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Ecologie et Modèles pour l’Halieutique (EMH), France, 2 Centro de Ciências do Mar (CCMAR), Universidade

do Algarve, Campus de Gambelas, Faro, Portugal, 3 MARBEC, IRD, Univ Montpellier, CNRS, Ifremer, Sète,

France

* marta.m.rufino@gmail.com

Abstract

Spatial indicators are used to quantify the state of species and ecosystem status, that is the

impacts of climate and anthropogenic changes, as well as to comprehend species ecology.

These metrics are thus, determinant to the stakeholder’s decisions on the conservation

measures to be implemented. A detailed review of the literature (55 papers) showed that 18

spatial indicators were commonly used in marine ecology. Those indicators were than char-

acterized and studied in detail, based on its application to empirical data (a time series of 35

marine species spatial distributions, sampled either with a random stratified survey or a reg-

ular transects surveys). The results suggest that the indicators can be grouped into three

classes, that summarize the way the individuals occupy space: occupancy (the area occu-

pied by a species), aggregation (spreading or concentration of species biomass) and quan-

tity dependent (indicators correlated with biomass), whether these are spatially explicit

(include the geographic coordinates, e.g. center of gravity) or not. Indicator’s temporal vari-

ability was lower than between species variability and no clear effect was observed in rela-

tion to sampling design. Species were then classified accordingly to their indicators. One

indicator was selected from each of the three categories of indicators, to represent the main

axes of species spatial behavior and to interpret them in terms of occupancy-aggregation-

quantity relationships. All species considered were then classified according to their relation-

ships among those three axes, into species that under increasing abundancy, primarily

increase occupancy or aggregation or both. We suggest to use these relationships along

the three-axes as surveillance diagrams to follow the yearly evolution of species distribu-

tional patterns in the future.

Introduction

The ecological state of a species is reflected on its abundance, which in turn is related with the

available space where the proper conditions are met, whether these are environmental, inter

and intra-specific (MacCAll’s bassin hypothesis, [1]). Changes in species spatial distributions

can be used as a proxy of the ecological state of species and ecosystems as it reflects species
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response to current major challenges, such as climate change or anthropogenic impacts. Spe-

cies spatio-temporal dynamics are summarized by spatial indicators, which can then be used

by decision makers for management and conservation. When relevant spatial distribution

information is incorporated into management, risks and uncertainties can be strongly reduced

[2,3]. However, spatial indicators are not typically used in management as they should [2–5].

Further, regulations imposed by management generally have a spatial component either

explicitly through time and area closures, or implicitly through allocation of quota to regions

or to fleet sectors with different geographical distributions. The European Union recently

adopted the Marine Strategy Framework Directive (2008/56/EC and 2017/848/EU) with the

objective of reaching a Good Environmental Status in all European waters, by 2020. The imple-

mentation of the MSFD relies on indicators to monitor the state of species and ecosystems sta-

tus [6,7], whose values will determine the management actions to be taken. In particular,

changes of species geographical distributions are monitored using spatial indicators, which

quantify the species distributional range and, where relevant, its pattern [6–8]. The current

work was developed within the framework of the selection of spatial indicators to be used

within the MSFD.

In the early 2000’s large efforts were devoted to developing spatial indicators useful to fish-

ery management [9–12]. Since then, spatial indicators have been widely used in different stud-

ies [13–20], but their properties, limitations and intrinsic relationships have hardly been tested

[21,22]. Previous works using spatial indicators used for monitoring marine species have been

briefly reviewed in the current work and some particularities of those indicators, were tested

and discussed.

Spatial indicators are often used as an ensemble, as it is generally accepted that ecological

assessment must be done by integrating several indicators [12,22–24]. Building a “dashboard”

of indicators increases the opportunities of picking up changes in critical factors over time.

Still, the use of several correlated indicators can raise important issues of redundancy and col-

linearity. A possible solution is to use the orthogonal axes resultant of a multivariate analysis

applied to the indicators results [25], but other solutions have been also proposed, like select-

ing the most temporally continuous indicators using min/max autocorrelation factors

(MAFA) [26–28]. However, such approaches have the disadvantages of only summarizing/

decomposing the set of indicators in principal components, potentially causing bias due to the

analytical procedures as well as losing the sense or the scale of the indicators per se. As the

number of indicators increases, so their usefulness diminishes and the risk of having inconsis-

tency between results increases [29], thus it becomes difficult to match adequate management

measures. Also, there is a need for rigorous selection procedure to identify the minimum num-

ber of indicators necessary to support management [7]. Therefore, the number and identity of

spatial indicators remain an important issue that is still under debate. There is an urge for the

conservation community to set a rigorous framework for defining spatial indicators [30], for

which it is essential to study their limitations and behavior.

On the other hand, the ecological concepts behind the indicators have been widely debated,

although generally apart from management and conservation. As stated before, spatial indica-

tors are used to quantify the way the species occupy the space, which in turn is deeply related

to abundance, on density related habitat selection or proportional-density model of no rela-

tionship between abundance and area occupied, supported by ideal-free distribution theory or

the basin model, where positive abundance–area relationship, supported by density-dependent

habitat selection theory, MacCall’s hypothesis. The relationship between occupancy and abun-

dance is one of the most extensively studied patterns in macro-ecology [19,31,32]. However,

this relationship has been rarely incorporated into surveillance or management [2,21,31]. Rin-

dorf et al. [21] studied the biasness of several spatial indicators as a consequence of their
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relationship with abundance, using simulated data and analytical derivations and concluded

that spatial indicators used for management should be unbiased for any level of abundance.

