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ABSTRACT
The article addresses multivariate interpolation in the presence of

symmetry. Interpolation is a prime tool in algebraic computation

while symmetry is a qualitative feature that can be more relevant

to a mathematical model than the numerical accuracy of the pa-

rameters. The article shows how to exactly preserve symmetry

in multivariate interpolation while exploiting it to alleviate the

computational cost. We revisit minimal degree and least interpo-

lation with symmetry adapted bases, rather than monomial bases.

This allows to construct bases of invariant interpolation spaces in

blocks, capturing the inherent redundancy in the computations.

We show that the so constructed symmetry adapted interpolation

bases alleviate the computational cost of any interpolation problem

and automatically preserve any equivariance of this interpolation

problem might have.
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1 INTRODUCTION
Preserving and exploiting symmetry in algebraic computations

is a challenge that has been addressed within a few topics and,

mostly, for specific groups of symmetry [2, 7, 8, 10, 11, 13–16, 18,

19, 22]. The present article addresses multivariate interpolation in

the presence of symmetry. Due to its relevance in approximation

theory and geometrical modeling, interpolation is a prime topic in

algebraic computation. Among the several problems in multivariate

interpolation [9, 17], we focus on the construction of a polynomial

interpolation space for a given set of linear forms. Assuming the

space generated by the linear forms is invariant under a group

action, we show how to, not only, preserve exactly the symmetry,

but also, exploit it so as to reduce the computational cost.

For a set of r points ξ1, . . . , ξr inn-space, and r valuesη1, . . . , ηr
the basic interpolation problem consists in finding a n-variate poly-
nomial function p such that p (ξi ) = ηi , for 1 ≤ i ≤ r . The evalu-
ations at the points ξi form a basic example of linear forms. The

space they generate is invariant under a group action when the set

of points is a union of orbits of this group action. A first instance

of symmetry is invariance. The above interpolation problem is in-

variant if ηi = ηj whenever ξi and ξ j belong to the same orbit. It

is then natural to expect an invariant polynomial as interpolant.

Yet, contrary to the univariate case, there is no unique interpolant

of minimal degree and the symmetry of the interpolation problem

may very well be violated (compare Figure 2 and 1).

In this article we shall consider a general set of linear forms, in-

variant under a group action, and seek to compute interpolants that

respect the symmetry of the interpolation problem. We mentioned

invariance as an instance of symmetry, but equivariance is the more

general concept. An interpolation space for a set of linear forms is

a subspace of the polynomial ring that has a unique interpolant for

each instantiated interpolation problem. We show that the unique

interpolants automatically inherit the symmetry of the problem

when the interpolation space is invariant (Section 3).

A canonical interpolation space, the least interpolation space, was
introduced in [3–5]. We shall review that it is invariant as soon as

the space of linear forms is. In floating point arithmetics though,

the computed interpolation space might fail to be exactly invariant.

Yet, in mathematical modeling, symmetry is often more relevant

than numerical accuracy. We shall remedy this flaw and further

exploit symmetry to mitigate the cost and numerical sensitivity of

computing a minimal degree or least interpolation space.

As other minimal degree interpolation spaces, the least inter-

polation space can be constructed by Gaussian elimination in a

multivariate Vandermonde (or collocation) matrix. The columns of

the Vandermonde matrix are indexed by monomials. We show how

any other graded basis of the polynomial ring can be used. In partic-

ular there is a two fold gain in using a symmetry adapted basis. On
one hand, the computed interpolation space will be exactly invari-

ant independently of the accuracy of the data for the interpolation

problem. On the other hand, the new Vandermonde matrix is block

diagonal so that Gaussian elimination can be performed indepen-

dently on smaller size matrices, with better conditioning. Further

computational savings result from identical blocks being repeated

according to the degree of the related irreducible representations

of the group. Symmetry adapted bases also plaid a prominent role

in [2, 11, 19] where it allowed the block diagonalisation of a multi-

variate Hankel matrix.

In Section 2 we define minimal degree and least interpolation

space and review how to compute a basis of it with Gaussian elimi-

nation. In Section 3 we make explicit how symmetry is expressed

and the main ingredient to preserve it. In Section 4 we review

symmetry adapted bases and show how the Vandermonde matrix

becomes block diagonal in these. This is applied to provide an

algorithm for the computation of invariant interpolation spaces

in Section 5 together with a selection of relevant invariant and

equivariant interpolation problems.

2 POLYNOMIAL INTERPOLATION
We review in this section the definitions and constructions of in-

terpolation spaces of minimal degree. By introducing general dual

polynomial bases we generalize the construction of least interpola-

tion spaces. We shall then be in a position to work with adapted

bases to preserve and exploit symmetry.



