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image-based trajectory tracking of a mobile
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Université d’Orléans - Polytech’Orléans,
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Abstract: This paper deals with the design of a real-time controller for trajectory tracking in the
image plane. The Image-Based Visual Servoing (IBVS) task is addressed by a visual predictive
approach. The trajectory tracking is formulated into a nonlinear optimization problem in the
image plane. The unavoidable constraints in experiments are easily taken into account in the
design of the predictive control law. The global model, combining the mobile robot and camera
model, is used to predict the behavior of the process. The flatness property of this global model
is proved in the general case, that is whatever the camera posture. The flat model permits to
reduce the computational time by a factor 2. Experiments are performed on a non holonomic
mobile robot with a deported perspective camera. Experimental results show the efficiency and
the robustness of the real-time control approach. Visibility constraints are added to point out
the capability of the control to avoid obstacles.

1. INTRODUCTION

The trajectory tracking of nonholonomic mobile robots
has motivated considerable research over the past twenty
years. Visual servoing, that is the use of visual information
from a camera to control the motion of robotic systems,
has been increasingly used. Several control schemes can
be distinguished : image-based (2D), position-based (3D)
and hybrid visual servoing Chaumette and Hutchinson
[2006], Chaumette and Hutchinson [2007]. Since the tra-
jectory tracking considered is in the image plane, the
control architecture used will be the Image-Based Visual
Servoing scheme. The IBVS principle is to minimize an
image error between the desired image and the current
image from the camera. While the main interest of IBVS
is its robustness to modeling errors like camera calibration
and measurement errors, a weak point of the classical 2D
approach concerns the constraint handling. One of the
critical constraints is the visibility constraint Chaumette
[1998]. If some targets get out the camera field of view
during the convergence, the value of the current feature
can no longer be computed which leads to interruption
of the control algorithm. Furthermore, mobile robots are
always subject to mechanical constraints such as actuator
limitations and nonholonomic constraints. The classical
approach can not take into account these constraints.
Model Predictive Control (MPC) strategy is thus well-
adapted to address both the minimization of the image er-
ror and the constraint handling. This alternative approach,
denoted Visual Predictive Control (VPC), has been ap-
plied to different control tasks in Allibert et al. [2006],
Sauvée et al. [2006]. In Allibert et al. [2006], the point
stabilization of a mobile robot with a VPC strategy is con-
sidered. The visual information is given by a catadioptric
camera embedded in the mobile robot (eye-in-hand). In
this case, the computational time is of no great interest. In

Sauvée et al. [2006], the visual servoing of a manipulator in
an eye-to-hand configuration is studied. A linearizing and
decoupling technique, based on the inverse dynamic model,
is used. The considered model is then a linear one, thus
reducing the computational time. The computational time
is a real challenge for on-line applications to fast systems,
for example in robotics. One way to reduce this time
without loss of information about the process dynamics
is to use the concept of differential flatness Fliess et al.
[1995]. In Rao et al. [2003], the authors used differential
flatness to perform a proportional-derivative controller in
the image plane but no constraint can be handled.
In the proposed approach, we combine visual servoing task
with predictive control strategy and flatness property, in
order to satisfy online control requirements (constraint sat-
isfaction and reduced computational time). The real-time
controller is then applied to the mobile robot, Khepera II
(from K-Team corporation). Experiment results highlight
the tracking efficiency, the robustness of the approach and
the capability of obstacle avoidance.
The paper is organized as follows. In section II, the prin-
ciple of IBVS is briefly recalled. In section III, a visual
predictive controller for trajectory tracking is proposed. In
section IV, the process considered is proved to be flat and
a real-time flat controller is synthesized. The last section
is devoted to experiments on the Khepera mobile robot.

2. IMAGE-BASED VISUAL SERVOING

2.1 Objective

The purpose of a visual servoing principle is to control the
movement of a robotic system from a current pose to a
desired pose. Visual control law design depends on several
parameters: the camera configuration (eye-to-hand, eye-
in-hand or stereovision), the kind of camera (perspective



or catadioptric) and the control scheme. The fundamental
classification of visual servoing distinguishes different ap-
proaches depending on the design of the control scheme:
image-based control (2D), position-based control (3D) and
a hybrid approach (2D/dt, 2D 1

2 ). Further details about
visual servoing can be found in Chaumette and Hutchinson
[2006],Chaumette and Hutchinson [2007]. The principle of
Image-Based Visual Servoing (IBVS) is to minimize an
image error between the desired image and the current
image from the camera. The control scheme considered is
described in the figure below (Fig. 1). It enables a reference
trajectory to be tracked in the image plane by a mobile
robot.
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Fig. 1. IBVS scheme

In the classical IBVS approach, a local relation, based on
the interaction matrix, converts image errors into Carte-
sian errors. This interaction matrix depends on the visual
feature considered such as (up vp) for a point, on the
intrinsic camera parameters and on the depth, that is the
distance following the optical axis of the considered point
w.r.t the camera frame. In spite of good results in general
cases, several drawbacks can be underlined:
- For the computation of the interaction matrix, an ap-
proximate value of the depth at the final desired position
is generally used. This choice involves a non optimal tra-
jectory motion between the initial and desired position,
and thus, the trajectory and the visibility of the features
are not controlled Chaumette [1998].
- Singularities of the interaction matrix can also appear
due to the number of visual features and their configura-
tions. In this case, the synthesis of the control law is not
possible Chaumette [1998].
- Constraints can not be explicitly taken into account.

