model to calculate shear forces due to viscoelastic interactions
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The aim of this work is to discuss the importance of the time-dependent shear forces in long span bridges built by the cantilever method. These shear forces occur in the connections between cantilevers in which hinges are used. This analysis takes into consideration the time-dependent properties of concrete and pre-stressing steel. A novel semi-analytical model is developed and presented in this paper, which intends to understanding the behaviour of bridges by taking into account these interactions between cantilevers and the construction phases. In addition, settlements of abutments and piers are also considered by taking advantage of available measurements of deflections. The proposed methodology is applied to a case study -the Savines Bridge -, which was built by the cantilever method and holds hinges between cantilevers. The results show that shear forces may not negligible when assessing the real behaviour of these type of bridges. Moreover, it appears that the shear forces are greater as the cantilever are closed to the abutments.

F i l/r (t) Shear force of left (l) or right (r) cantilever (at mid-span section) d i l/r (t) Deflection of left (l) or right (r) cantilever (at mid-span section) P i l/r (t) Pre-stressing force of left (l) or right (r) cantilever 

Introduction

At the beginning of the 20 th century, experts on pre-stressing technologies highlighted the importance of the time-dependent deformations of consytruction materials, i.e. creep and shrinkage of concrete and relaxation of prestressing steel. Indeed, since the first findings by Hyatt in 1907 (USA) and by Freyssinet, in 1912 on the Veurdre bridge (in France), it has become well known that concrete undergoes delayed deformations that may result in structural failures or malfunctioning at the serviceability level. The wellknown case study of the Koror-Babeldaob (KB) bridge, in Palau Pacific, is one of the most representative example. For this specific case, after 18 years of operation, the bridge shown 1.61 m of deflection at mid-span section, for a main span of 241 m. Resulting in serviceability troubles like discomfort, vibrations and deterioration of the road surface. These unpredicted delayed deformations contributed, ultimately, to the bridge failure [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders. i: Record-span bridge in palau and other paradigms[END_REF] [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders. ii: Numerical analysis and lessons learned[END_REF]. At the macroscopic level, several mathematical models for basic creep can be found in the literature as well as in standard codes, in order to predict the evolution of deformations in structures like pre-stressed concrete bridges. Nevertheless, these mathematical models are semi-empirical and do not always show agreement in the prediction. For example, B3 model [START_REF] Zdeněk | Creep and shrinkage prediction model for analysis and design of concrete structures: Model b3[END_REF] and the fib Model Code 2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF] provide logarithmic trends of basic creep, whereas the proposed model in Eurocode 2 (EN1992-2:2005) [START_REF]Comité Européen De Normalisation. Eurocode 2. Design of concrete structures[END_REF] exhibits an asymptotic trend over time. Recently, experimental results at the macroscopic scale [START_REF] Brooks | 30-year creep and shrinkage of concrete[END_REF] [START_REF] Le | Long term basic creep behavior of high performance concrete: data and modelling[END_REF] as well as at the microscopic scale [START_REF] Vandamme | Nanoindentation investigation of creep properties of calcium silicate hydrates[END_REF] show evidence that basic creep evolves proportionally to the logarithmic of time for large periods of time. From the structural scale, measured deformations show indication of a non-asymptotic and more specifically logarithmic evolution of deflections. [START_REF] Barthélémy | The effects of long-term behavior of both concrete and prestressing tendons on the delayed deflection of a prestressed structure[END_REF] [START_REF] Barthélémy | The effects of long-term behavior of both concrete and prestressing tendons on the delayed deflection of a prestressed structure[END_REF] shows how compliance evolves over time on a basic example of a pre-stressed cantilever. Indeed, the coupled effect of creep and relaxation does not allow to discriminate the role of each phenomenon. At the structural level, a large database, with measured deflections in many bridges, shows that deflections systematically evolve as a straight line in the logarithm time scale [START_REF] Zdeněk P Bažant | Excessive creep deflections: An awakening[END_REF]. Most of these bridges were built by the cantilever method and they are often highly sensitive to time-dependent deflections. In some of them, deflections are even more significant due to the existence of hinges between cantilevers. For example, the Želivka bridge, which was built by the cantilever method in Czech Republic, has hinges at mid-span sections and high deflections were observed [START_REF] Zdeněk P Bažant | Excessive creep deflections: An awakening[END_REF]. Nevertheless, Bažant et al.