2.1 Interpolation space
Hereafter, K denotes either C or R. K[x] = K[x1, . . . ,xn] denotes
the ring of polynomials in the variables x1, . . . ,xn with coefficients

in K; K[x]≤δ and K[x]δ the K−vector spaces of polynomials of

degree at most δ and the space of homogeneous polynomials of

degree δ respectively.

The dual ofK[x], the set ofK−linear forms onK[x], is denoted by
K[x]∗. A typical example of a linear form on K[x] is the evaluation
eξ at a point ξ of Kn . It is defined by

eξ : K[x] → K
p 7→ p (ξ ).

Other examples of linear forms on K[x] are given by compositions

of evaluation and differentiation

Λ : K[x] → K
p 7→

∑r
j=1 eξ j ◦ qj (∂) (p),

with ξ j ∈ K
n ,qj ∈ K[x] and ∂

α = ∂
∂xα1

1

. . . ∂
∂xαnn

.

Let ξ1, . . . , ξr be a finite set of points in K
n
. Lagrange interpola-

tion consists in finding, for any η1, . . .ηr ∈ K, a polynomial p such

that eξ j (p) = ηj , 1 ≤ j ≤ r . More generally an interpolation problem
is a pair (Λ,ϕ) where Λ is a finite dimensional linear subspace of

K[x]∗ and ϕ : Λ −→ K is a K-linear map. An interpolant, i.e., a
solution to the interpolation problem, is a polynomial p such that

λ(p) = ϕ (λ) for any λ ∈ Λ. (1)

An interpolation space for Λ is a polynomial subspace P of K[x]
such that Equation (1) has a unique solution in P for any map ϕ.

2.2 Vandermonde matrix
For P = {p1,p2, . . . ,pm } and L = {λ1, λ2, . . . , λr } linearly inde-

pendent sets of K[x] and K[x]∗ respectively, we introduce the

(generalized) Vandermonde matrix

W
P
L

:=
[
λi

(
pj

)]
1≤i≤r
1≤j≤m

. (2)

As in the univariate case, the Vandermondematrix appears naturally

in the interpolation problem. spanK (P) is an interpolation space

for spanK (L) if and only if W
P
L

is an invertible matrix. This leads

to a straightforward approach to compute an interpolation space

for ⟨L⟩. Since the elements of L are linearly independents, there

is δ > 0 such that W
Pδ
L

has full row rank, where Pδ is a basis

of K[x]≤δ . For Lagrange interpolation δ ≤ |L|. Hence we can

choose r linearly independent columns j1, j2, . . . jr of W
Pδ
L

and the

corresponding space P = spanK (pj1 , . . .pjk ) is an interpolation

space for Λ.

In order to select r linearly independent columns of W
Pδ
L

we can

use any rank revealing decomposition of W
Pδ
L

. Singular value de-

composition (SVD) andQR decomposition provide better numerical

accuracy but to obtain a minimal degree interpolation space we

shall resort to Gauss elimination. It produces a LU factorization of

W
Pδ
L

where L is an invertible matrix and U =
[
ui j

]
1≤i≤r
1≤j≤m

is in row

echelon form. This means that there exists an increasing sequence

j1, . . . , jr with ji ≥ i , such that ui ji is the first non-zero entry in

the i−th row of U. We call j1, . . . , jr the echelon index sequence of

W
Pδ
L

. They index a maximal set of linearly independent columns

of W
Pδ
L

.

2.3 Minimal degree
It is desirable to build an interpolation space such that the degree

of the interpolating polynomials be as small as possible. We shall

use the definition of minimal degree solution for an interpolation

problem defined in [4, 5, 20].

Definition 2.1. An interpolation space P for Λ is of minimal de-

gree if for any other interpolation space Q for Λ

dim(Q ∩ K[x]≤δ ) ≤ dim(P ∩ K[x]≤δ ),∀δ ∈ N.

We say that a countable set of homogeneous polynomials P =
{p1,p2, . . .} is ordered by degree if i ≤ j implies that degpi ≤ degpj .

Proposition 2.2. Let L be a basis of Λ. Let Pδ , δ > 0, be a
homogeneous basis of K[x]≤δ ordered by degree, such that WPδ

L
has

full row rank. Let j1, . . . , jr be the echelon sequence ofWPδ
L

obtained
by Gauss elimination with partial pivoting. Then P := ⟨pj1 , . . . ,pjr ⟩
is a minimal degree interpolation space for Λ.

Proof. LetQ be another interpolation space forΛ. Letq1,q2 . . .qm
be a basis of Q ∩ K[x]≤d with d ≤ δ . Since Pδ is a homogeneous

basis of K[x]≤δ , any qi can be written as a linear combination of

elements of Pδ ∩ K[x]≤d . Considering qi =
∑
j ajipj we get that

λ(qi ) =
∑
j ajiλ(pj ) for any λ ∈ Λ.

