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Introduction

The 97 Ru radioisotope was first acknowledged as medically interesting in 1970 [START_REF] Subramanian | Ruthenium-97: A preliminary evaluation of a new radionuclide for use in nuclear medicine[END_REF] and is even studied in recent measurements [START_REF] Maiti | Measurement of yield of residues produced in 12 C+ nat Y reaction and subsequent separation of 97 Ru from Y target using cation exchange resin[END_REF][START_REF] Tárkányi | Investigation of activation cross section data of alpha particle induced nuclear reaction on molybdenum up to 40 MeV: Review of production routes of medically relevant 97,103[END_REF]. It has a half-life of 2.9 d allowing non-local production and emits low-energy high-intensity gamma lines (see Table 1) which have favorable characteristics for prolonged Single Photon Emission Computed Tomography (SPECT) examinations. It decays only by electron capture (EC) which lowers the contribution to the dose as compared to β + decays. It has a theranostic matched pair in the form of 103 Ru (T 1/2 = 39.26 d) that decays to the short-lived Auger emitter 103m Rh (T 1/2 = 56.12 min), a promising gamma-free therapeutic agent. Moreover, ruthenium element has a rich chemistry associated with its various oxidation states (II, III, IV and VIII) and forms more stable compounds compared to the SPECT-standard 99m Tc [START_REF] Zaitseva | Metal Technetium Target and Target Chemistry for the Production of 97 Ru via the 99 Tc(p,3n) 97 Ru Reaction[END_REF]. Many radioactive Ru-labeled compounds have been studied and found applications as summarized recently by [START_REF] Mukhopadhyay | Applications of the Carrier Free Radioisotopes of Second Transition Series Elements in the Field of Nuclear Medicine[END_REF], in particular as the chemotherapy agents [START_REF] Shao | In vitro and in vivo characterization of ruthenium bleomycin compared to cobalt-and copper-bleomycin[END_REF][START_REF] Clarke | Ruthenium in Cancer Chemotherapy[END_REF].