Reuchlin-Hugenholtz et al. [2] found that changes in spatial indicators preceded rapid declines

in fish biomass, thus these can be used as spatially based reference points in fisheries manage-

ment whereas Adams et al. [33] found an effect of fishing pressure on the spatial distribution

of marine fishes. Thus, there is a potential to develop spatial indicators based on the relation-

ship between abundance and species spatial distribution.

With this in mind, the aims of the current work are (1) to select and present a shortlist of

spatial indicators commonly used in marine studies, along with a bibliographic revision of the

previous works that used those indicators (2) to analyze the relationship between the indica-

tors, using empirical data and propose an unifying classification scheme for spatial indicators

(categories) and (3) to integrate the information given by the categories of spatial indicators to

inform on species ecology that can be used in management.

Materials and methods

A general description of the work can be found in Fig 1.

Data used

The data was obtained from scientific groundfish bottom trawl surveys (demersal, FR-EV-

HOE) and pelagic acoustic surveys (PELGAS). EVHOE is a French international survey

carried out annually during autumn in the Northeastern Atlantic to evaluate the demersal

fishing resources [34]. It ranges from the Bay of Biscay up to the Celtic seas. The sampling

is randomly stratified over 7 bathymetry intervals (0–30, 31–80, 81–120, 121–160, 161–

200, 201–400 and 401–600 m) and is composed of 119 to 153 sampling stations per year

(Fig 2, right panel). The biomass of the 29 fish species occurring more than 10 times per

survey during the 19 sampled years (1997–2015) and excluding the main pelagic species

was used: Argentina sp. (ARGENTI), Arnoglossus sp. (ARNOGLO), Callionymus lyra
(CALMLYR), Callionymus maculatus (CALMMAC), Capros aper (CAPOAPE), Chelido-
nichthys cuculus (CHELCUC), Conger conger (CONGCON), Eutrigla gurnardus (EUTR

GUR), Gadiculus argenteus (GADIARG), Gadus morhua (GADUMOR), Helicolenus dac-
tylopterus (HELIDAC), Lepidorhombus boscii (LEPIBOS), Lepidorhombus whiffiagonis
(LEPIWHI), Leucoraja naevus (LEUCNAE), Lophius budegassa (LOPHBUD), Lophius pis-
catorius (LOPHPIS), Melanogrammus aeglefinus (MELAAEG), Merluccius merluccius
(MERLMER), Merlangius merlangus (MERNMER), Microchirus variegatus (MICUVAR),

Micromesistius poutassou (MICPOU), Microstomus kitt (MICKIT), Phycis blennoides
(PHYIBLE), Scyliorhinus canicula (SCYOCAN), Solea solea (SOLESOL), Trisopterus
esmarkii (TRISESM), Trisopterus luscus (TRISLUS), Trisopterus minutus (TRISMIN) and

Zeus faber (ZEUSFAB). Only most frequent species were considered, as species that are

poorly caught by the survey gear will occur infrequently in survey catches and are there-

fore likely to create noisy indicator series [26].

The PELGAS acoustic surveys are carried out annually in spring, during the last 15 years

(from 2000 to 2016); [35,36]. They consist on over 1345 to 1997 locations (Elementary Dis-

tance Sampling Unit (EDSU)), obtained along 29 acoustic radials perpendicular to the coast,

used to evaluate small pelagic fish resources in the Bay of Biscay (Fig 2, middle panel). The six

most abundant small pelagic fish species were used to study the indicators: Engraulis encrasico-
lus (ENGRENC), Sardina pilchardus (SARDPIL), Scomber japonicas (SCOMJAP), Scomber
scombrus (SCOMSCO), Sprattus sprattus (SPRASPR) and Trachurus trachurus (TRACTRU).

Integration of spatial indicators
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Spatial indicators

There are many ways of referring to the spatial organization of animals such as patch or patchi-

ness, crowding, clump, pattern of variability, pattern intensity, spatial heterogeneity, spatial

distribution, spatial structure, contagious behavior, convergence or aggregation and spatial

distribution metrics [2]. Nevertheless, all these can be represented and quantified through spa-

tial indicators. In the current work 18 spatial indicators commonly used in previous studies

have been selected. The selection of indicators was based on their presence in the literature.

We present them according to their sensitivity or not to the location of the samples in space.

The first set of indices is spatially-independent and is divided into two subsets depending on

whether the index is based on density measures or on count data. The second set is composed

of spatially explicit indices, for which the geographical location of the sample matters. Table 1

provides selected references on the different uses of the indicators listed in this work. Also, a

Fig 1. Graphical abstract. Conceptual diagram describing the three-steps approach of the present work (graphical

abstract).

https://doi.org/10.1371/journal.pone.0207538.g001
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comprehensive table with an exhaustive listing of previous works using spatial indicators and

respective synthesis can be found in Supplementary material (S1 File). This literature review

was done to provide a broad overview on the previous applications of the spatial indicators,

along with an identification of the potential pitfalls and future directions. The works consid-

ered in the review were selected using several internet search engines (google scholar, web of

science, etc.) and citations on other articles. The indicators selected for this work do not

intended to be exhaustive, but representative of those used in the literature.