(2009) [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders[END_REF] also shows that even in cases where the hinges do not exist (i.e. continuous spans), significant time-dependent deflections may occur. This means that this specific type of bridges are more prone to a high level of unexpected deformations. The construction of these bridges was supported by the cantilever method, which consists in adding new segments at the free cantilever sides from the piers towards the mid-span. The cantilevers may be connected by a horizontal sliding hinge in the closing segment (i.e. the mid-span section). As aforementioned, the case-study of the KB bridge [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders. i: Record-span bridge in palau and other paradigms[END_REF] [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders. ii: Numerical analysis and lessons learned[END_REF], is perhaps the most impressive example, available in the literature, where the importance of the time-dependent phenomenon of concrete and pre-stressing steel is evident. This bridge was built by two pre-stressed cantilevers jointed by means of a horizontally sliding hinge. In [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders. i: Record-span bridge in palau and other paradigms[END_REF] [7], a 3D model of one cantilever was build by taking advantage of symmetrical considerations. In the same work, and in [START_REF] Maekawa | Long-term deformational simulation of pc bridges based on the thermo-hygro model of micro-pores in cementitious composites[END_REF] [START_REF] Maekawa | Long-term deformational simulation of pc bridges based on the thermo-hygro model of micro-pores in cementitious composites[END_REF], several Japanese bridges (Tsukiyono, Konaru, Fukatani, and Urado bridges) are presented, which have hinges at mid-span section, and suffering from unpredicted time-dependent deformations. Maekawa et al. [START_REF] Maekawa | Long-term deformational simulation of pc bridges based on the thermo-hygro model of micro-pores in cementitious composites[END_REF] presents calculations in one cantilever, assuming no interaction with the adjacent cantilever and consequently, the structure is modelled as a statically determined cantilever. Notwithstanding, structural analysis of these type of bridges has shown high discrepancies between what is predicted by the numerical models and the in-situ measurements. Several issues may explain these differences. On the one hand, it may come from limitations of the semi-empirical models that are used to simulate the timedependent properties of concrete and pre-stressing steel. Commonly, this lack of accuracy is overcome by adjusting the models by means of weighting coefficients in order to comply with measurements [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders[END_REF] [START_REF] Lo Santos | Observation and Analysis of Time Dependent Behaviour of Concrete Bridges[END_REF] [21] [START_REF] Sousa | Assessment and management of concrete bridges supported by monitoring data-based finite-element modeling[END_REF]. On the other hand, geometric and boundary considerations might also contribute to these deviations. Indeed, many structural models were restrained to one cantilever analysis, by assuming that its behaviour is independent from the adjacent cantilevers and/or the pier underneath, because of symmetrical considerations and the existence of hinges between cantilevers. Robert-Nicoud et al. (2005) [START_REF] Robert-Nicoud | Model identification of bridges using measurement data[END_REF] shows a comparison of models used to model deformations of the Lutrive bridge in Switzerland. Build in 1972, its cantilevers are connected by hinges at the mid-span sections. After calibration of some stiffness parameters, results were compared with in-situ measured deflections and rotations. The simplest model used was a cantilever with a fixed support and with free of movement at the cantilever edge, which means that neither shear nor bending moment were considered to exist at the mid-span section (i.e. the hinge). An improved model was also considered, based on the first, by adding springs at the cantilever boundaries. Finally, a model was built where all spans are modelled. It has been shown that the last one is the most reliable model. The authors claimed that a proper modelling of the hinge is necessary to better predict deflections and to get closer to the measured data. Indeed, they propose that to better analyse this type of structures, either a Finite Element (FE) model of all structure or adapted model of one single cantilever by adding springs with appropriate stiffness should be considered. In this context, this paper describes and proposes a novel semi-analytical model to estimate the shear forces that occur at mid-span sections where hinges exist. The application of the proposed methodology is supported in a real case study -the Savines Bridge. The existence of long-term in-situ measurements of deflections allowed to improve, by optimization, the knowledge about these shear forces. Finally, the most significant conclusions are drawn based on the results presented in this work, with the ultimate aim of showing that shear forces at the mid span sections exist and cannot be disregarded for an accurate interpretation of the structural behaviour of bridges built by the cantilever method.

Formulation of the semi-analytical model to calculate shear forces in cantilever bridges

A semi-analytical model is herein presented with the aim of estimating the interactions between cantilevers -i.e. the shear forces over time -by taking into account the specificities related to the cantilever construction method and the existence of hinges betweens T-frames (each T-frame is composed by a pier and two cantilevers). To this end, visco-elastic models for the materials and settlements are taken into account in the formulation. The mechanical equilibrium of the structure is formulated and solved by considering the timedependency. The matrix product obtained by the equilibrium of forces and the compatibility of displacements enables the estimation of the development of the shear forces at hinges over time.

Static scheme

Although the bottom line of the problem are the vertical deflections at mid-span sections, the global stiffness of the bridge is required in order to allow the calculation of the shear forces in those sections (i.e. at the hinges).

Consequently, potential settlements of abutments and piers are also included in the formulation of the problem. The elementary static scheme is composed by a T-frame labelled as i and subjected to dead load q, pre-stressing forces (P i l , P i r ) and shearing forces (F i l , F i r ), which are applied on the left and on the right cantilever (see the sign convention in Figure 1). The formulation of the overall equilibrium is then obtained due to the compatibility of deflections and forces at the hinges (Figure 1). The following assumptions are considered: (i) the piers are fixed to the ground; (ii) area and inertia of the concrete piers and deck are denoted by A p , I p , and A d , I d respectively; (iii) the uniform distributed load q denotes the dead load due to the self-weight of concrete γ c ; (iv) the length of cantilevers are similar between them. For the sake of simplicity, these assumptions are set constant along the longitudinal x-axis of the bridge as well as the eccentricity e 0 of the embedded pre-stressing tendons. In addition, h i denotes the height of the i th pier, A s is the area of pre-stressing tendons and an average value (same for all cantilevers) is considered for the initial pre-stressing force, T 0 . In addition, instantaneous losses are also taken into account.

Mechanical modelling

This section is devoted to the construction of the numerical problem to solve to estimate the displacement of the structure as well as the shear forces in visco-elastic framework. The resolution is based on individual problems of T-frames and compatibility conditions at hinges so that the unknowns are the histories of the shear forces. The pre-stressing forces are obtained by guaranteeing the compatibility of displacements at the anchoring point between steel and concrete at any time t (alike external pre-stressing). Moreover, delayed deformations due to shrinkage of concrete ε t i a sh (t) are taken into account. Shrinkage strains begin at the moment of end of curing after casting, same time of activation and application of the self-weight and of prestressing t i a . For the sake of simplicity, it starts at the moment of activation of the T-frame i. As far as the compliance and relaxation functions are concerned, they can be formulated thanks to the Stieltjes integral [START_REF] Salençon | Viscoélasticité, Cours de Calcul des structures anlastiques[END_REF] (Eq. 1 and Eq. 2):