Due to these interesting characteristics, many studies on production of 97 Ru have been conducted. The reactor route via 96 Ru(n,γ) 97 Ru was reported by [START_REF] Subramanian | Ruthenium-97: A preliminary evaluation of a new radionuclide for use in nuclear medicine[END_REF] but it yields very low specific activity which may limit its use for some applications such as molecular imaging. To obtain high specific activity product, one can use charged projectile from accelerators. In case of cyclotron routes, the first and most used reaction is 103 Rh(p,spall) 97 Ru with 200 MeV proton beam and natural rhodium target, as suggested by [START_REF] Ku | Production of ruthenium-97 for medical applications[END_REF]. While producing high amount of activity of no-carrier-added (NCA) 97 Ru, this method requires high energy protons but no details about the impurity levels were reported. Another reaction route is the 103 Rh(p,x) 97 Ru reaction using 60 MeV proton beam [START_REF] Lagunas-Solar | Cyclotron Production of No-carrier-added 97 Ru by Proton Bombardment of 103 Rh Targets[END_REF]; the 97 Ru production yield is very high but accompanied by Tc radioactive impurities which are difficult to discard even after the chemical separation step. A very feasible option is the 99 Tc(p,3n) 97 Ru reaction suggested by [START_REF] Lebowitz | Development of 97 Ru and 67 Cu for medical use[END_REF] and studied later up to 100 MeV by [START_REF] Zaitseva | Metal Technetium Target and Target Chemistry for the Production of 97 Ru via the 99 Tc(p,3n) 97 Ru Reaction[END_REF][START_REF] Zaitseva | Excitation function and yield for 97 Ru production in 99 Tc(p,3n) 97 Ru reaction in 20-100 MeV proton energy range[END_REF][START_REF] Dmitriev | High-purity radionuclide production: Material, construction, target chemistry for 26 Al[END_REF] as it produces significant amounts of 97 Ru with very small amount of radioactive impurities. However, the availability of 99 Tc radioactive target is an issue. Later, experimental excitation functions were reported for nat Ag(p,x) 97 Ru up to 80 MeV by [START_REF] Uddin | Experimental studies on excitation functions of the proton-induced activation reactions on silver[END_REF] and for nat Pd(p,x) 97 Ru up to 70 MeV by [START_REF] Ditrói | Measurement of activation cross sections of the proton induced nuclear reactions on palladium[END_REF]. These two production routes have much smaller cross-section, hence 97 Ru production would require long irradiation time and would contain a substantial amount of radioactive impurities. In case of deuteron beam, the available reaction 96 Ru(d,x) 97 Ru studied by [START_REF] Mito | Excitation functions for the (d, p) reactions on 96 Ru, 102 Ru and 104 Ru[END_REF] is favorable but would produce low specific activity as the target material is an isotope of the nuclide of interest. Some groups have also investigated more exotic projectiles such as helium-3 through nat Mo( 3 He,x) 97 Ru [START_REF] Comparetto | A Comparative Study of the Production of Short-Lived Neutron Deficient Isotopes 94,95,97 Ru in αand 3 He-Particle Induced Nuclear Reactions on Natural Molybdenum[END_REF], 93 Nb( 7 Li,3n) 97 Ru [START_REF] Maiti | Production and separation of 97 Ru from 7 Li activated natural niobium[END_REF] and 89 Y( 12 C,p3n) 97 Ru [START_REF] Maiti | Measurement of yield of residues produced in 12 C+ nat Y reaction and subsequent separation of 97 Ru from Y target using cation exchange resin[END_REF][START_REF] Maiti | Production and separation of 97 Ru and coproduced 95 Tc from 12 C-induced reaction on yttrium target[END_REF]. In these cases, after chemical separation, low level of radioactive impurities can be achieved but the availability of these beams is scarce making these processes not suitable to launched clinical trials. Finally, the cross-sections for α-induced reactions on Mo were investigated by [START_REF] Levkovski | Cross-Section of Medium Mass Nuclide Activation (A = 40-100)[END_REF]. nat Mo(α,x) 97 Ru production and impurities up to 40 MeV were thoroughly studied in [START_REF] Tárkányi | Investigation of activation cross section data of alpha particle induced nuclear reaction on molybdenum up to 40 MeV: Review of production routes of medically relevant 97,103[END_REF][START_REF] Ditrói | Investigation of the α-particle induced nuclear reactions on natural molybdenum[END_REF].

In this work, we investigate the optimization of nat Mo(α,x) 97 Ru production route and extend the available cross-section data to higher energy in coherence with commercially available cyclotrons, [START_REF] Poirier | The C70 Arronax and beam lines status[END_REF] which are able to deliver up to about 70 MeV alpha beam. We also report on the coproduction of the measured radioactive impurities (listed in Table 1) via nat Mo(α,x) and explore the possible commercial production of 97 Ru with the α beam on Mo target using the software Radionuclide Yield Calculator (RYC) that we developed and made freely available to the community. 

Materials and Methods

Stacked-Foils Irradiations

Three experiments were performed at the ARRONAX facility [START_REF] Haddad | a high-energy and high-intensity cyclotron for nuclear medicine[END_REF], irradiating stacked-foils targets in vacuum with α beam of 67.4(5) MeV for about 1 h with beam currents of 40-60 nA. The stacked-foils technique and set-up in our facility have been described most recently in [START_REF] Garrido | New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV[END_REF][START_REF] Guertin | How nuclear data collected for medical radionuclides production could constrain nuclear codes[END_REF][START_REF] Pupillo | New production cross sections for the theranostic radionuclide 67 Cu[END_REF]. A typical stacked-foil target consisted of an Al monitor foil (~10 µm thick) in front, followed by the set of multiple nat Mo foils (~10 µm thick) and Al degraders (50-500 µm thick), arranged alternately. The order of the foils in the stacks were planned so that each nat Mo foil is activated with a different energy, all covering the energy range from 40 MeV to 67 MeV in about 3 MeV intervals (the projectile stopping-power in the stacks was calculated using SRIM software [27]). Certain foils were also used as catchers of the recoil atoms.

