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A FLAT MODEL PREDICTIVE CONTROLLER
FOR TRAJECTORY TRACKING IN IMAGE

BASED VISUAL SERVOING
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Université d’Orléans - Polytech’Orléans,

8 rue Léonard de Vinci, 45 072 Orléans Cedex 2

Abstract: Image-Based Visual Servoing (IBVS) is a control strategy using visual
information to control the motion of robotic systems. Classical IBVS can not take
into account either the mechanical constraints (joint and actuator limitations) or
the visibility constraints, very important in this scheme. Model Predictive Control
(MPC) is well adapted to deal with these drawbacks. However, applied to fast
systems (e.g. mobile robots), the computational time is a great challenge for real
time applications. One way to reduce this time is to use the concept of differential
flatness. In this paper, a new IBVS strategy based on a flat MPC approach is
proposed. The capabilities of this approach in terms of trajectory tracking and
obstacle avoidance are pointed out. Applied to mobile robot trajectory tracking, a
simulation experiment shows the efficiency and the robustness of this new control
scheme. The computational time required by the proposed solution is compared
with the nonlinear solution and easily enables a real-time application.

Keywords: visual servoing, model predictive control, visibility constraints,
flatness.

1. INTRODUCTION

Visual servoing has become an attractive strategy
for the motion control of autonomous manipula-
tors and mobile robots. Visual control law design
depends on several parameters: the camera config-
uration (eye-to-hand, eye-in-hand or stereovision),
the kind of camera (perspective or catadioptric)
and the control scheme. The fundamental classi-
fication of visual servoing distinguishes different
approaches depending on the design of the control
scheme: image-based control (2D), position-based
control (3D) and a hybrid approach (2D/dt, 2D
1
2 ). Further details about visual servoing can be
found in [Hutchinson et al. (1996)].
The principle of Image-Based Visual Servoing
(IBVS) is to minimize an image error between

the desired image and the current image from
the camera. In the classical IBVS approach, an
interaction matrix, also named image jacobian,
converts image errors into Cartesian errors. This
matrix depends on the visual feature considered
(generally the pixel coordinates (up vp)), on the
intrinsic camera parameters and on the depth,
i.e. the distance of the considered point w.r.t the
camera frame. The control design usually requires
the inversion of the interaction matrix. An expo-
nential control law is then applied, ensuring a fast
decay of the image error.
While the main interest of IBVS is its robust-
ness to modeling errors (camera calibration for
example), several drawbacks should be mentioned
[Chaumette (1998)]:
- to simplify the determination of the interaction



matrix, an approximate value of the depth at the
convergence is usually used. This choice involves a
non optimal trajectory motion between the initial
position and the desired one : the trajectory and
the visibility of the features are not controlled.
- locally, due to the number of the visual features,
the interaction matrix may not be invertible and
the synthesis of the control law is then not possi-
ble.
- classical IBVS can not take constraints into
account.
In the visual servoing concept, Model Predictive
Control (MPC) [Qin and Badgwell (2003)] seems
to be well-adapted to deal with these drawbacks.
It is not necessary to determine the interaction
matrix and its inverse. The constraints, such as
actuator limitations and visibility constraints, can
be easily taken into account. This alternative
approach to IBVS has already been applied for
point to point stabilization tasks in [Allibert et al.
(2006)] and [Sauvée et al. (2006)]. In [Allibert
et al. (2006)], the point stabilization of a mobile
robot with a Visual Predictive Control (VPC)
strategy is considered. The visual information is
given by a catadioptric camera embedded on the
mobile robot (eye-in-hand). A real time applica-
tion highlights the efficiency and the robustness of
the VPC approach. In [Sauvée et al. (2006)], the
visual servoing of a manipulator in an eye-to-hand
configuration is studied. The model considered is a
linear one (feedback linearization), thus reducing
the computational time.
Up to now, only stabilization tasks have been
addressed with a predictive strategy. We propose
in this paper to extend the NMPC approach to
trajectory tracking in the image plane. Many pa-
pers in the literature deal with trajectory tracking
of a mobile robot [Kühne et al. (2004)], [Gu and
Hu (2006)]. The computational time is a real chal-
lenge for on-line application on fast systems. One
way to reduce this time is to use the concept of
differential flatness [Fliess et al. (1995)]. In [Rao
et al. (2003)], the authors used differential flatness
to perform a proportional-derivative controller in
the image plane. No constraint can be handled.
In the proposed approach, we address both: the
trajectory tracking directly in the image plane by
the MPC strategy (with the constraint handling),
and the real-time ability by using differential flat-
ness.
The paper is organized as follows. In section II, the
principle of IBVS is briefly recalled. In section III,
the concept of flatness and the process modeling
is presented. The proposed strategy is developed
in section V. A simulation experiment, in section
VI, shows the efficiency of the approach.