To overcome these difficulties, a controller, based on the
MPC strategy has been proposed Allibert et al. [2007].
Since Model-Based Control is considered, a model of the
process (robot + camera) is first necessary. This global
model describes the behavior of the robotic system com-
bined with a deported camera.

2.2 Process modeling

Mobile robot

The nonholonomic mobile robot considered is a unicy-
cle moving on a plane. It is assumed that the vehicle
moves without slipping, i.e. there is a pure rolling contact
between the wheels and the ground. Under these usual
assumptions, the kinematic model of the mobile robot is:

 ẋr = v cos θr

ẏr = v sin θr

θ̇r = w
(1)

where v and w are respectively the linear and angular
velocities. The robot posture, that is this position and this
orientation, linked to the middle of the axle of the driving
wheels (Fig. 2), is defined by the vector xr = [xr yr θr]T
in the robot frame (Rr).
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Fig. 2. Posture definition

Perspective camera modeling

Consider P , a 3D point and its coordinates xc = [xc yc zc]T
expressed in the camera frame Rc (Fig. 3). It can be easily
shown that the perspective transformation between the 3D
point and the corresponding 2D point in the image plane
p = [up vp]T is obtained by:

(
up

vp

)
=


αu
xc

zc
+ u0

αv
yc

zc
+ v0

 = h(xc) (2)

where αu, αv, u0, v0 are constants and correspond to
intrinsic parameters of the camera model.
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Fig. 3. Trajectory tracking

Global model

Let us assume that the transformation between the robot
frame (Rr) and the camera frame (Rc) is known. The robot
posture expressed in the camera frame is then given by:xc

yc

zc

1

 =

R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

 .

xr

yr

zr

1

 = g(xr) (3)

The global model, that is the robot plus the camera, is



obtained by combining (1) with (2) and (3) :{
ẋr = f(xr,u)
ym = h ◦ g(xr)

(4)

where

f(xr,u) =

(
v cos θr

v sin θr

w

)
(5)

• u = [v w]T is the control input of the mobile robot;
• xr = [xr yr θr]T the state vector, that is the robot

posture expressed in the robot frame;
• ym = [up vp]T is the output vector, that is the

projection, in the image plane of the the middle of
the axle of the driving wheels.

3. IMAGE-BASED TRAJECTORY TRACKING

The control objective is the tracking of a trajectory de-
fined in the image plane under constraints. The extension
of MPC to visual servoing is denoted Visual Predictive
Control (VPC). The VPC principle is to determine a
sequence of Nc future controls, that is robot commands,
which minimizes, over a finite prediction horizon Np, the
difference between the reference features and the measured
process features.
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Fig. 4. Internal Model Control Structure

Due to the IMC structure used, the reference trajectory
tracking by the process is equivalent to tracking a desired
trajectory by the model. The control law is computed in
discrete-time and the global model is then discretized. The
mathematical formulation of the image-based trajectory
tracking is written as:

min
ũ

Jvs =
k+Np∑
j=k+1

error(j)TQ error(j) (6)

where
- error(j)=imaged(j)− ym(j).
- imaged(j) = [udp(j) vdp(j)]T : the desired image or de-
sired features.
- ym(j) = [up(j) vp(j)]T : the image (or features) predicted
by the nonlinear global model.
- ũ = {uk, uk+1, ..., uk+Nc, ..., uk+Np−1} is the optimal
control sequence. From u(k + Nc + 1) to u(k + Np − 1),
the control input is constant and equal to u(k +Nc).
- Q is a symmetric definitive positive matrix.
- Np: the prediction horizon; Nc: the control horizon.

Remark: The cost function (6) can be modified by adding
some penalty terms :

• a terminal constraint on the state to ensure a global
asymptotic stability;

• a quadratic penalty term (uTRu) on the control to
guarantee the smoothness of the control input.