All foils were purchased from the GoodFellow© company with a purity of 99% for Al and 99.9% for nat Mo. Each foil was weighed before irradiation using an accurate scale (10 -5 g) and scanned for area determination, allowing the precise thickness calculation (assuming the homogeneity over the whole surface).

As recommended by the International Atomic Energy Agency [START_REF]Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions[END_REF], the activity of the 24 Na radioisotope formed in Al monitor foil was used to calculate the beam current impinging the stack. Additionally, during the irradiations, the online beam current monitoring was performed using a Faraday's Cup with an electron suppressor for precise measurement and located behind the stack. The two measurements were consistent with each other.

Gamma Spectroscopy and Data Analysis

After about 14 h of cooling time, the gamma ray spectra of irradiated samples were collected using a HPGe Canberra detector with efficiency 20% at 1.33 MeV equipped with low-background lead and copper shielding. Each foil was placed at a height of 19 cm from the detector to ensure the dead-time below 10%. The detector was calibrated in energy and efficiency at 19 cm with 57 Co, 60 Co and 152 Eu calibrated sources from LEA-CERCA (France) prior to the measurements. Gamma spectra were recorded using the LVis software from Ortec© while the activity of the radionuclides produced at the End of Bombardment (EOB) were derived using the FitzPeaks Gamma Analysis and Calibration Software (JF Computing Services). For the identification and activity estimation we used the γ-line and associated branching presented in Table 1. Knowing the activity of each isotope and the thickness of the foil in which they were observed, it was possible to calculate their production cross-section σ with the following formula:

σ = A EOB M Z e H N A I ρ x (1 -exp{-λ t})
where: A EOB -activity of the radioisotope at the EOB, M-atomic mass of the target, Z-ionization number of the projectile, e-elementary charge, H-enrichment and purity of the foil, N A -Avogadro's number, I-beam current, ρ-target material density, x-thickness of the foil, λ-decay constant of the radioisotope, t-time of the irradiation. The similar formula, solved for I and with cross-section values from [START_REF]Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions[END_REF], was used to calculate the beam current from the monitor foils. The projectile energy in the middle of the foils was adopted to the corresponding cross-section value.

The errors of cross-section values were propagated from the uncertainty of thickness measurements (around 1%), uncertainty of the counts in the γ-line peaks in the spectroscopy measurements (around 5-10%) and the error of the calculated beam current (around 5-10%) while the corresponding energy errors were propagated with SRIM software [27] considering the beam energy straggling through the foils (the initial energy error estimated by the cyclotron operators was 0.5 MeV).

The obtained cross-section values are then compared with TENDL-2017 (TALYS-based evaluated nuclear data library) [START_REF] Koning | Modern Nuclear Data Evaluation with The TALYS Code System[END_REF] and the experimental results from other research groups.

Radionuclide Yield Calculator

Given the cross-section values, one can calculate the Thick Target Yield (TTY) with the following formula [START_REF] Phelps | Molecular Imaging and Its Biological Applications[END_REF][START_REF] De Lima | Nuclear Medicine Physics[END_REF]:

TTY(E) = H N A λ Z e M E max E min σ(E) dE/dx(E) dE
where: E max and E min -maximal and minimal energy of the projectile penetrating the target (in case of TTY, E min ≤ reaction threshold), dE/dx-stopping-power of the projectile in the irradiated target.