Let {pji
1

,pji
2

, . . .pjin } be the elements of P that form a basis of

P ∩K[x]≤d . Gauss elimination on W
Pδ
L

ensures that λ(b) is a linear

combination of λ(pji
1

), . . . λ(pjin ) for any b ∈ Pδ ∩K[x]≤d and λ ∈

Λ. The latter implies that λ(qi ) =
∑n
k=1 ckiλ(pjik ) for 1 ≤ i ≤ m

and cki ∈ K. Ifm > n then the matrix C =
(
ci j

)
1≤i≤m
1≤j≤n

has linearly

independent columns, and therefore there exist d1,d2, . . .dm ∈ K
such that

∑m
i=1 diλ(qi ) = λ(

∑m
i=1 diqi ) = 0 for any λ ∈ Λ which

is a contradiction with the fact that Q is an interpolation space of

Λ. Then we can conclude thatm ≤ n and P is a minimal degree

interpolation space for Λ. □

2.4 Duality and apolar product
K[x]∗ can be identified with the ring of formal power series K[[∂]]
through the isomorphism Φ : K[[∂]] −→ K[x]∗, where for p =∑
α pαx

α ∈ K[x] and f =
∑
α ∈Nn fα ∂

α ∈ K[[∂]]

Φ( f ) (p) :=
∑
α ∈Nn

fα
∂αp

∂xα
(0) =

∑
α ∈N

α !fαpα .

For instance, the evaluation eξ at a point ξ ∈ Kn is represented by

e
(ξ , ∂) =

∑
k ∈N

(ξ , ∂)k
k ! , the power series expansion of the exponen-

tial function with frequency ξ . The dual pairing

K[x]∗ × K[x] → K
(λ,p) → λ(p)

brings the apolar product onK[x] by associating p ∈ K[x] to p (∂) ∈
K[[∂]]. For p =

∑
α pαx

α
and q =

∑
α qαx

α
the apolar product

between p and q is given by

〈
p,q

〉
:= p (∂)q =

∑
α α !pαqα ∈ K.

Note that for a linear map a : Kn → Kn ,
〈
p,q ◦ a

〉
=

〈
p ◦ at ,q

〉
.
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For a set of linearly independent homogeneous polynomials P

we define the dual set P† to be a set of homogeneous polynomials

such that

〈
p†i ,pj

〉
= δi j . For instance the dual basis of the monomial

basis {xα }α ∈Nn is { 1α !x
α }α ∈Nn . Thus any linear form λ ∈ K[x]∗

can be written as λ =
∑
α ∈Nn

1

α !λ(x
α )∂α ∈ K[[∂]]. More generally,

any linear form on ⟨P⟩ can be written as λ =
∑
p∈P λ(p)p† (∂).

2.5 Least interpolation space
For a space of linear forms Λ ⊂ K[x]∗, a canonical interpolation
space Λ↓ is introduced in [5]. It has a desirable set of properties.

An algorithm to build a basis of Λ↓ based on Gauss elimination

on the Vandermonde matrix is presented in [4]. In this algorithm

the authors consider the Vandermonde matrix associated to the

monomial basis of K[x]. The notion of dual bases introduced above,

allows to extend the algorithm to any graded basis of K[x].
The initial term of a power series λ ∈ K[[∂]], denoted by λ↓ ∈

K[x] in [3–5], is the unique homogeneous polynomial for which

λ − λ↓(∂) vanishes to highest possible order at the origin. Given a

linear space of linear forms Λ, we define Λ↓ as the linear span of all

λ↓ with λ ∈ Λ. [5, Proposition 2.10] shows that dim Λ = dim Λ↓.

Proposition 2.3. Let P = {p1,p2, . . .} be a homogeneous basis
of K[x] ordered by degree and L = {λ1, . . . , λr } be a basis of Λ. Let
LU =W

P
L

be the factorization of W
P
L

provided by Gauss elimination
with partial pivoting with {j1, j2, . . . , jr } as echelon index sequence.
If U = (ui j ) consider, for 1 ≤ ℓ ≤ r ,

hℓ =
∑

deg(pk )=deg(pjℓ )

uℓk p†k (3)

where P† = {p†
1
, . . . .p†j , . . .} is the dual basis of P with respect to

the apolar product. Then H = {h1, . . .hr } is a basis for Λ↓.

Proof. Let L
−1 = (ai j ) and consider ςℓ =

∑
j ∈N

uℓjp
†
j (∂). Since

uℓj =
r∑
i=1

al iλi (pj ), then ςℓ =
∑
j ∈N

( r∑
i=1

al iλi (pj )
)
p†j (∂)

=

r∑
i=1

al i
∑
j ∈N

λi (pj )p
†
j (∂) =

r∑
i=1

al iλi ∈ Λ.