2. IMAGE-BASED VISUAL SERVOING

The principle of IBVS is to control the motion
of robotic systems in the image plane. The task
is then to minimize an image error between the
desired image and the current image from the
camera. The control scheme considered in this
paper (figure 1), enables a reference trajectory to
be tracked in the image plane by a mobile robot.
The perspective camera, in an eye-to-hand con-
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Fig. 1. Control scheme

figuration, looks at the scene. The posture of the
mobile robot is linked to the posture of its gravity
center (figure 2).
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Fig. 2. Trajectory tracking

3. DIFFERENTIALLY FLAT SYSTEMS

3.1 The flatness property

The idea of differential flatness was first intro-
duced by [Fliess et al. (1995)]. A system is said to
be differentially flat if there exists a set of indepen-
dent variables referred to as flat output such that
every other system variable (including the input
variables) is a function of the flat output and a
finite number of its successive time derivatives.
A nonlinear system

ẋ = f(x,u) x ∈ Rn,u ∈ Rm

y = h(x) y ∈ Rm (1)

is differentially flat if we can find, z ∈ Rm, called
flat output, of the form:

x = ψ(z, ż, ..., zα)
u = ϕ(z, ż, ..., zα) (2)

The flat output and its derivatives provide an
alternate representation of the system dynamics.
One of the properties of the flat system is that the
flat output is known as a function of time: all the
system states and the corresponding inputs can



be obtained by equation (2).
Another consequence of the previous result is that
the system (1) can be transformed into a lin-
ear system (Brunovsky normal form) by dynamic
feedback and coordinate change [Nieuwstadt et al.
(1995)].

3.2 Process modeling

3.2.1. Mobile robot

The nonholonomic mobile robot considered in this
paper is a unicycle moving on a plane. It is as-
sumed that the vehicle moves without slipping,
i.e., there is a pure rolling contact between the
wheels and the ground. The nonholonomic model
is 

ẋ = v cos θ
ẏ = v sin θ

θ̇ = w
(3)

or, in a compact form as

ẋ = f(x,u) (4)

where u = [v w]T is the control inputs, respec-
tively the linear and the angular velocity. The
robot posture (position and orientation) is defined
by the vector x = [x y θ]T (figure 3).

Fig. 3. Posture definition

3.2.2. Perspective camera modeling

Let us consider P , a 3D point located on the
positive side of the zc axis and its coordinates
[x y z]T expressed in the camera frame Rc (figure
2). It can be easily shown that the transformation
between the 3D point and this correspondant in
the image plane p = [up vp]T is obtained by :

up = αu.
x

z
+ u0;

vp = αv.
y

z
+ v0;

(5)

where αu,αv, u0, v0 are constants and correspond
to intrinsic parameters of the camera model.
Since the mobile robot moves on a plane π, the
depth z, i.e. the distance along the optical axis zc,
is constant (figure 2). Under this consideration,

the previous model of the camera can be rewritten
in the following linear form:

p =

up

vp

1

 =

λu 0 u0

0 λv v0
0 0 1

 .

xy
1

 (6)

λu = αu

z and λv = αv

z are constants.

3.2.3. Flat global model

Combining (4) and (6), the global nonlinear model
(robot + camera) is given by:{

ẋ = f(x,u)
y = h(x) (7)

with

f(x,u) =

v cos θv sin θ
w

 (8)

h(x) =
(
λu.x+ u0

λv.y + v0

)
(9)

where

• u = [v w]T is the control input of the mobile
robot;

• x = [x y θ]T the state of the model, i.e. the
robot posture;

• y = [up vp]T is the output, i.e. the projection,
in the image plane of the gravity center of the
mobile robot.