To facilitate this calculation for 97 Ru, as well as any other radioisotope and cross-section, we developed a Radionuclide Yield Calculator, later named RYC. RYC is graphical user interface software written in python programming language (version 2.7) [START_REF]Python Programming Language[END_REF] using the TKinter module and compiled with PyInstaller software (version 3.4) [START_REF] Cortesi | PyInstaller Documentation[END_REF]. It uses the cross-section and basic target data inputs to instantly calculate TTY and activity produced in any irradiation scenario. Data points can be fitted using different type of function, gaussian-like and polynomial functions, using the least-squares method. Excitation functions from TENDL [START_REF] Koning | Modern Nuclear Data Evaluation with The TALYS Code System[END_REF] can be easily imported to compare with experimental data and to look for potential radioactive impurities. RYC with its detailed documentation can be downloaded from the ARRONAX website [START_REF] Arronax | Radionuclide Yield Calculator[END_REF]. In particular, RYC uses implemented SRIM module [27] for stopping-power calculation.

The validation of this software was performed using data from the literature. On Figure 1, we compare the RYC-calculated TTY with the values published by IAEA [START_REF]Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions[END_REF][START_REF]Cross Section Database for Medical Radioisotope Production: Production of Therapeutic Radionuclides[END_REF] based on the same cross-section values for 127 I(p,3n) 125 Xe, 64 Ni(d,2n) 64 Cu and 209 Bi(α,2n) 211 At reactions on metallic targets. Data calculated by RYC are presented as points whereas the curve published by IAEA correspond to the lines. As can be seen, for the 3 types of projectiles and for the different target masses, a very good agreement is obtained. The same good results have been obtained for all our tests. Comparison of TTY for selected nuclear reactions on metallic targets calculated with RYC and adapted from [START_REF]Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions[END_REF][START_REF]Cross Section Database for Medical Radioisotope Production: Production of Therapeutic Radionuclides[END_REF] based on the same cross-section values from IAEA.

Results and Discussion

Cross-Section Measurements

On Figures 23456we present the measured cross-sections for nat Mo(⍺,x) reactions producing the 97 Ru radioisotope as well as observed radioactive impurities: 89g Zr, 95g Tc, 96g Tc, and 99 Mo. The contributing reactions forming these radioisotopes are shown in Table 1. The experimental data are compared with previous experiments reported in literature [START_REF] Tárkányi | Investigation of activation cross section data of alpha particle induced nuclear reaction on molybdenum up to 40 MeV: Review of production routes of medically relevant 97,103[END_REF][START_REF] Levkovski | Cross-Section of Medium Mass Nuclide Activation (A = 40-100)[END_REF][START_REF] Ditrói | Investigation of the α-particle induced nuclear reactions on natural molybdenum[END_REF] and the values from TENDL-2017 library [START_REF] Koning | Modern Nuclear Data Evaluation with The TALYS Code System[END_REF]. Measured cross-section values are also listed in Table 2 (with corresponding energy errors, not visible on the graphs). In the case of 97 Ru production (Figure 2), our measurements correspond well to the data at lower energies. Compared to the experimental data, TENDL shows similar structure but underestimates 
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Calculated Yield and Production