The advantage of the proposed approach is to be able to
easily handle different kinds of constraints such as actuator
limitations and visibility constraints, which is impossible
with a classical IBVS approach.
Two kinds of constraints can be taken into consideration:
- mechanical constraints such as actuator limitations in
amplitude or velocity:

umin ≤ uj ≤ umax

∆umin ≤ uj − uj−1 ≤ ∆umax
(7)

- visibility constraints such as image limitations which
ensure that the visual features stay in the image plane. It
can also represent a forbidden area in the image describing
an obstacle in the robot work space for example.[

up

vp

]
min

≤
[
up(j)
vp(j)

]
≤
[
up

vp

]
max

(8)

The constrained optimization problem (6) subject to (7)
and (8) has to be solved at each sampling period which is
very time consuming. In order to reduce the computational
time, the flatness property of the nonlinear global model
is used.

4. REAL-TIME REQUIREMENT

A great challenge of MPC approaches is the computational
time for real applications. One way to reduce it is to use
the differential flatness property.

4.1 Flatness property

The idea of differential flatness was first introduced by
Fliess et al. [1995]. A nonlinear system{

ẋ = f(x,u) x ∈ Rn,u ∈ Rm

y = h(x) y ∈ Rm (9)

is differentially flat if we can find, z ∈ Rm, called flat
output, of the form:

x = ψ(z, ż, ..., zr)
u = ϕ(z, ż, ..., zr) (10)

The flat output and its derivatives provide an alternate
representation of the system dynamics.
It can be shown that the global model (4) is a flat system
where the flat output is given by the vector ym.

Remark: only a sketch of proof is given because of the lack
of space. The symbolic calculus is computed with Maple
software.

Since the mobile robot moves on the plane π (Fig. 3),
the coordinate zr of the mobile robot is constant and can
be considered equal to zero. Under this consideration, the
transformation between the camera frame (Rc) and the
robot frame (Rr) can be written as:



{
xc = R11xr +R12yr + Tx;
yc = R21xr +R22yr + Ty;
zc = R31xr +R32yr + Tz;

(11)

and 
up = αu

R11xr +R12yr + Tx

R31xr +R32yr + Tz
+ u0

vp = αv
R21xr +R22yr + Ty

R31xr +R32yr + Tz
+ v0

(12)

From (12), we can write :
xr = ψ1(up, vp, C1)
yr = ψ2(up, vp, C2)

(13)

where the constants Ci depend on several parameters:
Ci = ϕi(u0, v0, αu, αv, R11, R12, R21, R22, R31, R32, Tx, Ty, Tz)

(14)

Differentiating the previous equation (13) with respect to
time and using (1),we can write:

θr = atan2
(
ẏr

ẋr

)
= ψ3(u̇p, v̇p, up, vp, C3) (15)

All the system states can be expressed in terms of the flat
output and its derivatives (eq. 13 and 15).
For the input vector, squaring and adding the expression
of ẋr and ẏr (eq. 1) and substituting with the derivative
of eq. (13) in respect to the time, we obtain:

v =
√
ẋ2

r + ẏ2
r = ψ4(u̇p, v̇p, up, vp, C4) (16)

Similarly, differentiating eq. (15) with respect to time, we
obtain the second control input:

w =
ẋrÿr − ẏrẍr

ẋ2
r + ẏ2

r

= ψ5(üp, v̈p, u̇p, v̇p, up, vp, C5) (17)

All the system states (eq. 13, 15) and the control inputs
(eq. 16, 17) can be expressed in terms of the flat output
and its derivatives.

4.2 Prediction model

A consequence of the latter result is that the nonlin-
ear model is equivalent to a linear Brunovsky canonical
form model with dynamic feedback and coordinate change
Nieuwstadt et al. [1995].
Differentiating the output vector ym (eq. 4) twice with
respect to time gives:

üp = ψ6(v̇, w, C6) = v1
v̈p = ψ7(v̇, w, C7) = v2 (18)

where the vector V = [v1 v2]T is the new control input in
the flat space. The previous relation (18) can be written
in the following linear Brunovsky canonical form:

Ż = AZ +BV (19)

where

Z =

up

u̇p

vp

v̇p

A =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

B =

0 0
1 0
0 0
0 1

 (20)

Instead of using the nonlinear model for the prediction
over Np which is time-consuming, the linear Brunovsky
model ensures the prediction very quickly.
The optimization problem is solved with regard to V =
[v1 v2]T the control inputs in the flat space. The con-
straints on u = [v w]T , the original input of the nonlinear
system (4), become very nonlinear. On the one hand, the
prediction is simplified by using (19) and on the other
hand, the constrained optimization problem become more
complex since the constraints are strongly nonlinear. Once
the inputs V = [v1 v2]T in the flat space have been com-
puted, the original inputs of the mobile robot u = [v w]T
are obtained by inverting (18). The diffeomorphism always
exits Fliess et al. [1995].
Different simulations such as different initial postures,
modeling errors and tracking of different trajectories have
been performed to compare the computational time re-
quired in both cases :
- NL-MPC case with the controller based on the nonlinear
model described by eq. (4);
- Flat-MPC case with the controller based on the equiva-
lent linear model described by eq. (19).
In all cases, the control is applied to the original nonlinear
model (1). The results are summarized in table 1. The
average of the computational time in milliseconds (ms),
required at each iteration to solve the constrained nonlin-
ear optimization problem and a criterium error (in pixels√

(
∑
error2), ps) are given.