It can be shown that (7) is a flat system where
the flat output is given by the vector y.

Proof: Inverting (6) gives x =
up − u0

λu

y =
vp − v0

λv

(10)

Differentiating the previous equation (10) with respect to

time, and using (3),we can write:

θ = arctan(
v̇pλu

u̇pλv
) (11)

All the system states can be expressed in terms of the flat

output and its derivatives (eq. 10 and 11).
For the input vector, squaring and adding the expression

of ẋ and ẏ (eq. 3) and substituting with the derivative of
eq. (10) in respect to the time, we obtain:

v =

√
u̇2

p

λ2
u

+
v̇2

p

λ2
v

(12)

Similarly, differentiating eq. (11) with respect to time, we

obtain the second control input:

w =
v̈pλuu̇pλv − üpλv v̇pλu

u̇2
pλ2

v + v̇2
pλ2

u

(13)

All the system states (eq. 10, 11) and the control
inputs (eq. 12, 13) can be expressed in terms of
the flat output and its derivatives.
As a consequence of the previous flatness result,



the flat system (7) can be transformed into the
linear Brunovsky’s canonical form by dynamic
feedback and coordinate change.
Differentiating (6) twice with respect to time
gives:

üp = λuv̇ cos θ − λuvθ̇ sin θ = v1
v̈p = λv v̇ sin θ + λvvθ̇ cos θ = v2

(14)

where the vector V = [v1 v2]T is the new control
input in the flat space. The previous relation (22)
can be written in the following linear Brunovsky’s
canonical form:

Ż = AZ +BV (15)

where

Z =


up

u̇p

vp

v̇p

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

B =


0 0
1 0
0 0
0 1

 (16)

Our objective is to design a controller in the
flat space, such that the mobile robot tracks a
reference trajectory given by:

imageref =
(
up ref

vp ref

)
(17)

In the next section, we propose to use a MPC con-
troller in the flat space, to perform the trajectory
tracking.

4. FLATNESS-BASED MPC FOR VISUAL
SERVOING

A Nonlinear Model Predictive Controller formu-
lates a trajectory tracking problem into a nonlin-
ear optimization problem. A cost function, defined
by a quadratic form of the error between the
desired trajectory and the predicted model, has to
be minimized with respect to a control sequence
ũ. The control law is computed in discrete-time
and thus, it is necessary to discretize the model.
Combined with the well-known Internal Model
Control (IMC) structure (figure 5), the NMPC
problem is mathematically written as follows:
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Fig. 4. IMC structure

min
ũ
J =

k+Np∑
j=k+1

(yd(j)− ym(j))TQ(yd(j)− ym(j))

(18)
subject to system dynamics :{

x(k + 1) = f(x(k),u(k))
ym(k) = h(x(k)) (19)

Q is a positive definite symmetric matrix, Np is
the prediction horizon, x ∈ X⊂ Rn, u ∈ U⊂ Rm, y
∈ Y ⊂ Rp, where X,U,Y are compact sets defined
by the constraints respectively on the states, the
inputs and the outputs.

4.1 Application to Image-Based Visual Servoing

MPC can easily address both tasks of IBVS: min-
imization of an image error and constraint han-
dling.
The cost function is defined by:

Jvs =
k+Np∑
j=k+1

error(j)TQ error(j) (20)

with
- error(j)=imaged(j)− imagem(j)
- imaged(j) = [udp(j) vdp(j)]T : desired image
- imagem(j) = [up(j) vp(j)]T : predicted image by
the nonlinear global model (7).
Two kind of constraints can be taken into consid-
eration :
- mechanical constraints such as actuator limita-
tions in amplitude or velocity:

umin ≤ uj ≤ umax

∆umin ≤ uj − uj−1 ≤ ∆umax
(21)

- visibility constraints such as image limitations
which ensure that the visual features stay in the
image plane. Visibility constraints, the weak point
of the classical IBVS, can easily be added to the
optimization problem.
The constrained optimization problem (18) has
to be solved at each sampling period, which is
very time consuming. In order to reduce the
computational time, the flatness property of the
considered model is then used. The predicted
image is ensured by (15) instead of (7).
Once the inputs, V = [v1 v2]T in the flat space,
have been computed by the minimization of (20),
the dynamic feedback (22) is used to obtain the
inputs of the original nonlinear system (7), which
are applied to the real process.