Notice that hℓ = ςℓ ↓ and therefore hℓ ∈ Λ↓ for 1 ≤ ℓ ≤ r .
The ji are strictly increasing so that {h1,h2, . . . ,hr } are linearly

independent. Since dim(Λ) = dim(Λ↓) = r we conclude that H is a

basis of Λ↓. □

3 SYMMETRY
We define the concepts of invariant interpolation problem (IIP) and

equivariant interpolation problem (EIP). These interpolation prob-

lems have a structure that we want to be preserved by the inter-

polant. We show that this is automatically achieved when choosing

the interpolant in an invariant interpolation space. Then the solu-

tion of an IIP is an invariant polynomial and the solution of an EIP

is an equivariant polynomial map. In Section 5 we show that the

least interpolation space is invariant and how to better compute an

invariant interpolation space of minimal degree.

The symmetries we shall deal with are given by the linear group

action of a finite groupG onKn . It is thus given by a representation

ϑ of G on Kn . It induces a representation ρ of G on K[x] given by

ρ (д)p (x ) = p (ϑ (д−1)x ).

K[x]δ is invariant under ρ. It also induces a linear representation

on the space of linear forms, the dual representation of ρ :

ρ∗ (λ) (p) = λ(ρ (д−1)p), p ∈ K[x] and λ ∈ K[x]∗.

We shall deal with an invariant subspace Λ of K[x]∗. Hence the
restriction of ρ∗ to Λ is a linear representation of G in Λ.

3.1 Invariance
Definition 3.1. Let Λ be a space of linear forms and ϕ : Λ −→ K

a linear map. The pair

(
Λ,ϕ

)
defines an invariant interpolation

problem if

(1) Λ is closed under the action of G.
(2) ϕ (ρ∗ (д) (λ)) = ϕ (λ) for any д ∈ G and λ ∈ Λ.

An invariant Lagrange interpolation problem can be seen as inter-

polation at union of orbits of points with fixed values on their orbits,

i.e., given ξ1, . . . , ξm with orbits O1, . . . ,Om and η1, . . . ,ηm ∈ K
n
,

an interpolant p ∈ K[x] is to satisfy p ◦ ϑ (д) (ξk ) = ηk for any

д ∈ G. It is natural to expect that an appropriate interpolant p be

invariant. Yet, not all minimal degree interpolants are invariant.

Example 3.2. The dihedral group Dm is the group of order 2m
that leaves invariant the regularm-gon. It thus has a representation

in R2 given by the matrices

ϑk =



*.
,

cos

(
⌊ k
2
⌋ 2πm

)
− sin

(
⌊ k
2
⌋ 2πm

)
sin

(
⌊ k
2
⌋ 2πm

)
cos

(
⌊ k
2
⌋ 2πm

) +/
-

(
1 0

0 −1

)k  , 0 ≤ k ≤ 2m−1.

(4)

ConsiderΞ ⊂ R2 a set of 1+3×5 points illustrated on Figure 1. They
form four orbits O1,O2,O3,O4 of D5 so that Λ := span(eξi |ξi ∈ Ξ)
is invariant. An invariant interpolation problem is given by the pair

(Λ,ϕ) where ϕ is defined by ϕ (eξ ) = 0.1 if ξ ∈ O1, ϕ (eξ ) = 0 if

ξ ∈ O2 ∪ O4, and ϕ (eξ ) = −0.5 if ξ ∈ O3. We show in Figure 1 the

graph of the expected interpolant, but in Figure 2 we present the

graph of an interpolant of minimal degree.

Proposition 3.3. Let (Λ,ϕ) be an invariant interpolation prob-
lem. Let P be an invariant interpolation space and let p ∈ K[x] be
the solution of (Λ,ϕ) in P . Then p ∈ K[x]G , the ring of invariant
polynomials.

Proof. For any λ ∈ Λ and д ∈ G we have that λ(p) = ϕ (λ)
and ρ∗ (д) (λ)p = ϕ (ρ∗ (д) (λ)). Since ϕ is G−invariant, we get that
λ(ρ (д−1)p) = ρ∗ (д) (λ)p = ϕ (ρ∗ (д) (λ)) = λ(p) for any λ ∈ Λ.
The latter implies that ρ (д−1)p − p ∈ Ker Λ. As P is closed under

the action of ρ, ρ (д−1)p − p ∈ KerΛ
⋂

P . Then as (Λ, P ) is an
interpolation space Ker Λ

⋂
P = ∅ and we conclude that ρ (д−1)p −

p = 0 for any д ∈ G, i.e., p ∈ K[x]G . □

3



#Nodes A node per orbit

O1 1 ξ1 = (0, 0)
O2 5 ξ2 = (0.1934557, 0.1405538)
O3 5 ξ7 = (0.4695268, 0)
O4 5 ξ12 = (0.6260358, 0)

Figure 1: Invariant Lagrange interpolation problem and in-
variant interpolant of minimal degree.

Figure 2: Graph of a minimal degree interpolant obtained
from a monomial basis. The D5 symmetry is not respected.

3.2 Equivariance
Let K[x]m be the module of polynomial mappings withm compo-

nents, and let θ : G −→ Aut(Km ) be a linear representation on Km .