ε = J • σ ⇔ ε(t) = J(t, •) • σ(•) = t -∞ J(t, τ ) σ(τ ) dτ (1) 
σ = R • ε ⇔ σ(t) = R(t, •) • ε(•) = t -∞ R(t, τ ) ε(τ ) dτ (2) 
Where • denotes the Volterra operator [START_REF] Salençon | Viscoélasticité, Cours de Calcul des structures anlastiques[END_REF] [START_REF] Salençon | Viscoélasticité, Cours de Calcul des structures anlastiques[END_REF]. For the following calculations, J c (t, t ) and J s (t, t ) are the compliance functions of concrete and steel loaded at time t for any time t, respectively. The scalar Volterra kernel (t, t ) → H(t -t ) where H is the Heavyside function operates as an identity in Eq. 1 and 2. Let us denote the function H t : R → R for t → H(t -t) where t is a parameter of the function which controls the jump time.

For the i th T-frame, the deflection along ξ-axis, i.e. from the edge of cantilever to the centre of the pier (Figure 1), for the left and right sides of the cantilever can be written as follows (Eq. 3 and Eq. 4):

d i l (ξ) = -α i (ξ) • F i l -β i (ξ) • F i r + γ i (ξ) (3) 
d i r (ξ) = β i (ξ) • F i l + α i (ξ) • F i r + γ i (ξ) (4) 
Where weighting coefficients (α i , β i and γ i ) are derived here below from the determination of the pre-stressing force with time P i l/r (t) (with l/r denoting left or right cantilever) and from the equilibrium of the T-frame. Pre-stressing force is applied on the cantilever before removal of scaffoldings. Hence, at this moment, dead weight loads interact with tendons and induce instantaneous pre-stressed force. The pre-stressing force in steel P i l/r (for the right or the left cantilever and obtained by guaranteeing the compatibility of deformations between concrete and steel, as aforementioned) along ξ-axis can be written as follows (Eq. 5):

P i l/r = (κ i ) • -1 • T 0 K 0 H t i a + q e 0 L 2 6I d J i c • H t i a + k e 0 L 2I d J i c • F i l/r + ε t i a sh (5) 
With:

k = + 1 for the left cantilever (l ), -1 for the right cantilever (r )
Where (κ i )

• -1 is the inverse of the kernel κ in the sense of the Volterra operator:

κ i (t, t ) = J i s (t,t ) As + J i c (t,t ) Ãd
and ε t i a sh is the shrinkage deformation starting at the time of casting t i a . Consequently, the weighting coefficients are expressed as follows (Eq. 6, Eq. 7 and Eq. 8). For simplicity of reading, time t in functions is not mentioned in the following equations.

α i (ξ) = - 1 6I d ξ 3 -3L 2 ξ + 2L 3 H - e 2 0 L 4I 2 d (ξ -L) 2 J i c • (κ i ) • -1 + Lh i I p (ξ -L) -H + e 0 h i 4I d J i c • (κ i ) • -1 • J i c ( 6 
)
β i (ξ) = Lh i I p (ξ -L) -H + e 0 h i 4I d J i c • (κ i ) • -1 • J i c ( 7 
)
γ i (ξ) = δ i p -q 1 24I d ξ 4 -4L 3 ξ + 3L 4 J i c • H t i a + e 0 2I d (ξ -L) 2 J i c • (κ i ) • -1 • T 0 K 0 H t i a + q e 2 0 6I d J i c • H t i a + ε t i a sh (8) 
With Ãd = 1

1 A d + e 2 0 I d and K 0 = 1 EsAs + 1 Ec Ãd .
In addition, and in order to take into account settlements of piers, downward displacements δ i p are taken into account at edges of both cantilevers of the i th T-frame (see Eq. 8). For the sake of simplicity, coefficients α i (ξ, t), β i (ξ, t), and γ i (ξ, t) at the edge of cantilever (ξ = 0) are reformulated to α i 0 , β i 0 and γ i 0 , respectively. Hence, the conditions of settlement the for abutments 1 and n (being n the last pier) write for any time t (Eq. 9 and Eq. 10):

-

α 1 0 • F 1 l -β 1 0 • F 1 r = -γ 1 0 + δ l a ( 9 
)
β n 0 • F n l + α n 0 • F n r = -γ n 0 + δ r a ( 10 
)
Where δ l a and δ r a are the settlements of left and right abutments, respectively. In order to write the condition of compatibility, it is necessary to know and expressed the connection schedule between cantilevers. Furthermore, since compatibility of deformations are formulated at the time of connection between two adjacent cantilevers t (i,i+1) h , the unknown forces at hinges evolve over time from the time of connection to the time of service life t bsl and to the final time t f : t

(i,i+1) h = [t (i,i+1) h , ..., t f ] (such as t (i,i+1) h ≥ t i a )
. This point is developed in the case study (Section 3).

Material modelling

The material models used in this formulation are based on two viscoelastic constitutive laws. More specifically, they model the creep for concrete and the relaxation for steel tendons. For this specific case, the Laplace-Carson transform and the correspondence principle [START_REF] Salençon | Viscoélasticité, Cours de Calcul des structures anlastiques[END_REF] can not be applied to the concrete in order to calculate the unknown hinge forces, because concrete is herein considered as an ageing material. Nonetheless, the latter can be obtained through numerical integration allowing to estimate the Volterra integral operators. An algorithm based on the trapezoidal rule has been proposed in [START_REF] Zdeněk | Numerical determination of long-range stress history from strain history in concrete[END_REF] which has been recently exploited in [START_REF] Sanahuja | Effective behaviour of ageing linear viscoelastic composites: Homogenization approach[END_REF]. It relies on a given (not necessarily linearly distributed) time discretization between an initial and a final time t f . Hence, any time variable can be seen as a vector, which components correspond to its values at the successive time discretization. Moreover thanks to the numerical integration, the Volterra operators (Eq. 1, Eq. 2) become matrix products in which matrices are derived from the kernels J c and J s (i.e. compliance functions of concrete and of steel). Hence, their combinations with loads are transformed into matrix products (or to a product by matrix inversion) thanks to the procedure presented in [START_REF] Sanahuja | Effective behaviour of ageing linear viscoelastic composites: Homogenization approach[END_REF].