Using RYC, we calculated TTY for nat Mo(α,x) 97 Ru reaction on metallic nat Mo target, based on our cross-section measurements above 40 MeV and the values reported by [START_REF] Tárkányi | Investigation of activation cross section data of alpha particle induced nuclear reaction on molybdenum up to 40 MeV: Review of production routes of medically relevant 97,103[END_REF][START_REF] Ditrói | Investigation of the α-particle induced nuclear reactions on natural molybdenum[END_REF] below 40 MeV (Figure 7). The TTY values for other radioisotopes were also calculated in a similar way (not shown) to estimate the radioactive impurities. The obtained experimental TTY values for 97 Ru and radioactive impurities were used to estimate the possible production of 97 Ru (Table 3) with nat Mo target and for two energies: 30 MeV and 67 MeV, which are the most common in commercially available cyclotrons. The 97 Ru production yields are 3.5 MBq/µAh and 20 MBq/µAh respectively. Although the yield is almost 6 times larger at 67 MeV than 
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For the completeness of this study, we show the alternative production of 97 Ru with the use of 100% enriched 95 Mo and 96 Mo targets and α beams of 30-15 MeV and 67-15 MeV, respectively. Table 3. Estimation of 97 Ru activity produced via the irradiation of nat Mo (based on experimental data) and enriched 95,96 Mo targets (based on TENDL-2017 [START_REF] Koning | Modern Nuclear Data Evaluation with The TALYS Code System[END_REF]) with α beam in two energy ranges. The list of radioactive impurities is narrowed down to the long-lived ones and shows their activity relative to activity of 97 Further chemical separation would be required to extract Ru element from Mo target and separate it from formed radioactive and stable elements of Tc, Nb, and Zr. This can be done for example with either the solvent extraction or distillation methods with an efficacy better than 80% [START_REF] Comparetto | A Comparative Study of the Production of Short-Lived Neutron Deficient Isotopes 94,95,97 Ru in αand 3 He-Particle Induced Nuclear Reactions on Natural Molybdenum[END_REF]. The SA should also be considered in further chemical research as each production route form additional stable atoms of Ru, which would chelate the labeling compound.

  Instruments 2018, 3, x FOR PEER REVIEW 5 of 12 calculated by RYC are presented as points whereas the curve published by IAEA correspond to the lines. As can be seen, for the 3 types of projectiles and for the different target masses, a very good agreement is obtained. The same good results have been obtained for all our tests.

Figure 1 .

 1 Figure 1.Comparison of TTY for selected nuclear reactions on metallic targets calculated with RYC and adapted from[START_REF]Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions[END_REF][START_REF]Cross Section Database for Medical Radioisotope Production: Production of Therapeutic Radionuclides[END_REF] based on the same cross-section values from IAEA.

Figure 1 .

 1 Figure 1.Comparison of TTY for selected nuclear reactions on metallic targets calculated with RYC and adapted from[START_REF]Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions[END_REF][START_REF]Cross Section Database for Medical Radioisotope Production: Production of Therapeutic Radionuclides[END_REF] based on the same cross-section values from IAEA.

Instruments 2018, 3 ,

 3 x FOR PEER REVIEW 6 of 12 the cross-section by about 30 mb in the region 20-40 MeV. The subsequent fall of the excitation function and a bump seem to be shifted by 5-10 MeV with respect to the experimental data.

Figure 2 .

 2 Figure 2. Measured cross-section for nat Mo(⍺,x) 97 Ru reaction compared with data available in the literature. The coproduction of 103 Ru via 100 Mo(⍺,n) 103 Ru and 100 Mo(⍺,p) 103 Tc 103 Ru reactions was not observed in the investigated energy range, but the cross-section for nat Mo(⍺,x) 103 Ru from TENDL-2017 is plotted (red line) to complement the discussion from the text.
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Table 1 .

 1 Nuclear data [22] of97 Ru and observed radionuclidic contaminants as well as reactions contributing to their formation during the irradiation of nat Mo target*.