A polynomial mapping f = ( f1, f2, . . . , fm )t is called ϑ−θ equivari-

ant if f (ϑ (д)x ) = θ (д) f (x ) for any д ∈ G . The space of equivariant

mappings over K, denoted by K[x]θϑ , is a K[x]
G−module.

Equivariant maps define, for instance, dynamical systems that

exhibit particularly interesting patterns and are relevant to model

physical or biological phenomena [1, 12]. In this context, it is in-

teresting to have a tool to offer equivariant maps that interpolate

some observed local behaviors.

Definition 3.4. Let Λ be a space of linear forms on K[x] and ϕ :

Λ −→ Km a linear map. The pair

(
Λ,ϕ

)
defines a ϑ − θ equivariant

interpolation problem if

(1) Λ is closed under the action of G.
(2) ϕ (ρ∗ (д−1) (λ)) = θ (д)ϕ (λ) for any д ∈ G and λ ∈ Λ.

The solution of an EIP

(
Λ,ϕ

)
, is a polynomialmap f = ( f1, . . . , fm )t

such that λ( f ) = (λ( f1), . . . , λ( fm ))t = ϕ (λ) for any λ ∈ Λ. It is
natural to seek f as an equivariant map. It is remarkable that any

type of equivariance will be respected as soon as the interpolation

space is invariant.

Proposition 3.5. Let (Λ,ϕ) be an equivariant interpolation prob-
lem. Let P be an invariant interpolation space for Λ and let f =
( f1, . . . , fm )t be the solution of (Λ,ϕ) in P . Then f ∈ K[x]θϑ .

Proof. For any λ ∈ Λ we have the following

ρ∗ (д) (λ) f = ϕ (ρ∗ (д)λ) = θ (д)ϕ (λ) = θ (д)λ( f ) = λ(θ (д) f ). (5)

We can write θ (д) f as

( m∑
i=1

r1i fi , . . . ,
m∑
i=1

rmi fi

)
, where (ri j ) is a

matrix representation of θ (д). By equation (5) we get(
λ

(
ρ

(
д−1

)
f1

)
, . . . , λ

(
ρ

(
д−1

)
fm

))
= *
,
λ *
,

m∑
i=1

r1i fi +
-
, . . . , λ *

,

m∑
i=1

rmi fi +
-
+
-
,

and therefore ρ (д−1) fj −
m∑
i=1

r ji fi ∈ KerΛ
⋂

P = ∅ for any 1 ≤ j ≤

m which implies that

(
f1 ◦ ϑ (д

−1), . . . , fm ◦ ϑ (д
−1)

)
= θ (д) f . □

Example 3.6. The symmetry is given by the representation of

the dihedral group D3 in Equation (4). The space Λ of linear forms

we consider is spanned by the evaluations at the points of the or-

bits O1 and O2 of ξ1 = (− 5

√
3

3
, 1
3
)t and ξ2 = (−

√
3, 1

3
)t . We define

ϕ : Λ→ K2 by

ϕ (eϑ (д)ξ1 ) = ϑ (д)

(
a
c

)
and ϕ (eϑ (д)ξ2 ) = ϑ (д)

(
b
d

)
.

The thus defined interpolation problem is clearly ϑ −ϑ equivariant.

For each quadruplet (a,b, c,d ) ∈ K4 it is desirable to find an inter-

polant (p1,p2)
t ∈ K[x]2 that is an ϑ − ϑ equivariant map. This will

define the equivariant dynamical system

ẋ1 (t ) = p1 (x1 (t ),x2 (t )), ẋ2 (t ) = p2 (x1 (t ),x2 (t ))

whose integral curves, limit cycles and equilibrium points, will all

exhibit the D3 symmetry. In Figure 3 we draw the integral cuves

of equivariant vector field thus constructed. The data of the in-

terpolation problem are illustrated by the black arrows : they are

the vectors (a, c )t and (b,d )t , with origin in the points ξ1 and ξ2,
together with their transforms.

Figure 3: Integral curves for the equivariant vector field in-
terpolating the invariant set of 12 vectors drawn in black

4 SYMMETRY REDUCTION
In this section we show how, when the space Λ of linear forms is

invariant, the Vandermonde matrix can be made block diagonal.

That happens when making use of symmetry adapted bases both
for K[x]≤δ and Λ. We start by recalling their general construction,

as it appears in representation theory. The material is drawn from

[6, 21]. This block diagonalisation of the Vandermonde indicates

how computation can be organized more efficiently, and robustly. It

4



just draws on the invariance of the space of linear forms. So, when

the evaluation points can be chosen, it makes sense to introduce

symmetry among them.