Shrinkage of concrete

As mentioned above, shrinkage strains start at the date of end of curing after casting t i a , at the age t s0 . In this example, shrinkage is modelled according to the fib Model Code 2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF]. As well as defined in the fib MC2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF], time is expressed in years. The total strains are determined as the sum of autogeneous and dessication shrinkage:

Autogeneous shrinkage. ε as (t -t s0 ) = β as 1 -exp -0.2 √ t -t s0 (11) 
β as = α as fcm /fcm0 6 + fcm /fcm0 2.5 10 -6 (12) 
Where f cm0 = 10 MPa and f cm = f ck + f 00 , with f 00 = 8 MPa.

Dessication shrinkage.

ε ds (t -t s0 ) = ε cds0 β ρ h t -t s0 t -t s0 + hm 2 A h0 (13) 
h m denotes the mean radius of the section in contact with the atmosphere, A h0 = 0.035 mm 2 , and:

ε cds0 = (220 + 110α ds1 ) exp -α ds2 fcm /fcm0 10 -6 (14) 
The drying effect at ambient relative humidity ρ h is taken into account by the following coefficient:

β ρ h = -1.55(1 -ρ 3 h ) if 0.40 ≤ ρ h < 0.99β s1 , 0.25 if ρ h ≥ 0.99β s1 With β s1 = min 35 fcm 0.1 ; 1.0
The coefficients depending on cement type are resumed in fib Model Code 2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF].

Creep of concrete

For the T-frame i, the compliance of concrete is expressed as Eq. 15 similar to the one proposed in [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF] [START_REF] Le | Long term basic creep behavior of high performance concrete: data and modelling[END_REF]:

J i c (t, t ) = 1 E c (t ) + λ i bcm E i c (28) Φ i bc (t, t ) + λ i dcm E i c (28) Φ i dc (t, t ) (15) 
Where Φ bc and Φ bc denotes respectively the basic creep function and the dessication creep function. E c (t ) is the instantaneous Young modulus of concrete at the age of loading t . And the concrete strains can be calculated according to Eq. 16.

ε c (t) = J c (t, •) • σ(•) (16) 
λ bcm and λ dcm are coefficients (default value 1), weighting basic creep magnitude and dessication creep magnitude respectively.

Basic creep. The basic creep is expressed as a logarithm function:

Φ bc (t, t ) = β bc log 1 + λ bck t -t τ (t ) (17) 
With β bc = 1.8

f 0.7 cm
. The parameter τ (t ) may be estimated from of the fib MC2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF] as reformulated in Torrenti et al. (2017) [START_REF] Torrenti | Analysis of some basic creep tests on concrete and their implications for modeling[END_REF]. The modified age at loading adapted from the type of cement is:

t 0,adj (t ) = max d t0 ; t 9 2 + t 1.2 + 1 αc (19)
With d t0 = 0.5 day. λ i bck denotes a coefficient weighting the kinetics of the basic creep (default value 1).

Dessication creep. Φ dc (t, t ) = β dc (f cm ) β dc,0 β RH β dc (t, t ) (20) 
With:

β dc (f cm ) = 412 fcm 1.4 , β ρ h = 1-ρ h 0.1 hm h m0
1/3 (with h m0 = 100 mm) and β dc,0 = 1 0.1+t 0,adj 0.2 ;

β dc (t, t ) = t-t λ dck β h +t-t γ(t ) -β h = min(1.5h m + 250α f cm ; 1500α f cm ); -α f cm = f c1 fcm 0.5 with f c1 = 35 MPa; -γ(t ) = 1 2.3+ 3.5 √ t 0,adj (t )
. λ i dck denotes a coefficient weighting the kinetics of the dessication creep (default value 1).

Relaxation of steel

As regards to the relaxation function for steel, the formulation presented in Eurocode 2 [START_REF]Comité Européen De Normalisation. Eurocode 2. Design of concrete structures[END_REF] is used (Eq. 21).

R i s (t, t ) = E s • p 1 ρ 1000 e p 2 µ t -t t eq s(1-µ) (21) 
Where µ = σ 0 /f p0.1k is the initial stress ratio in steel (σ 0 is the tensioning stress and f p0.1k is the value of the conventional yield stress for a strain at 0.1%), p 1 and p 2 are coefficients corresponding to the class of the steel to be recalled ρ 1000 is the theoretical relaxation of steel at t eq = 1000 hours, and E s is the Young modulus of steel. In this relaxation function, times are is expressed in hours. Hence, the strain in the pre-stressing steel can be calculated as follows (Eq. 22):

ε s = R -1 • s • σ (22) 
2.4. Modelling of the ageing effect due to the construction time schedule Bridges of this type are built according to a particular time schedule, which defines the time of construction of each concrete segment of the girder. The ageing behaviour of concrete needs to take into consideration the progressive activation of T-Frame (i.e. the concrete segments). Each T-frame evolves from the respective time of activation, t i a = t bsl -ω i to the time of service life t bsl and to the final time of the study t f . ω i is the average elapsed time from the construction of the i th T-frame to the date of the first levelling measurement if available (i.e. t bsl ). Thus, it means the deformations of the ith T-Frame begins to take place at its time of activation t i a and evolves according to the time vector T i = [t i a ...t bsl ...t f ]. Consequently, the numerical integration of the compliance functions for steel and concrete (see section 2.3) are formulated as lower triangular matrices of size that of T i (coefficients α i (t, ξ), β i (t, ξ) and γ i (t, ξ) (Eq. 6, Eq. 7 and Eq. 8), which are issued from the products of the numerical integration of the Stieljes integral (matrix)).