Spatially-independent indicators: Density based spatial indicators. The percentage of

presence (ProA) is the ratio between the positive area and the surface of an area consid-

ered as the reference one. It is usually obtained by dividing the number of samples that

contain at least one individual by the total number of samples, thus being a percentage (0–

100% or 0–1)[2,16,21]. Crecco and Overholtz [32] considered instead the proportion of

the survey area where catch rate was above a fixed level [21]. Persohn et al. [19] proposed

a correction of this indicator to account for a stratified sampling design. Modica et al. [22]

suggested to standardize the percentage of presence by the ratio between the survey area

of each year over the largest one observed on the entire time series, to avoid a potential

spurious effect of the existence of a different number of samples along the survey time-

series. The percentage of presence can also be estimated using indicator kriging (geostatis-

tics) applied to the data previously converted into presence/absence. This method pro-

vides estimates of the probability of presence, that are then translated into the percentage

of presence by summing the surface of pixels exceeding a certain threshold of a probability

(e.g. 50%)[13,37–39]. For the sake of simplicity, only the percentage of presence was con-

sidered in the posterior analyses.

The positive area (parea) is the area where a fish species occurs, i.e. the surface area of the

geographical space occupied by a species, where its densities are strictly above zero

[11,12,18,25,40,41]. It varies between zero and the total area. The positive area is highly sensi-

tive to low density areas that have the same contribution as the high ones, like the percentage

of presence. It can be estimated as the sum of the areas of influence around each positive sam-

ple [11,12]. As far as time series is concerned, if an area is added for a given year or if there are

changes in the sampling design, the positive area can be highly impacted.

Fig 2. Location of the sampling stations. Location and sampling design of the empirical data sets used in the current work, bottom trawl survey (EVHOE 2015, left

panel), small pelagic surveys using acoustic techniques (PELGAS 2015; middle panel) and worldwide reference of the areas (right panel).

https://doi.org/10.1371/journal.pone.0207538.g002
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Equivalent area (eqarea) represents the surface that would be covered by a population with

constant density equal to the mean density per individual [10,11,18]. This indicator is very sen-

sitive to the highest density values [18,42].

Spreading area (sparea) measures how the densities of the positive area are statistically dis-

tributed [11,12,18,19,25,40,43](graphical representation in S2 File). It is related to the Gini

index (explained below), but with the advantage of having no contribution of null densities.

This indicator is much less sensitive to low values of density than is the strict positive area [18].

The average biomass (mean_biom; μ) and the standard deviation (sd_biom; σ) can also be

considered as key indicators. Biomass is computed at each sample location and the average (or

standard deviation) is calculated over all the samples.

Table 1. Summary of the indicators used in the current work, organized by group. Underlined indices are the ones retained for other analysis.

Indicator Description Scale Code Ref.

1. Occupancy indicators [0–1]

(%)

Percentage of

presence

% samples > 0 (independently of abundance) ProA proportion of empty samples

(Rindorf et al. 2012)

Saraux et al. (2014),

Positive area The sum of the areas of influence of each sample (estimated using Voronoï) with positive

densities (in nmi2).

0-total

area

parea Woillez et al. (2007)

Woillez et al. (2009)

Equivalent area The area that would be covered by the population if all individuals had the same density,

equal to the mean density per individual [0-PosA](nmi2)

0-+ area eqarea Woillez et al. (2007)

Woillez et al. (2009)

Bez and Rivoirard [10]

Spreading area Index related to the Gini index, but which has the advantage of having no contribution

from zero values of density (nmi2).

sparea Woillez et al. [11]

Inertia� Describes the dispersion of the population around its center of gravity (nmi2) Inertia Bez and Rivoirard [10]

Woillez et al. [11,12]

2. Quantity dependent indicators

Coefficient of

dispersion

(σ2/mean ratio)

This index gives indications on over or under dispersion compared to a Poisson

distribution.

VaMe Bez and Rivoirard [10];

Szmyt [54]

Index of dispersion

(contagion)

Used to measure the distributional pattern within the range (MSFD) MeVa Greenstreet et al. [14]

Level of aggregation Mean density per individual, used to describe the level of aggregation. Lagg Bez and Rivoirard [10]

Mean crowding Alternative indice to be used only with count data, which unlike Lloyd’s index, it is not

affected by zero counts (domain free)

MeCr Bez [9];

Level of aggregation Lagg Bez [9];

Centre of Gravity� Mean geographic location of the population (lat/long coordinates). CG Bez and Rivoirard [10]

Woillez et al. [11,12]

3. Aggregation indicators

Lloyds index of

patchiness

Quantify the degree of patchiness. Lloy Rindorf et al. [21]

Bez [9]

Gini (Lorenz curve) Represents the difference between the observed distribution and a distribution where

every sample contains the same individuals [0–1].