(
v̇
w

)
=


cos θ
λu

sin θ

λv

− sin θ

vλu

cos θ
vλv


(

v1
v2

)
(22)

5. A SIMULATION EXPERIMENT

The simulations of the control approach described
in the previous section have been performed on a
PC pentium IV, 3GHz under Matlab.
The predictive horizon is chosen as Np = 10, the
control horizon Nc = 1. The sampling time Te

is equal to 100ms. The optimization problem is



solved by the Matlab function fmincon. All the
simulations have been performed in both cases :
- with the controller based on the nonlinear model
described by eq. (7): NL-MPC case;
- with the controller based on the equivalent linear
model described by eq. (15): Flat-MPC case.
In all cases, the control is applied to the original
nonlinear model (3). For lack of space, only the
simulations with the flat MPC controller are pre-
sented.

Simulation 1 : Figure 5 shows the efficient tra-
jectory tracking of the mobile robot in the im-
age plane from an arbitrary initial posture. The
control inputs (figure 6), subject to limitations
( −0.5m.s−1 ≤ v(t) ≤ 0.5m.s−1, −4rad.s−1 ≤
w(t) ≤ 4rad.s−1) verify the constraints.
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Fig. 5. Trajectory tracking
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Fig. 6. Constrained control inputs

Simulation 2 : The robustness w.r.t modeling er-
rors (20% on the intrinsic camera parameters: αu,
αv, u0, v0) and disturbances (white noise added
to the output) is tested (figures 7,8). Due to the
IMC structure, the tracking is still satisfactory:
the pixel error is less than two pixels.
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Fig. 7. trajectory tracking with disturbances and
modeling errors
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Simulation 3 : To illustrate the capability of
handling visibility constraints (figures 9,10,11), we
define a forbidden area in the image, converted in
visibility constraints and describing an obstacle in
the robot workspace. The mobile robot tracks for
the best the reference, avoiding the obstacle. The
control constraints are still satisfied.
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Fig. 9. Trajectory tracking in spite of an obstacle
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Fig. 11. Command vector

The performance comparison of both cases (NL-
MPC and Flat-MPC) is summarized in table 1.
For each simulation, we give:
- the average of the computational time (in mil-
liseconds, ms) required at each iteration to solve
the constrained nonlinear optimization problem;
- one criterium error (in pixels, ps) given by:
(
√

(
∑
error2));

Comparison NL-MPC Flat-MPC
Simulation 1 49.5ps / 27ms 45.7ps / 14ms
Simulation 2 27.9ps / 23ms 33.3ps / 11ms
Simulation 3 46.5ps / 28ms 44.5ps / 17ms

We can see that the accuracy of the trajectory
tracking is equivalent for both cases (NL-MPC
and Flat-MPC). However, in spite of highly non-
linear control constraints in the inputs (v1, v2),
the proposed approach, Flat-MPC, is twice as fast
as NL-MPC.

6. CONCLUSION

In this paper, trajectory tracking, directly in the
image plane, is addressed with an MPC strategy.

The advantage of the proposed approach is to be
able to handle easily different kind of constraints
(actuator limitations, visibility constraints) which
is impossible with a classical IBVS approach. The
great challenge of computational time for real ap-
plications is taken up by the use of differential flat-
ness. The simulation experiment then shows the
efficiency of the Flat-MPC approach in terms of
trajectory tracking, robustness w.r.t to modeling
errors and disturbances, control input feasibility
and obstacle avoidance. The computational time
obtained for simulations is encouraging with a
view to an on-line application. This is already
under investigation on a Khepera mobile robot.
The capabilities of this new approach are also very
promising for collision avoidance.
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