4.1 Symmetry adapted bases
A linear representation of the groupG on the C−vector space V is a

group morphism fromG to the groupGL(V ) of isomorphisms from

V to itself.V is called the representation space and n is the dimension
(or the degree) of the representation ρ. If V has finite dimension n,
and ρ is a linear representation ofG onV , upon introducing a basis

P of V the isomorphism ρ (д) can be described by a non-singular

n × n matrix. This representing matrix is denoted by [ρ (д)]P . The
complex-value function χ : G −→ C, with χ (д) → Trace(ρ (д)) is
the character of the representation ρ.

The dual or contragredient representation of ρ is the representa-

tion ρ∗ on the dual vector space V ∗ defined by:

ρ∗ (д) (λ) = λ ◦ ρ (д−1) for any λ ∈ V ∗. (6)

IfP is a basis ofV andP∗ its dual basis then [ρ∗ (д)]P∗ = [ρ (д−1)]t
P
.

It follows that χρ∗ (д) = χρ (д
−1) = χ ρ (д)

A linear representation ρ of a groupG on a spaceV is irreducible
if there is no proper subspaceW of V with the property that, for

every д ∈ G , the isomorphism ρ (д) maps every vector ofW intoW .

In this case, its representation spaceV is also called irreducible. The
contragredient representation ρ∗ is irreducible when ρ is. A finite

group has a finite number of inequivalent irreducible representa-

tions. Any representation of a finite group is completely reducible,

meaning that it decomposes into a finite number of irreducible

subspaces.

Let ρ j (j = 1, . . . ,N ) be the irreducible nj dimensional represen-

tations ofG . The complete reduction of the representation ρ and its

representation space are denoted by ρ = c1ρ1⊕· · ·⊕cN ρN and V =
V1⊕ · · ·⊕VN . Each invariant subspaceVj is the direct sum of c j irre-
ducible subspaces and the restriction of ρ to each one is equivalent

to ρ j . The (c jnj )−dimensional subspaces Vj of V are the isotypic
components. With χj the character of ρ j we determine the multi-

plicity c j and the projection πj onto the isotypic component Vj

c j =
1

|G |

∑
д∈G

χj (д)χ (д), πj =
nj

|G |

∑
д∈G

χj (д
−1)ρ (д). (7)

To go further in the decomposition, consider the representing

matrices Rj (д) =
(
r
j
α β (д)

)
1≤α,β ≤nj

for ρ j . For 1 ≤ α , β ≤ nj , let

πj,α β =
nj

|G |

∑
д∈G

r
j
βα (д

−1)ρ (д). (8)

Let {p
j
1
, . . . ,p

j
c j } be a basis of the subspace Vj,1 = πj,11 (V ). A sym-

metry adapted basis of the isotypic component Vj is then given by

Pj = {p
j
1
, . . . ,p

j
c j , . . . ,πj,nj 1 (p

j
1
), . . . ,πj,nj 1 (p

j
c j )}. (9)

The union P of the Pj of Vj , is a symmetry adapted basis for V .
Indeed, by [21, Proposition 8], the set {πj,α1 (p

j
1
), . . . ,πj,α1 (p

j
c j )}

is a basis of Vj,α = πj,αα (V ) and Vj = Vj,1 ⊕ · · · ⊕ Vj,nj . Fur-

thermore

{
p
j
k ,πj,21 (p

j
k ), . . . ,πj,nj 1 (p

j
k )
}
is a basis of an irreducible

space with representating matrices

(
r
j
α β (д)

)
1≤α,β ≤nj

. Hereafter

we denote by P j,α
the polynomial map defined by

P j,α =
(
πj,α1 (p

j
1
), . . . ,πj,α1 (p

j
c j )

)
. (10)

A symmetry adapted basis P is characterized by the fact that

[ρ (д)]P = diag

(
R1 (д) ⊗ Ic1 , . . . , RN (д) ⊗ IcN

)
.Then [ρ∗ (д)]P∗ =

diag

(
R
−t
i (д) ⊗ Ici | i = 1..N

)
.

Proposition 4.1. If P = ∪Ni=1Pi be a symmetry adapted basis
of V where Pi spans the isotypic component associated to ρi then its
dual basis P∗ = ∪Ni=1P

∗
i in V ∗ is a symmetry adapted basis where

P∗i spans the isotypic component associated to ρ∗i .

Corollary 4.2. If P is a symmetry adapted basis of K[x]≤δ , so
is its dual P† with respect to the apolar product.

A scalar product isG−invariant with respect to a linear represen-

tation ρ if ⟨v,w⟩ =
〈
ρ (д) (v ), ρ (д) (w )

〉
for any д ∈ G and v,w ∈ V .

If we consider unitary representing matrices Ri (д), and an orthonor-

mal basis {p
j
1
, . . . ,p

j
c j } of Vi,1 with respect to a G−invariant inner

product, then the same process leads to an orthonormal symmetry
adapted basis [6, Theorem 5.4].