Gini Woillez et al. [11]

Rindorf et al. [21]

Index ofaggregation Describes the aggregation of the population. Iagg Bez and Rivoirard [10]

Isotropy� Measures the elongation of the spatial distribution of the population.dispersion shape

(symmetry) of the inertia around the center of gravity (i.e. round or ellipsoid), and it is the

ratio between the two inertia axes. [0–1]

Iso Woillez et al. [11,12]

� indicates the spatially explicit ones.

https://doi.org/10.1371/journal.pone.0207538.t001
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The level of aggregation (Lagg) representing the mean density per individual has been pro-

posed by Bez [9] and Bez and Rivoirard [10] to describe the level of aggregation of fish densi-

ties. The index of aggregation (Iagg) is then obtained by standardizing the level of aggregation

by the total abundance (Bez and Rivoirard, 2001).

If the equivalent area (eqarea)(and so its inverse, the index of aggregation) remains practi-

cally constant, variations of abundance are compensated by variations of the level of aggrega-

tion (e.g. densities multiplied by a constant) [10,12,25,26,40]. On the other hand, if the level of

aggregation is constant, variations of abundance are directly translated into variations of the

equivalent area. Mixed situations can be thought of, where variations of abundance go along

with variations of the level of abundance and of the equivalent area [10]. This indicator is very

sensitive to the highest density values [18].

Spatially-independent indicators: Count based spatial indicators. Lloyd’s index of

patchiness (Lloy) has been developed to quantify the degree of patchiness of count data at the

scale of the sample support [9,10,21]. It is sensitive to zero abundance’s and is thus dependent

on the domain over which it is computed (like all other indicators except CG, Lagg, Iagg and

earea).

From Lorenz curves, two main indicators have been derived in previous works: Gini index

and spreading area. Lorenz curves were initially developed in economics to estimate the con-

centration or richness/poverty (graphical representation in S2 File). When applied to fisheries,

its abscissa represents the cumulative area arrayed by increasing biomass, and its ordinate, the

corresponding proportion of the total fish biomass [44,45]. If fish abundance were equally dis-

tributed among the samples, the Lorenz curve would correspond to a 1:1 line. As the distribu-

tion of fish becomes increasingly uneven, i.e., more concentrated, the Lorenz curve bends

downwards and to the right.

Mean crowding (MeCr) is an indicator proposed by Lloyd to be used with count data.

Unlike Lloyd’s index (shown above), it is not affected by zero counts (domain free)[9,46].

Coefficient or index of dispersion (VaMe), also called variance to mean ratio (σ2/μ), rela-

tive variance or Fano factor, is used to measure the spatial aggregation of individuals [14,46–

52]. It consists on a normalized measure of the dispersion of a probability density function of

count data [53]. Other related indicators used to measure dispersion in count data include

Morisita’s index, Lloyd’s mean crowding (referred above), Green’s index and Taylor’s power

law [47,51,54,55], not included for brevity but relevant to mention.

The index of dispersion (MeVa), also named as mean to variance ratio or index of conta-

gion has been applied to measure “distributional pattern” within the occupied range for the

MSFD [14].

Gini index (Gini) represents twice the area between the identity function and the Lorenz

curve (also called concentration index or evenness of the spread). This index is commonly

accepted as a measure of the concentration [2,11,12,21,44,56–60] (graphical representation in

S2 File). It is bounded between 1 and 0, and the highest its value the most concentrated is the

biomass in fewer samples.

The statistics VaMe, MeVa, Gini and Lloyd are all based on the statistical distribution of the

sampled count data and are thus influenced by the zero counts observed outside the area of

presence of fish (i.e. domain dependent), whereas mean density per individual (level of aggre-

gation, Lagg), index of aggregation (Iagg) and equivalent area are domain free statistics, i.e. do

not vary with the presence of external zeros in the sample data [10].

All previously mentioned indices are independent of how the values are actually spatially

distributed, although are usually considered to be spatial indicators [10]. Indeed, if the location

of the samples changes, it would not be reflected on the indicator’s results.

Integration of spatial indicators
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Spatially explicit indicators. Centre of Gravity (CG) (also referred as distribution cen-

troid, center of mass, range center, range core, spatial core, and center of distribution) indi-

cates the mean spatial location of the population (graphical representation in S2 File)[10,12].

When it is estimated with the coordinates only (mean latitude and longitude), it represents the

center of the survey area. When weighted by abundances, the mean latitude and longitude

become the coordinates of the center of the population [10]. The latter version was computed

in the present work.

The inertia (Inertia) represents the spatial dispersion of the population around its center of

gravity, i.e. the mean square distance between individual fish and the center of gravity [10,12],

also called geographical spread index [22] (graphical representation in S2 File). Other works

have estimated the variability of the bivariate distribution using ellipses and confidence inter-

vals or kernels (see table S1 File).

Isotropy/anisotropy (isotropy) represents the dispersion shape (symmetry) of the inertia

around the center of gravity (i.e. round or ellipsoid), and it is simply the ratio between the two

inertia axes (graphical representation in S2 File).