Case study -the Savines Bridge

The structure and measurements

The Savines Bridge, designed by the Société d' Études et d' Équipements d'Entreprises and built in France between 1958 and 1960 by the Société des Grands Travaux de Marseille [START_REF] Campbell | Savines bridge[END_REF], belongs to the first generation of posttension pre-stressed concrete bridges by using the free cantilever method. The bridge is composed by 12 cantilevers that are balanced on each pier to form a symmetrical T-frame. Each span consists in two cantilevers connected at the middle point (i.e. mid-span section) by a steel ball-and-socket arrangement [START_REF] Aberdeen | Prestressed concrete for european overpasses[END_REF]. This means that all mid-span sections have two free displacement degrees of freedom (i.e. free horizontal displacement and rotation), which may potentiate the increasing of serviceability deformations [START_REF] Jp Sellin | Delayed deformations of segmental pre-stressed concrete bridges: the case of the savines bridge[END_REF]. The bridge girder is made of 11 pre-stressed concrete spans, each of them 77 m long and consisting of 22 cast-in-place segments {2 × (2.55 + 9 × 3.55 + 1.50)} and two end-spans 38.5 m long. The concrete girder, with depths varying from 4.15 m at main piers to 1.15 m at mid-span, is post-tensioned with embedded tendons. As far as the piers are concerned, the walls have vertical pre-stressing cables, which in turn are anchored in blocks at the base. The two tallest piers P 10 and P 11 , on right side of the river, are founded on reinforced concrete caissons sunk to rock level as a safeguard against possible erosion. All other piers are founded on normal footings set in the alluvial floor of the valley [START_REF] Aberdeen | Prestressed concrete for european overpasses[END_REF]. The longitudinal profile of the bridge is shown in Figure 2, whereas the main geometric and material properties are summarised in Table 1.

Furthermore, mean compressive strength was measured on several concrete samples for piers and for deck at 9, 28 and 90 days. Average values for each T-frame are provided in Figure 3. The Young modulus of concrete at 28 days as required by the compliance function (Equation 15) is estimated thanks to the fib ModelCode [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF], E cm,28 = E c (28) = E c0 fcm f cm0 10 MPa and E c0 = 21500 MPa. The average value of compressive strength in the deck and piers for each T-frame is used: The erection progress is summarized in Table 2, where it is recalled that ω i is the average time delay between the construction of the T-frame and the date of the first measurement. Figure 4 Finally and because no information is available for the time schedule of the erection of T-Frames, an arbitrary average age t = 28 days is considered for concrete at the moment of loading (i.e. self-weight and pre-stressing). Furthermore, it is assumed that shrinkage starts after t s0 = 1 day (default value accordint to the fib MC2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF]).

f i cm = (f i cm28,deck + f i cm28,pier )/2.

Measurements of the vertical displacements

After the end of construction of this bridge, span sagging has been observed and for that reason vertical displacements have sometimes been collected by topographic levelling since 1960. However, the measurement baseline has changed over time without guaranteeing the cross-reference between the different measurement datasets. Nonetheless, a continuous dataset with the evolution of deflections for all spans, more precisely for sections located above the piers and at mid-spans, is available from 1960 to 1966. Figure 5 shows both the absolute measured deflections and the relative deflections (by taking as a reference the first measurement collected on the 14 th of May, 1960).

From these observations, the identified pattern can be explained by: (i) settlements on some of the pre-stressed piers, mainly P 8 to P 12 ; (ii) settlements on the left and right abutments and (iii) deflections at the mid-spans sections (due to creep and shrinkage of concrete and relaxation of steel). Moreover, it is evident that deflections near the abutments are higher, which can be explained by the stronger stiffness of T-frames (due to the position of abutments supports), when compared to the stiffness of inner T-frames. Another relevant observation is the higher deformations near the right abutment, when compared to the left one. This can be explained by the higher flexibility of the T-frames formed by piers P 9 , P 10 and P 11 (due to their higher height, when compared to the remaining ones). In addition, it can also be stated that the segmental construction leads to different stiffness characteristics, due to (likely) different ages between T-frames, which also affects the shear forces magnitude at mid-span sections. Figure 4 shows the segmental construction process.

According to Table 2 and Figure 4, the right side of the bridge was built latter, more precisely the erection of the 11 th and 12 th T-frames happened approximately one year after the construction of the 5 th and the 6 th ones, which might be responsible for stiffness contrasts and subsequent increase of shear forces. Going further to a more detailed view, the measured settlements on the left and right abutments as well as on the piers are shown in Figure 6 in the format of time series. It is also worth noting that vertical displacements at an early age state (i.e. within 6 years after the end of the construction) are also important in the abutments. Indeed and for this case, it is about 40 mm after 6 years for the abutment in right side from the date of first measurements t bsl . Furthermore, displacements on the piers, due to their own settlement, ranges from 10 mm to almost 20 mm after 6 years for the ones located on the right side of the bridge (i.e. P 9 , P 10 and P 11 ).