	Radionuclide T 1/2	Decay Mode (%)	γ-Lines [keV] and Intensities** (%)	Contributing Reactions***	Q-Value [MeV]
					94 Mo(α,n) 97 Ru	-7.9
					95 Mo(α,2n) 97 Ru	-15.3
	97 Ru	2.83 d	EC (100)	215.7 (85.8) 324.5 (10.8)	96 Mo(α,3n) 97 Ru 97 Mo(α,4n) 97 Ru	-24.5 -31.3
					98 Mo(α,5n) 97 Ru	-41.6
					100 Mo(α,7n) 97 Ru	-54.1
					92 Mo(α,x) 89tot Zr	-16.7
					94 Mo(α,x) 89tot Zr	-14.0
					95 Mo(α,x) 89tot Zr	-21.4
					96 Mo(α,x) 89tot Zr	-30.6
					97 Mo(α,x) 89tot Zr	-37.4
	89g Zr	78.4 h	β + (23), EC (77)	908.96 (100)	98 Mo(α,x) 89tot Zr 100 Mo(α,x) 89tot Zr 92 Mo(α,x) 89tot Nb→ 89tot Zr	-46.0 -60.2 -21.1
					94 Mo(α,x) 89tot Nb→ 89tot Zr	-38.9
					95 Mo(α,x) 89tot Nb→ 89tot Zr	-46.2
					96 Mo(α,x) 89tot Nb→ 89tot Zr	-55.4
					97 Mo(α,x) 89tot Nb→ 89tot Zr	-62.2
					98 Mo(α,x) 89tot Nb→ 89tot Zr	-70.9
					100 Mo(α,x) 89tot Nb→ 89tot Zr -85.1

Table 1 . Cont. Radionuclide T 1/2 Decay Mode (%) γ-Lines [keV] and Intensities** (%) Contributing Reactions*** Q-Value [MeV]

 1 

					94 Mo(α,x) 96tot Tc	-13.3
				778.22 (100)	95 Mo(α,x) 96tot Tc	-14.4
	96g Tc	4.28 d	EC (100)	812.58 (82) 849.93 (98)	96 Mo(α,x) 96tot Tc 97 Mo(α,x) 96tot Tc	-23.7 -30.4
				1126.97 (15.2)	98 Mo(α,x) 96tot Tc	-39.0
					100 Mo(α,x) 96tot Tc	-53.3
	99 Mo	65.9 h	β -(100)	140.51 (89.43) 739.50 (12.13)	97 Mo(α,2p) 99 Mo 98 Mo(α,x) 99 Mo 100 Mo(α,x) 99 Mo	-13.7 -14.7 -8.3
					92 Mo(α,n) 95g Tc	-5.7
					94 Mo(α,x) 95g Tc	-14.9
					95 Mo(α,x) 95g Tc	-22.3
					96 Mo(α,x) 95g Tc	-31.4
					97 Mo(α,x) 95g Tc	-38.3
					98 Mo(α,x) 95g Tc	-46.9
	95g Tc	20.0 h	EC (100)	765.8 (93.82)	100 Mo(α,x) 95g Tc 92 Mo(α,n) 95 Ru→ 95g Tc	-61.1 -9.0
					94 Mo(α,3n) 95 Ru→ 95g Tc	-26.7
					95 Mo(α,4n) 95 Ru→ 95g Tc	-34.1
					96 Mo(α,5n) 95 Ru→ 95g Tc	-43.3
					97 Mo(α,6n) 95 Ru→ 95g Tc	-50.1
					98 Mo(α,7n) 95 Ru→ 95g Tc	-58.7
					100 Mo(α,9n) 95 Ru→ 95g Tc	-73.0
	* nat Mo composition: 92 Mo (14.6%), 94 Mo (9.2%), 95 Mo (15.9%), 96 Mo (16.7%), 97 Mo (9.6%), 98 Mo (24.3%), 100 Mo
	(9.7%); ** lines with less than 10% intensities are not included; *** "tot"-the reaction produces the radionuclide
	directly and via decay of its metastable state.			

Table 2 .