In the case of irregular sampling as randomly stratified sampling design, typically the

case of fishing surveys, some of the above indicators can optionally take into account the

areas of influence around each sampling point (namely the center of gravity, inertia, isot-

ropy, positive area, spreading area, index of aggregation and equivalent area)[12]. This

area of influence around each sample can then be accounted for as a constant (for example

1 or the area of the grid square) or having a variable area of influence estimated around

each sample. In this latest case previous works suggest that the areas of influence are esti-

mated using Voronoï tessellation [12]. This step is always carried out prior to the calcula-

tion of the indicators. The results of six indicators estimated accounting for different

areas of influence (constant vs. Voronoï tessellation) were compared using linear models.

Additionally, as the areas of influence are most commonly estimated using discrete Vor-

onoï tessellation, we also tested the two parameters required in their computation: the

maximum distance allowed between data and borders (called dmax) and the level of dis-

cretization (called nodes). The effect of those two parameters has been evaluated by vary-

ing the two parameters from 0 to 500, and looking for a stabilization of the indicator

values (i.e. plateau). Values at the start of the plateau was deemed the best values to use for

the parameterization of the Voronoï function in our case. All those results are shown in

detail on supplementary material (S3 File).

Classification of indicators

To classify the indicators into categories using empirical data, the results given by the fifteen

spatial indicators were first applied to 569 species raw biomass distributions (15/19 years, 2

surveys and 31 fish species). For these, when applicable, the indicators were weighted by the

areas of influence estimated by Voronoï (as indicated previously). Thus, the matrix of indica-

tors, together with summarizing measures of the species abundances (average biomass (log

(mean_biom+1)), respective standard deviation (log (sd_biom+1)) and total biomass (log

(totab+1)) were explored using a principal component analysis (PCA), a correlation matrix

plot and a hierarchical clustering to determine the main groups of indicators, and the relation-

ships among those.

The indicators were then averaged at species level (across years), and were represented

using a heatmap with the respective clusters that arose from the correlations. A PCA (pro-

duced on scaled variables), allowed determining the groups of species showing similar patterns

across the indicators.
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Integration of the indicators in ecology & management

Based on the results of the previous section, we selected one indicator per category, namely the

percentage of presence, the Gini index and the average biomass. For each species, Spearman

rank correlation (ρ) was calculated among the time series of the three indicators to diagnose

the existence of a significant monotic relationship. Significant correlations (p-value� 0.05)

were then represented using a triangular network with three nodes (or vertices) where the

edges (or links) were proportional to the strength of the rank correlation (ρ) and colored

accordingly. The rank correlation matrix was analyzed with hierarchical clustering and k-

mean approaches to define groups of species with similar spatial behavior.

All analyses and plots were performed using the statistical programming language R. Spatial

indicators were estimated self-coded or using existing packages RGeostats [61] and ineq (for

Gini index) [62]. Figures were produced using the packages ggplot2 [63], superheat [64], fac-

toextra [65] and corrplot [66].

Results

Literature review

The brief literature review resulted in 55 studies using spatial indicators in marine ecology and

published in the last 20 years. The studies are listed and summarized accordingly (table with

respective references and classification in S1 File). Spatial indicators have been applied essen-

tially to study the spatio-temporal species dynamics (72% of the studies; spatio-temporal

dynamics and model based), but also on model validation (comparing IBM and similar models

with survey data, 7 studies) and spatial overlap of species distribution (4 studies).

The indicators proposed by Woillez et al. [12], also considered in the current work, domi-

nate the literature (47 out of 55 studies). The selection of spatial indicators varied widely

among studies, although the center of gravity with the respective inertia was one of the most

frequently used (46 studies). Furthermore, most studies used few indicators and only 8 studies

integrated 7 or more spatial indicators to describe the spatial distributions of populations.

Forty-seven studies used at least one of the 6 indicators that require the areas of influence,

as recommended in Bez and Rivoirard [10] and Woillez et al. [12]. Out of these, in 24 of those

studies the weighting by the areas of influence was not mentioned, whereas in 6 studies, it was

mentioned but no clear details on how it was done were given. Four studies stated that the

areas of influence were estimated using Voronoï (or Dirichlet tessellation) and only one, pro-

vided the details used in their estimation.

Our results indicate that the required parameters used to estimate the areas of influence

around each sample can have a large impact on the results given by the indicators when they

are not crude (see supplement for details). Still, whether the indicators were weighted by sam-

ple’s specific areas of influence or a constant, the given results were highly correlated for the

two datasets considered. For the center of gravity, inertia and isotropy the relationship was

similar for both surveys whereas for the positive area, equality area, spreading area and index

of aggregation, the relationship was strong, but differed between surveys.

Classification of indicators

Three groups of highly correlated indicators were evidenced in the cluster analysis, the correla-

tion matrix plot and the PCA (S4 File and Fig 3) using the 18 indicators applied to the full

time-series of the 35 species. The resulting groups of indicators highlighted different aspects of

the species spatial distributions.
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The first group of indicators, included species average biomass and standard deviation and

represented a category of quantity-dependent indicators (S4 File and Fig 3 group ‘Quantity’).

It comprised the variance to mean ratio (VaMe), mean crowding (MeCr), level of aggregation

Fig 3. Relationships among spatial indicators. Correlation matrix plot of the indicators estimated for each annual species distribution, and

respective cluster groups (on top) that represent the three categories (colored accordingly).

https://doi.org/10.1371/journal.pone.0207538.g003
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(Lagg), total biomass (totab), the mean species biomass and respective standard deviation

(lmean_biom and lsd_biom) (average intra-group correlation of 66.6%).