Some irreducible representations might not have representing

matrices in R. Yet one can determine a real symmetry adapted basis
[2] by combining the isotypic components related to conjugate

irreducible representations. This happens for instance for abelian

groups and we shall avoid them in the examples of this paper for

lack of space. Indeed the completely general statements become

convoluted when working with the distinction.

4.2 Block diagonal Vandermonde matrix
We consider a linear representation ϑ of a finite group G on Kn . It
induces the representations ρ and its dual ρ∗ on the space K[x] and
K[x]∗. K[x]δ is invariant under ρ and thus can be decomposed into

isotypic components K[x]δ =
⊕N

j=1 Pj , where Pj is associated to

the irreducible representation ρ j of G, with character χj . Each Pj
is the image of K[x]δ under the map πj , as defined in (7).

For an invariant subspace Λ of K[x]∗ the restriction of ρ∗ to
Λ is a linear representation of G. We shall arrange the isotypic

decomposition Λ = Λ∗
1
⊕ . . . ⊕ Λ∗N such that Λ∗j is the isotypic

component associated to the irreducible representation ρ∗j , with

character χj . To make a distinction we denote π∗j,α β as the map

defined in (8) associated to ρ∗.

Proposition 4.3. Let ρ and ρ∗ be linear representations of a finite

group G on K[x]≤δ and Λ defined as above. Let P =
N⋃
j=1
P j be a

symmetry adapted basis of K[x]≤δ with

• {p
j
1
, . . . ,p

j
c j } a basis of πj,11 (K[x]≤δ ).

• P j = {p
j
1
, . . . ,p

j
c j , . . . ,πj,nj 1 (p

j
1
), . . . ,πj,nj 1 (p

j
c j )}.

Let L =
N⋃
j=1
L j be a symmetry adapted basis of Λ with

• {λ
j
1
, . . . , λ

j
r j } a basis of π

∗
j,11 (Λ).

• L j = {λ
j
1
, . . . , λ

j
r j , . . . ,π

∗
j,nj 1 (λ

j
1
), . . . ,π∗j,nj 1 (λ

j
r j )}.
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Then the Vandermonde matrixWP
L

is given by

diag
*
,
Inj ⊗

(
λ
j
s (p

j
t )

)
1≤s≤r j
1≤t ≤c j

, i = 1 . . .N +
-
,

where ⊗ denotes the Kronecker product.

Proof. Let α , β ,γ ,σ ∈ N such that 1 ≤ α , β ≤ nj and 1 ≤

γ ,σ ≤ ni . Let λ
j
α β = π∗j,α1 (λ

j
β ) and piγ σ = πi,γ 1 (p

i
σ ). For any

entry λ
j
α β (p

i
γ σ ) in W

P
L

we have the following:

λ jα β (p
i
γ σ ) = λ

j
α β (πi,γ 1 (p

i
σ )) = λ

j
α β

*.
,

ni
|G |

∑
д∈G

r i
1γ (д

−1)ρ (д) (piσ )
+/
-

=
ni
|G |

∑
д∈G

r i
1γ (д

−1)ρ∗ (д−1) (λ
j
α β ) (p

i
σ )

=
ni
|G |

∑
д∈G

r iγ 1 (д)ρ
∗ (д−1) (λ

j
α β ) (p

i
σ ) = π∗i,1γ (λ

j
α β ) (p

i
σ ).

Using Proposition [21, Proposition 8] (2) if i , j, π∗i,1γ (λ
j
α β ) = 0

then λ
j
α β (p

i
γ σ ) is zero for i , j, i.e., WP

L
is block diagonal in the

isotypic components. Now if i = j

λ
j
α β (p

j
γ σ ) = π∗j,1γ (λ

j
α β ) (p

j
σ ) = π∗j,1γ ◦ π

∗
j,α1 (λ

j
β ) (p

j
σ ).

Since π∗j,1γ ◦ π
∗
j,α1 (λ

j
β ) (p

j
σ ) =




π∗j,11 (λ
j
β ) (p

j
σ ) if α = γ

0 otherwise

, using

the fact that π∗j,11 (λ
j
β ) = λ

j
β we get that

λ
j
α β (p

i
γ σ ) =




λ
j
β (p

j
σ ) if i = j and α = γ

0 otherwise.

(11)

Thus the Vandermonde matrix W
P
L

has the announced block

diagonal structure. □

Remark 1. At the heart of the above proof is the following prop-
erty : for a representation V =

⊕N
j=1Vi of G, and its dual V∗ =⊕N

j=1V
∗
i , we have λ(v ) = 0 as soon as λ ∈ V∗i while v ∈ Vj for

i , j.

Example 4.4. Let G be the dihedral group D3 of order 6. A repre-

sentation of G on R2 is given by Equation (4) withm = 3. D3 has

three irreducible representations, two of dimension 1 and one of

dimension 2.