Comparison NL-MPC Flat-MPC
Simulation 1 49.5ps / 27ms 45.7ps / 14ms
Simulation 2 27.9ps / 23ms 33.3ps / 11ms
Simulation 3 46.5ps / 28ms 44.5ps / 17ms

We can see that the accuracy of the trajectory tracking
is equivalent for both cases (NL-MPC and Flat-MPC).
However, in spite of highly nonlinear control constraints
in the inputs (v1, v2), the proposed approach, Flat-MPC,
is twice as fast as NL-MPC. These encouraging results,
obtained in Allibert et al. [2007], motivate a real time
application.
In order to reduce the computational time even more, a
constraint transformation method has been tested on the
control inputs of the mobile robot. The umin ≤ u ≤ umax

kind of constraints is well-adapted to this method. The
transformation considered is given by:

φ =
1
2
(umax + umin) +

1
2
(umax + umin) tanh u (21)

The constrained optimization problem becomes an uncon-
strained optimization problem. Comparisons have been
performed in the both cases:
- the constrained optimization problem was solved with
the fmincon function of the software Matlab;
- the unconstrained optimization problem was solved with
the fminunc function;

Due to the high nonlinearity of the constraints, the gain
of computational time is unfortunately very low. For these
reasons, in the following experiments, the optimization
problem is solved under the nonlinear constraints with a
flat VPC strategy.



5. EXPERIMENTS

The proposed flat visual predictive controller is imple-
mented on a Khepera robot (Fig. 5), product of K-team
corporation. This mobile robot has two control inputs, v
and w, expressed in pulses per second (1 pulse = 8mm/s).
Limitations on actuators are respectively 50 cm/s and 4
rad/s for v and w.
The communication Robot-Pc is ensured by a RS232 com-
munication via the standard serial port. The intrinsic pa-
rameters of the perspective camera are roughly identified.
The software used is Matlab 7.0 on a Pentium IV, 3 GHz.
The predictive horizon is chosen as Np = 10, the control
horizon Nc = 1. The sampling time Te is equal to 100ms.

Remarks:
- The choice of Np=10 is a compromise between the track-
ing efficiency and the computational time requirement.

- Concerning the choice of Nc = 1, simulations with
Nc>1 lead to a very long computational time for a tracking
performance equivalent to Nc = 1.

- The symmetric definitive positive matrix Q is equal to
the identity matrix. This choice allows to give the same
weight to each output, up and vp.

Fig. 5. Khepera robot

Experiment 1: Figure 6 shows the efficient trajectory
tracking of the mobile robot in the image plane from an
arbitrary initial posture. The robot trajectory is given
in blue and the reference in red. The tracking is very
satisfactory : errors in the image are lower than five pixels
(Figure 7). Furthermore, as shown in Figure 8, the control
inputs always satisfy the constraints.

Experiment 2: The robustness w.r.t image processing
and modeling errors (20% on the intrinsic camera pa-
rameters (αu, αv, u0, v0)) are tested in Figure 9 for
another reference trajectory. Due to the IMC structure,
the tracking of the reference (in red) by the mobile robot
(in blue) is still satisfactory. We can remark that the model
trajectory (in green) does not track the reference which is
the standard behavior of IMC.
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Fig. 6. Trajectory tracking
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Fig. 7. Errors in pixels in the image plane
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Fig. 9. Control inputs

Experiment 3: To illustrate the capability of handling
visibility constraints, we define a forbidden area in the
image, converted into visibility constraints and describing
an obstacle in the robot workspace. The reference trajec-
tory to be tracked is hidden by this obstacle. As shown in
Figure 10, the mobile robot remains as close as possible to
the reference while respecting visibility constraints. Fur-
thermore, the control inputs always satisfy the mechanical
constraints (Fig. 11).
All Video clips of these experiments can be requested by
e-mail to guillaume.allibert@univ-orleans.fr.

6. CONCLUSION

Experiments on the Khepera mobile robot highlight both
the efficiency and the real-time applicability of the pro-
posed approach. The flat visual predictive controller can
deal with the online requirement and the trajectory track-
ing under constraints in the image plane. The great chal-
lenge of computational time for real applications is taken
up by the use of differential flatness. The mechanical and
visibility constraints are easily taken into account in the
optimization problem. The capabilities of this controller
for obstacle avoidance are also pointed out. This latter
result is of great interest for mobile robot navigation in
hostile environments.

REFERENCES

G. Allibert, Courtial E., and Y. Touré. Visual predictive
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