The second group of indicators represented the aggregation indicators category that is,

whether the species distribution is more concentrated or more spread in space (S4 File and Fig

3, group ‘Aggregation’). This group included Lloyd’s, Gini’s and the index of aggregation

(Iagg), all highly positively correlated (average intra-group correlation of 46.2%). Further, x

coordinate corresponding to the longitude of the center of gravity was also within this group

(CG.long).

The third group of indicators represented occupancy indicators category, and reflected

whether the species were found in most of the samples, thus spread over the entire area or just

in part of it (S4 File and Fig 3, group ‘Occupancy’). This category included inertia (W.inertia),

positive area (W.parea) and percentage of presence (ProA), spreading area (W.sparea) and

equivalent area (W.eqarea) (average intra-group correlation of 63%). Within this group, inertia

was the only spatially explicit indicator. Further, this group also included a sub-group with the

mean to variance ratio (MeVa), the y coordinate corresponding to the latitude of the center of

gravity (W.CG.lat) and isotropy (W.iso), the latter contributed poorly to the ordination. This

latter sub-group however, showed reduced correlation levels with all indicators overall.

The first PCA axes separated the species with higher values for the occupancy indicators

from the species showing higher value for the aggregation indicators, such as those sampled

during the pelagic survey (S4 File, left and middle panel and Fig 3). The second axes showed

mainly the influence of quantity based indicators (S4 File, left panel and Fig 3). Analysis of the

inter-annual variability in species distributions suggested that the species are spatially stable in

their distribution and that the diversity of distributional patterns are likely species specific

(PCA in S4 File). Thus, the indicators were averaged over the species (across years) and the

analysis redone.

The results of the averaged indicators by species also evidenced the same three groups of

indicators as it was found in the full matrix (i.e. including annual variability), but it also identi-

fied four main groups of species, as shown in the heatmap (Fig 4). The first group was repre-

sented by species with high results for quantity indicators (Scomber scombrus, Capros aper and

Micromesistius poutassou; blue group in Fig 4). The second group was composed of species

with high values for occurrence indicators and lower aggregation indicators (Arnoglossus sp.,

Callionymus lyra, Callionymus maculatus, Lepidorhombus whiffiagonis, Merluccius merluccius,
Scyliorhinus canicula, Trisopterus minutus, Micromesistius poutassou Lophius budegassa,

Argentina sp., Conger conger, Zeus faber, Lophius piscatorius, Chelidonichthys cuculus and Leu-
coraja naevus; yellow group in Fig 4). The third group was mostly associated with species cap-

tured in the pelagic survey and included species that showed high aggregation indicators and

lower occurrence (Engraulis encrasicolus, Sardina pilchardus, Scomber japonicas, Sprattus
sprattus and Trachurus trachurus; grey group in Fig 4). The fourth group was composed of spe-

cies captured in the bottom trawl survey, showing relatively higher values for the aggregation

indicators (red group in Fig 4), in particular for Gini index (Helicolenus dactylopterus, Solea
solea, Phycis blennoides, Gadiculus argenteus, Lepidorhombus boscii, Eutrigla gurnardus, Gadus
morhua, Microstomus kitt, Melanogrammus aeglefinus, Merlangius merlangus and Trisopterus
esmarkii).

Integration of the indicators in ecology & management

Based on the results from the previous analysis, one indicator per category was selected for the

posterior analysis. The choice rested on the simplicity of calculation of the indicator, its

straightforward interpretation, and its general use and comparability among species (two of

Integration of spatial indicators

PLOS ONE | https://doi.org/10.1371/journal.pone.0207538 November 21, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0207538


them are percentages, i.e. bounded). Thus, for the occupancy category, percentage of presence

was selected, for the aggregation indicators, the Gini index was considered and to represent

quantity derived indicators, the average biomass was used. Those measures were used to char-

acterize the quantity-occupancy-aggregation relationships, and thus how each species occupy

the space.

For the 35 species considered, only one (Trisopterus minutus) did not show any significant

relationship between quantity-occupancy-aggregation, as measured by Spearman correlation

(Fig 5 and Fig 6). All the remaining species were grouped by the dominant relationships

among those three axes.

The first group of species showed a positive significant relationship between quantity and

occupancy and a negative relationship between occupancy and aggregation (Fig 5 and group 1

Fig 6). Therefore, for those species, in years of greater quantity, there was an expansion of the

area occupied, which in turn corresponded to a decrease in the aggregation within the sampled

areas. A second group showed a similar pattern to group 1, with, however, an additional signif-

icant negative relationship between quantity and aggregation (Fig 5 and group 2 Fig 6). This

additional link suggested that in years of greater abundance, the species are more clustered. A

third group showed only one significant relationship between occupancy and aggregation, but

no significant relationship between quantity and the other two variables. Therefore, in these

group, when occupancy increases aggregation decreases, independently of the quantity which

Fig 4. Species groups according to the indicators. The results of each indicator for all years, were averaged by species and scaled. Left panel represents the

heatmap with respective cluster (groups defined by kmeans) and right panel, shows the PCA results. Indicators and species names/symbols are colored

according to the categories or cluster groups, respectively.

https://doi.org/10.1371/journal.pone.0207538.g004
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is not significantly related with any of those (Fig 5 and group 3 Fig 6). A fourth group showed

only one significant positive relationship between quantity and aggregation, but no significant

relationships between occupancy and the other two variables. Therefore, in these group, when

quantity increases, aggregation also increases independently of occupancy (Fig 5 and group 4

Fig 6). A fifth group showed a significant positive relationship between quantity and occu-

pancy and another between quantity and aggregation, but no significant relationships between

aggregation and occupancy Therefore, when quantity increases, occupancy also increases (Fig

5 and group 5 Fig 6).