Structural behaviour -Preliminary analysis without considering shear

forces Preliminary calculations were performed with the aim to predict the structural behaviour of the bridge, mainly deformations and stresses over time [START_REF] Jp Sellin | Delayed deformations of segmental pre-stressed concrete bridges: the case of the savines bridge[END_REF]. In those calculations, the bridge was assumed to be composed of twelve independent T-frames meaning that all of them were considered structurally independent. The analysis focused on the right cantilever above pier P 6 (Figure 2) due to on one hand, the existence of comprehensive information related to this particular cantilever and on the other hand, the location near the middle of the bridge less sensitive to boundary conditions of the bridge (mainly the end supports i.e. abutments). As aforementioned, the baseline of the measurement changed several times without cross-reference information. In this context, two possible trends were considered: (i) a first one with a horizontal asymptote pattern and (ii) a second one in which deflections are assumed to increase continuously after 50 years. Figure 7 shows the deflection variation ∆f , between the current time t and the initial time t bsl . Moreover, predictions of those same deflections, were calculated [START_REF] Jp Sellin | Delayed deformations of segmental pre-stressed concrete bridges: the case of the savines bridge[END_REF] by using Eurocode standard [START_REF]Comité Européen De Normalisation. Eurocode 2. Design of concrete structures[END_REF], fib Model Code 2010 [START_REF]Fédération Internationale du Béton. fib model code for concrete structures 2010[END_REF] and B3 model [START_REF] Zdeněk | Creep and shrinkage prediction model for analysis and design of concrete structures: Model b3[END_REF] [START_REF] Zdeněk P Bažant | Excessive long-time deflections of prestressed box girders. ii: Numerical analysis and lessons learned[END_REF]. It is clear that the deflections are systematically underestimated by the predictions. Moreover, in-situ measurements far exceed the predicted deflections, independently of which standard is considered. These discrepancies might be justified by (i) a non-appropriated model used for the simulation, (ii) unknown structural characteristics and/or (iii) inaccurate constitutive laws. It is worth mentioning that, in [START_REF] Barthélémy | The effects of long-term behavior of both concrete and prestressing tendons on the delayed deflection of a prestressed structure[END_REF], a simplified model of the f cantilever (Figure 2) has been built to examine, in a first instance, the effects of concrete creep, steel relaxation and their coupling effect. Nonetheless, the assumption taken that the structural behaviour of each T-frame is independent from the adjacent ones is not entirely true. Thus, the issue of the importance of the shear forces at mid-span is raised.

Structural behaviour -Estimation and discussion of the order of mag-

nitude of the shear forces Since the connection operation between cantilevers is not documented and also due to the fact that the Savines Bridge belongs to the first generation of segmental pre-stressed concrete bridges, it is assumed that no jacking forces were used for sagging: [START_REF] Courbon | Pont routiers de serre-ponçon[END_REF] explains in [START_REF] Courbon | Pont routiers de serre-ponçon[END_REF] that joining and calibration of cantilevers has been carried out by means of balancing counter weight (in practice: position and weight of the movable scaffoldings) in order to insure same deflections from one cantilevers to the next one. Connection process vanishes instantaneous shear forces due to the instantaneous deflections. The compatibility of deflections at ξ = 0, between the edges of the half-span i and the next one i + 1, is formulated as follows for t ≥ t (i,i+1) h (the time of connection) (Eq. 23):

d i r (t) -d i+1 l (t) = d i r (t k h ) -d i+1 l (t k h ) (23) 
Where k denotes the i th or the (i + 1) th T-frame, either the latter is build latter or sooner.

Due to the lack of more precise information related to the positioning and weight of the movable scaffoldings for calibration and for the sake of simplicity, once the T-frame is built, it is assumed that it deforms instantaneously. Hence the compatibility relation (Eq. 24) is applied at the time of connection to the next T-frame, whether the i th T-frame is built earlier or latter than the (i + 1) th .

α i 0 • F i l + β i 0 • F i r + β i+1 0 • F i+1 l + α i+1 0 • F i+1 r = γ i+1 0 -γ i 0 ( 24 
)
In addition, the force F i h in the hinge i at the edge of the right and left cantilever i th and (i + 1) th is given by Eq. 25:

F i r (t) = F i+1 l (t) = F i h (t) (25) 
Where F i h (t) is the force at hinge position. Hence, Eq. 24 can be reformulated as follows (Eq. 26):

α i 0 • F i-1 h + β i 0 + β i+1 0 • F i h + α i+1 0 • F i+1 h = γ i+1 0 -γ i 0 (26)
Finally, the set of compatibility equations for deflections can be all written in a matrix form as follows (Eq. 27):

A • F = B ( 27 
)
Where A is the matrix of compatibility, B the vector of boundary conditions and F the vector of unknown shear forces at different times which are then finally obtained by inverting the matrix product. Applying the presented methodology, the evolution of shear forces and deflections at mid-span sections are firstly plotted in Figure 8. From these results, it can be concluded that the magnitude of the shear forces is highly dependent on the cantilever position. Moreover, the results show consistently higher deflections for mid-span sections that become nearer to the abutments, which is in agreement with the measurements presented in Figure 5. Indeed, this is consistent with the fact that supports restrain vertical displacements and consequently, induce additional shear forces. In other words, shear forces appear on the adjacent cantilever that are then responsible for the increasing deformations in the respective pier and in the adjacent cantilever.

One can notice the importance of the time schedule for the erection of T-Frames, especially during construction stages. Sequential connections have an immediate influence on the magnitude of shear forces and on deflections in other cantilevers, as it was aforementioned. This pattern clearly demonstrates that the shear forces are a function of the time-dependent interaction between cantilevers due to creep and shrinkage of concrete, relaxation of the pre-stressing steel and settlements. Overall, it can be concluded that the higher the deflections, the higher the shear forces. This means that shear forces at the middle of the bridge are of a lower order of magnitude, when compared to the ones closer to the abutments.