 2 Measured cross-sections for nat Mo(α,x) reactions (with the uncertainties in the parenthesis).

	E [MeV]	97 Ru	nat Mo(α,x) Cross-Section [mb] 89g Zr 95g Tc 96tot Tc	99 Mo
	41.80(75)	237(20)	ND*	81(11)	73(7)	7.5(1.0)
	46.03(68)	225(20)	ND	127(14)	89(8)	10.1(1.2)
	50.00(64)	199(18)	ND	163(17)	100(9)	11.4(1.3)
	51.93(62)	166(14)	ND	170(16)	101(9)	12.8(1.3)
	55.30(60)	159(13)	3.6(9)	177(17)	109(9)	13.5(1.4)
	58.51(56)	176(15)	11.7(1.6)	205(17)	119(10)	ND
	59.97(55)	176(15)	18(2)	174(24)	116(10)	14.0(1.5)
	63.47(53)	180(16)	30(3)	188(16)	118(10)	15.0(1.7)
	66.84(50)	173(14)	40(3)	203(17)	122(10)	15.6(1.3)

* ND = not detected.

Table 2 .

 2 Measured cross-sections for nat Mo(α,x) reactions (with the uncertainties in the parenthesis).

			nat Mo(α,x) Cross-Section [mb]	
	E [MeV]	97 Ru	89g Zr	95g Tc	96tot Tc	99 Mo
	41.80(75)	237(20)	ND*	81(11)	73(7)	7.5(1.0)
	46.03(68)	225(20)	ND	127(14)	89(8)	10.1(1.2)
	50.00(64)	199(18)	ND	163(17)	100(9)	11.4(1.3)
	51.93(62)	166(14)	ND	170(16)	101(9)	12.8(1.3)
	55.30(60)	159(13)	3.6(9)	177(17)	109(9)	13.5(1.4)
	58.51(56)	176(15)	11.7(1.6)	205(17)	119(10)	ND
	59.97(55)	176(15)	18(2)	174(24)	116(10)	14.0(1.5)
	63.47(53)	180(16)	30(3)	188(16)	118(10)	15.0(1.7)
	66.84(50)	173(14)	40(3)	203(17)	122(10)	15.6(1.3)

* ND = not detected.

  Ru at EOB.

		α energy		30-15 MeV	67-15 MeV
		target		nat Mo	95 Mo (100%)	nat Mo	96 Mo (100%)
		thickness	100 mg/cm 2	100 mg/cm 2	540 mg/cm 2	540 mg/cm 2
		97 Ru yield	3.5 MBq/µAh	14 MBq/µAh	20 MBq/µAh	31 MBq/µAh
		irradiation	1 h, 15 µA	1 h, 15 µA	1 h, 2.5 µA	1 h, 2.5 µA
		97 Ru A EOB	50 MBq	200 MBq	50 MBq	80 MBq
				(1.4 mCi)	(5.4 mCi)	(1.4 mCi)	(2.2 mCi)
		SA at EOB	350 GBq/µmol	1300 GBq/µmol	420 GBq/µmol	630 GBq/µmol
				(9 kCi/mmol)	(36 kCi/mmol)	(11 kCi/mmol)	(17 kCi/mmol)
			97 Ru	100	100	100	100
	relative	activity [%]	89g Zr 95g Tc 96g Tc	0 95 4	0 1E-3 0.2	3 200 25	0.04 150 34
		103 Ru	0.12	0	0.02	0
		reference		[3], [20]	TENDL-2017	[3], [20]	TENDL-2017
						this work	

Conclusions and Summary

We have extended the available cross-section measurements of selected nat Mo(α,x) reactions up to 67 MeV. Our measurements preserve well the trend of the cross-section values reported previously below 40 MeV and are consistent in overlapping energy ranges. A reasonable agreement with TENDL is observed however in certain cases the shift of 5-10 MeV is visible with respect to the experimental data.

We have shown the feasibility of no-carrier-added 97 Ru production with α beam up to 67 MeV and thick nat Mo targets. The impurity of the only long-lived radioactive Ru radioisotope ( 103 Ru) is small, around 0.1%. An irradiation of 1 h with few µA α-beam should satisfy the need for SPECT imaging for the patient. Several doses could be produced with longer irradiations at higher currents or using enriched 95,96 Mo targets which will substantially increase the produced activity and SA.

The use of RYC [34] to calculate TTY based on cross-section data was also demonstrated.
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