Discussion

Spatial indicators are used to quantify the ecological states of species, the impact of climate

change and other anthropogenic aspects that are likely to be reflected in their distribution, but

also to differentiate the anthropogenic-induced distribution from their natural variability

Fig 5. Relationships between quantity-occupancy-aggregation for all species under study. Spearman correlation between the three aspects of species spatial

behavior (years pooled): Aggregation (measured by Gini index), Occupancy (measured by the percentage of presence) and Quantity (measured by the mean

log biomass). The width of the edge line represents the strength of the relationship, its color the direction (positive in blue and negative in red) and the value in

the middle, is the correlation coefficient. Non-significant correlations were omitted. Codes for the species can be found in the text.

https://doi.org/10.1371/journal.pone.0207538.g005
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[10,11,14,21,26,30,41,67]. They are considered as potentially key tools for decisions makers,

although hardly any previous work have focused on their applications in management

[14,30,68,69]. Our study underlined that the results given by 18 different spatial indicators

were highly redundant, representing essentially three aspects of species spatial distribution:

quantity, aggregation and occupancy. Those three components represented species spatial

behavior, and thus can be used to classify the species in each area and the relationships

between the three aspects can be summarized in a triangular diagram. This representation

Fig 6. Groups of species with similar quantity-occupancy-aggregation relationships. See further details in the text.

https://doi.org/10.1371/journal.pone.0207538.g006
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defines the way a species occupy the space in terms of occupancy and aggregation and its rela-

tionship with quantity. This approach can be further used in management and ecology in

future works.

To the author’s best knowledge, the only previous quantitative literature review on spatial

indicators has been recently done by Yalcin and Leroux [30], focusing on indicators used to

quantify species ‘range’. Additionally, Adams et al. [33] made a short synthesis of previous

works that used the center of gravity. Here the literature review permitted to assemble the con-

clusions of those two abovementioned studies, and extended them to more spatial indicators

(S1 File). Previous studies on spatial indicators are essentially focused on species spatial-tem-

poral dynamics, namely with its relationship with temperature/fishing effort or between spe-

cies life-stages. From our review it becomes clear that spatial indicators are commonly used in

marine biology studies, in a broad diversity of areas.

For irregular sampling designs it has been recommended that the indicators are weighted

by the areas of influence around each sample [12]. However, the majority of the previous

works reviewed (S1 File) did not mentioned if the calculations incorporated an estimation of

the areas of influence around each sample, whereas when it is mention, the parameters consid-

ered were not specified except in Doray et al. [28] (S1 File). This underlines at best a failure in

the methodological description or at worst a misunderstanding of the functions used to esti-

mate the indicators. In the current work we showed that the parameters used to estimate the

areas of influence around each sample can have a large impact on the results given by the indi-

cators when they are not appropriate. This leads to two recommendations: first, it is essential

to carry out a simple preliminary study to identify the best values of the parameters. In the cur-

rent work we are proposing a simple technique to parameterize the areas of influence esti-

mated by Voronoï, which can be extended to any method applied. Second, the parameters

specifications should be detailed in future works, otherwise the results will hardly be

comparable.

Nevertheless, those particularities, it was concluded that whether the indicators were

weighted by sample’s specific areas of influence or a constant, the given results were highly cor-

related for the two datasets considered. For the center of gravity, inertia and isotropy the rela-

tionship was similar for both surveys whereas for the positive area, equality area, spreading

area and index of aggregation, the relationship was strong, but differed between surveys.

Ideally, spatial indicators should be independent of the sampling scheme. Still, this is not

the case for estimators of the spatial range neither for the percentage of non-empty samples

[22,67]. Most spatial indicators considered in the current study have been previously applied

to fish data obtained by bottom trawl or by acoustic surveys, but not between these two types

of surveys in an integrative perspective, as it is done in the current work (S1 File). Thus overall

the relationships between the indicator’s results did not differed between the two different

sampling designs considered (randomly stratified of the trawl survey and systematic transects

of the acoustic survey).

Classification of the indicators

When many correlated indicators are used for monitoring purposes, they may show conflict-

ing signals that are not interpretable, or over emphasize the seriousness of the situation [24].