Individual contribution to the shear force at the beginning of service live (t bsl ) and after a service period are shown in Appendices for: creep, shrinkage, relaxation and settlements. 

. Optimization problem and results

By taking advantage of the available measurements of deflections (Figure 5 and Figure 6), the shear forces were recalculated by optimization in which the Least Square Method (LSM) was used to minimise the difference between measured (relative deflections according to Figure 5 (b)) and calculated deflections for all hinges. In the optimization problem, basic creep magnitude parameter for each T-Frames (λ i bcm with i = 1, .., 12) and the average kinetic parameter for all T-frames (λ bck , Eq. 15) were considered the unknowns. In order to ensure realistic values, the admissible range is: 0 to 3 and 0 to 3, for magnitudes and for kinetics respectively.

The optimisation results are shown firstly, for all bridge length in Figure 9 (further to information in Figure 5), and then, in Figure 9 (further to the information in Figure 7), the results obtained for the aforementioned span f, and modelled in [START_REF] Jp Sellin | Delayed deformations of segmental pre-stressed concrete bridges: the case of the savines bridge[END_REF]. Observing all the results, it is possible to state that the structural performance is properly reproduced. In Figure 9, absolute vertical deflection denotes the evolution of the deflec- With these values, for the magnitude and kinetic of basic creep, the shear forces were then re-calculated by using the proposed methodology presented in this paper, from which the output results are shown in Figure 12. The main result that stands out is the fact that higher forces are obtained in the hinges of both T-frames adjacent to abutments (Abutment-P1 and P12 abutment). Indeed, they are even from a superior order of magnitude, if compared to the remaining hinges ( 10× superior). this was already expected, the minimum values for the shear forces are not obtained for hinges located nearby of the middle of the bridge (P 6 -P 7 ) but for hinges located at 1 /4 of the bridge length (P 3 -P 4 ), which reveals that the prediction of these shear forces might not be so straightforward as it was expected. Furthermore, analysing the evolution of the shear forces over time (from 1960 to 1966), it is interesting to observe that there are two hinge sections where the shear forces decreases (i.e. hinge c (P 3 -P 4 ) and hinge k (P 11 -P 12 )), against the general pattern observed in the remaining section -i.e. in general, the shear forces increase overtime and in the proportion to the initial magnitude observed at the end of the construction. 

Sensitivity analysis

Considering the peculiar pattern obtained for the shear forces, a sensitivity analysis is attempted, based on the numerical phased and optimized analysis performed, to get some first insights in the influence of each phenomenon, mainly: (i) creep (with steel relaxation), (ii) shrinkage (with steel relaxation), (iii) piers and abutments settlements, (iv) construction process. In this context, Table 3 summarizes the six cases considered for the sensitivity analysis. Construction effects on shear force are analysed in case 1 and 2, where the force is carried out for a non sequential building of T-frame (all T-frames built at the same time ω i = 15 months) and when the cantilevers are hinged after application of the self-weight and the pre-stressing, respectively. Then, shear forces are also calculated when one delayed deformation vanishes in order to evaluate its influence (case 3 to 6). Accordingly, Figure 13 shows the results for the shear forces. Firstly, it is evident that the influence of the construction sequence (case 1) has a smaller effect, even in lower order of magnitude, in the shear forces magnitude, when compared to the respective values produced by any of the remaining phenomenon (case 3 to case 6). When cantilever are hinged after the dead-weight and pre-stressing applied, no instantaneous shear forces appear. One can observe similar order of magnitude for shear forces, and for some hinges, inversion of the force direction (i.e. hinge c of g for example). Case 3 shows the importance of creep and steel relaxation when the their effect are withdrawn. Indeed, without these delayed deformations, the magnitude of the forces is much lower. Considering the case 4 (shrinkage and steel relaxation vanished), the impact of shrinkage is also rather well put in evidence at least in the first years of the bridge during which the present analysis is performed. These results show that for hinge sections adjacent to the abutments, the shear forces are mainly constrained by creep and slightly by shrinkage (with the coupled effect of steel relaxation). As far as the effect of the settlements is not concerned, rather low opposite effects are observed at abutment when the settlement occur in the piers and abutments (case 5 and case 6). Interestingly, their effect on the shear force is rather low in comparison with delayed behaviour of material (case 3 and 4). When all phenomena are taken to occur simultaneously (Figure 12), the obtained pattern for the shear forces are quite similar, in both magnitude and signal, to the ones obtained by considering creep and steel relaxation (case 1, 2, 5 or 6). Hence, this fact might indicate that the option in optimizing the values of the magnitude and kinetic of basic creep, λ i bcm and λ bck , is a suitable approach. Overall, and even though the different phenomena are not entirely independent from each other, these results from the sensitivity analysis show how important indeed a detailed and rigorous modelling of the materials properties for an accurate prediction of the structural behaviour of bridges built by the cantilever method. Moreover, the results and discussions herein presented, by taking into account these time-dependent shear forces at the mid-span sections where hinges exist, is a step forward for the better understanding of the effective behaviour of this type of bridges.