Barra et al. [25] found that small pelagic fish biomass was significantly related to a suite of,

rather than single, spatial indicators, thereby extending the abundance-occupancy relationship

to other aspects of species’ spatial behavior, which is also observed by Reuchlin-Hugenholtz

et al. [2] and confirmed in the current work. However, we conclude that this can be due to the

correlation between indicators and not to a particularity of the species studied. In the current
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work, it was observed using empirical data that most indicators were highly correlated with

each other. Nevertheless, these could be disentangled into three main groups of indicators that

define the species spatially: quantity, aggregation and occupancy. It is important to mention

that a strong correlation between two indicators does not imply that they are measuring the

same ecological aspect of a species but that the values of the species spatial distributions are

similar. To illustrate this clearly, consider the width and height of an animal. These two vari-

ables are strongly correlated between each other and are both proxies of size, despite represent-

ing a different measure of shape.

An unified classification scheme of spatial indicators quantifying a diversity of species dis-

tribution, would improve the comprehension of its meaning, permit the development and

implementation of surveillance indicators and can facilitate the communication with stake-

holders [5,70,71]. Woillez et al. [12] considered eight classes of spatial indicators to character-

ize species spatial distribution: location (latitude and longitude of the center of gravity),

dispersion (inertia and anisotropy), aggregation (spreading area), occupation (positive area)

and correlation (microstructure). Rindorf et al. [21] however, referred to three classes only, to

classify eight spatial indicators.: area occupied (proportion of empty samples and structurally

empty samples), aggregation (Lloyds index and Lorenz curves), and area spread or range

(average distance to the center of gravity and area of the contour ellipse). Our results also

defined three main classes of indicators, that have an ecological meaning: biomass, spatial

aggregation and occupancy.

Furthermore, in the current work we underlined that the spatial behavior is highly species

specific, as its inter-annual variability is smaller than the variability shown between species.

Species spatial behavior primarily followed variations between occupancy and aggregation

(reflected in the first PCA axes), and secondly reflected quantity (second PCA axes), as mea-

sured by the spatial indicators considered. In fact, species can be classified per their spatial

behavior considering all indicators measured, and can be highly aggregated (e.g. pelagic spe-

cies as the sardine) with lower ocupancy or occupy larger areas, but more spread, with lower

aggregations (such as Scyliorhinus canicula or Merluccius merluccius), independently of its

bathymetric range or area occupied within the sampled zones.

Integration of indicators in management and ecology

In many previous works, spatial indicators have been used to disentangle species spatial behav-

iour, to test abundance–occupancy relationships (AORs) (S1 File). Several ecological-consis-

tent theories have been developed around these concepts, namely the ideal free distribution

theory (IFD) that predicts that biological populations contract into areas of highest habitat

suitability as their abundance decreases, advocating therefore the existence of a relationship

between abundance and occupancy. Similarly, MacCall’s basin model which postulates that

geographic range of marine fish will co-vary with population density as a function of habitat

selection [2,19,31,49,72–76]. A decrease in the area occupied at low stock abundance has been

reported for many marine species, translated in a decrease in catchability [13,58]. Density-

aggregation relationships have been reported for lakes invertebrates, across spatial scales and

seasons [77]. Rindorf et al. (2012) confirmed that several spatial indicators were biased for dif-

ferent levels of abundance. Adams et al [33] used the positive area as a measure of occupancy

to study the density-occupancy relationships of nine fish stocks, but also argues about this

indicator reliability, as a zero may represent a low probability of capture. Thus, several previ-

ous works have focused on either density-occupancy or density-aggregation relationships.

Nevertheless, no matter what the chosen indicators within each category, our results indicate

that those two relationships should be interpreted together, and thus the species behavior

Integration of spatial indicators

PLOS ONE | https://doi.org/10.1371/journal.pone.0207538 November 21, 2018 16 / 21

https://doi.org/10.1371/journal.pone.0207538


characterized by a minimum of three axes: density, occupancy and aggregation. There-

fore, it is suggested that the three axes of species behavior should be integrated in ecologi-

cal monitoring. Similar conclusions have been reported by Hui et al [78] using stream

macroinvertebrates and ants, that stated the use of the three distinct but related concepts

of population structure (i.e. occupancy, abundance and aggregation) in conservation biol-

ogy and produces a theoretical model to apply it. Zwanenburg et al [79] reached similar

conclusions studying seven fish species, but named the three components differently: con-

centration, prevalence and local density. These authors also consider that the three mea-

sures should not be interpreted individually, but together, over time in each area of

interest. Further work is required to develop a method to integrate quantity, occupancy

and aggregation in marine species management, and to better define which indicators

should be used in each case. Here, the integration was done using the simplest indicators,

independently of their mathematical and theoretical criteria as it most likely should. Fur-

ther work on the pitfalls and sensitivity of each indicator could also point to alternative

criteria for the selection of indicators. Nevertheless, we would expect that the results

would be similar in face of the strong correlations found within each category.

No single indicator is sufficient to summarize the spatial behavior of an animal [22] and sci-

entific judgments remain essential for the selection and interpretation of survey-based indica-

tors and assessments, depending on the biology of the stocks, the ecosystem, and the history of

fishing [26]. Nevertheless, objective and optimized decisions supported by indicators must be

made to preserve the environment. Thus, it is essential to promote the existence of well-stud-

ied, robust and accurate indicators of species distributions. The need for rigorous selection

procedure to identify the minimum number of indicators necessary to support management is

essential [7]. Indicators can then be used to pinpoint changes in the species and ecosystems

that are then further studied to identify the nature of those shifts, so that effective management

measures are developed and implemented.
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