Conclusion

This work addresses a discussion on the relevance of time-dependant shear forces that take place at mid-span sections where hinges exist in the long span brides built by the cantilever method. The obtained magnitude for these shear forces put in evidence the importance of interactions between cantilevers, an effect that is normally disregarded when analysing this type of bridges. Hence a novel semi-analytical model is proposed to assess, in a first instance, the magnitude of these shear forces. A real case studythe Savines Bridge -supported the application and discussion on the results obtained by using the proposed model. Based on the results presented, the following conclusions could be drawn:

The proposed semi-analytical model put in evidence that visco-elastic interactions exist between cantilevers. These interactions occur in the form of shear forces at mid-span sections where hinges exist, and the magnitude of those shear forces can be calculated based on the proposed model.

The preliminary intuition that the shear forces are considerable higher in cantilevers near to the abutments is questionable. Indeed, after optimizations, several forces at the centre of the Savines Bridge cannot not be ignored due to both the magnitude and non-symmetry.

The shear forces the mid-span sections where hinges exist are timedependent and in general their magnitude tend to increase over time. Moreover, settlements of piers and abutments also affect the shear forces since these phenomena implies additional deformations on the bridge.

The magnitude of the shear forces can be updated by means of considering measured defections (if available) which then allow fitting the numerical defections by means of optimization algorithms. Based on the case used in this paper, it is advised to consider the compliance functions for each concrete as unknown by considering the additional parameters, λ i bcm , and λ bck , for the magnitude and kinetics of the basic creep, respectively.

From a practical point of view, the assessment of the structural behaviour of any cantilever can be improved by, in a first instance, calculate the time-dependent shear forces based on the proposed semianalytical model and then, in a second stage, proceed with the structural analysis of a single T-frame by including the obtained shear forces and rotations of piers.

The sensitivity analysis gives evidence on the predominance on the time-dependent properties of concrete on the shear forces, which strengthens the approach adopted by the authors in focussing on the creep effect on the shear forces by means of the aforementioned additional parameters.

Further investigation is ongoing to consider the estimated time-dependent shear forces in a 3D FE model of the Savines Bridge from which the authors aims to present step further in a future publication.

NotationsL

  Length of cantilevers h i Height of piers I d Centroid moment of inertia for the deck I p Centroid moment of inertia for the piers A s Area of steel tendons A d Area of the concrete deck cross-section T 0 Tensioning force in tendons e 0 Eccentricity of tendons q Uniform distributed load for self weight of concrete t i a Time of activation and application of the self-weight and of pre-stressing t (i,i+1) h Time of connection between two adjacent cantilevers t bsl Time of the Beginning of Service Lifet Time vector t ∈ [t i a ...t (i,i+1) h ...t bsl ...t f ]

  (t, t ) Compliance function for pre-stressing steel (s) or concrete (c) R i c/s (t, t ) Relaxation function for pre-stressing steel (s) or concrete (c) E c/s Instantaneous Young modulus for pre-stressing steel (s) or concrete (c) ε sh Shrinkage strain of the concrete deck δ i p Settlement of piers δ l/r a Settlement of left (l) or right (r) abutments

Figure 1 :

 1 Figure 1: Structural modelling of one T-frame.

1 3 ;Figure 2 :

 32 Figure 2: Longitudinal profile of the Savines Bridge.

Figure 3 :

 3 Figure 3: Average measurements of concrete compressive strength at 28 days transformed, for the piers and for the deck.

Figure 4 :

 4 Figure 4: Construction sequence of the Savines Bridge.

Figure 5 :

 5 Figure 5: Time-dependent deflections measured along all the bridge length (1960 to 1966): a) absolute values, b) relative values.

Figure 6 :

 6 Figure 6: Evolution of the settlements in the Savines Bridge (1960 to 1966): (a) abutments, (b) piers.

Figure 7 :

 7 Figure 7: Measurements versus predictions for the mid-span section in span f.

Figure 8 :

 8 Figure 8: Evolution over time (1958 to 1966): (a) shear force and (b) vertical deflection (at mid-span section).
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Figure 9 :

 9 Figure 9: Time-dependent deflections along all the bridge length after optimization (1960 to 1966): (a) absolute values, (b) relative values.

Figure 10 :

 10 Figure 10: Deflection computed for span f.

Table 2 )

 2 which increases the probability of the effective concrete properties might differ from T-frame to T-frame.

Figure 11 :

 11 Figure 11: Magnitude, λ i bcm , and average kinetic, λ bck , parameters of basic creep after optimization

Figure 12 :

 12 Figure 12: Optimized shear forces at mid-span section, 6 years after the end of the bridge construction.

Figure 13 :

 13 Figure 13: Shear forces for the cases presented in Table3

Table 1 :

 1 Geometric and material properties characteristics of the Savines Bridge.

	Geometry	Material
	L	38.5 m	γc	2500 kg/m 3
	h i	18 to 43 m	hm; ρ h	459 mm; 75.25 %
	A d	6.00 m 2	Cement	R
	I d	8.00 m 4	Es	190 GP a
	Ap	7.36 m 2	µ (1 st class)	0.80 (-)
	Ip	26.00 m 4	p 1	5.39 • 10 -5 (-)
	T 0	44.46 M N	p 2	6.7 (-)
	e 0	0.10 m	ρ 1000	8.00 %

Table 2 :

 2 also shows the construction sequence of T-frames over time. Information related to the bridge construction and measurements.

	Pier # Date of construction (month/year)	ω i (months) Height (m)
	1	November 1958	15	18.0
	2	October 1958	16	20.7
	3	October 1958	16	23.5
	4	June 1958	20	26.2
	5	June 1958	20	29.0
	6	September 1958	17	31.7
	7	August 1958	18	34.5
	8	July 1958	19	37.2
	9	October 1958	16	40.0
	10	November 1958	15	43.0
	11	June 1959	8	43.0
	12	August 1959	6	18.0

Table 3 :

 3 Load cases considered for the sensitivity analysis.
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