Consider Ξ the orbit of the point ξ1 =
(
−
5

√
3

3
, 1
3

)t
in R2, with

ξi = ϑi−1ξ1. Let Λ = span(eξi ◦ D ξ⃗i
) with D ξ⃗i

the directional

derivative with direction ξ⃗i .Λ is closed under the action ofG . Indeed
for any p ∈ K[x], ρ∗ (д) (eξi ◦ D ξ⃗i

) (p) = eξi ◦ D ξ⃗i
(p (ϑ (д−1x )) =

eϑ (д−1 )ξi ◦D ⃗ϑ (д−1 )ξi
(p (x )). Since ϑ (д−1)ξi = ξ j for some 1 ≤ j ≤ 6

we have ρ∗ (д) (eξi ◦ D ξ⃗i
) = eξ j ◦ D ξ⃗ j

. Considering ϱi = eξi ◦ D ξ⃗i
,

a symmetry adapted basis of Λ is given by

L :=



[ϱ1 + ϱ2 + ϱ3 + ϱ4 + ϱ5 + ϱ6]
[ϱ1 − ϱ2 + ϱ3 − ϱ4 + ϱ5 − ϱ6]

[[λ3, λ4], [λ5, λ6]]


,

with λ3 = ϱ1 + ϱ2 − ϱ4 − ϱ5 λ5 =
√
3

2
(ϱ2 − ϱ1 + ϱ4 + 2ϱ3 − 2ϱ6 − ϱ5),

λ4 = ϱ3 − ϱ4 − ϱ5 + ϱ6, λ6 =
√
3

2
(2ϱ2 − 2ϱ1 − ϱ4 + ϱ3 − ϱ5 − ϱ6).

A symmetry adapted basis of R[x]≤3 is given by

P :=



[1, x 2

1
+ x 2

2
, x 3

1
− 3x1x 2

2
]

[x 2

1
x2 − 1

3
x 3

2
]

[[x1, x 2

1
− x 2

2
, x 3

1
+ x1x 2

2
], [x2, −2x1x2, x 2

1
x2 + x 3

2
]]



.

The Vandermonde matrix W
P
L

is block diagonal :

W
P
L
=

*...........
,

A
1

448

9

A
3

A
3

+///////////
-

,

A1 =
(
0

304

3
−240

√
3

)
A3 =

*..
,

−
16

√
3

3

128

3
−

1216

√
3

9

−
2

√
3

3
− 40

3
−

152

√
3

9

+//
-
.

5 EQUIVARIANT INTERPOLATION
In this section we shall first show how to build interpolation spaces

of minimal degree that are invariant. We shall actually build symme-

try adapted bases for these, exploiting the block diagonal structure

of the Vandermonde matrix. Doing so we prove that the least inter-

polation space is invariant. We then present a selection of invariant

or equivariant interpolation problems. As proved in Section 3, the

invariance or equivariance is preserved by the interpolant when the

interpolation space is invariant. The use of the symmetry adapted

bases constructed allows this equivariance to be preserved exactly,

independently of the numerical accuracy.

5.1 Constructing invariant interpolation spaces
The starting point is a representation ϑ of G on Kn that induces

representations ρ and ρ∗ on K[x] and K[x]∗. It is no loss of gener-

ality to assume that ϑ is an orthogonal representation. The apolar

product is thus G-invariant.
Let Λ be an invariant subspace ofK[x]∗. Hereafter L is a symme-

try adapted basis of Λ and P a symmetry adapted basis of K[x]≤δ
consisting of homogeneous polynomials. The elements of P corre-

sponding to the same irreducible component are ordered by degree.

According to Proposition 4.3, W
P
L
= diag

(
Ini ⊗ Ai

)
. In the fac-

torization LiUi := Ai provided byGauss elimination, let j1, j2, . . . , jr j
be the echelon index sequence of Ui ; ri is the multiplicity of ρ∗i in
Λ. An echelon index sequence for Di = Ini ⊗ Ai is given by

Si =

ci−1⋃
k=0

{j1 + kni , j2 + kni , . . . , jri + kni }.

An echelon index sequence of W
P
L

is given by S =
⋃N
i=1 Si . Let

PiΛ be the set of elements of Pi that are indexed by elements of Si .
From (9) we get that

PiΛ = {b
i
j1 , . . . ,b

i
jri
, . . . ,πi,ni 1 (b

i
j1 ), . . . ,πi,ni 1 (b

i
jri

)}.

We prove the assertions made on the outputs of the algorithm.

Proposition 5.1. The set of polynomialsPΛ built it in Algorithm 1
spans a minimal degree interpolation space for Λ that is invariant
under the action of ρ. PΛ is furthermore a symmetry adapted basis
for this space.
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Algorithm 1 Invariant interpolation space

In: P and L s.a.b of K[x]≤δ and Λ respectively.

Out: - a s.a.b PΛ of an invariant interpolation space of min. degree

- a symmetry adapted basisHΛ of Λ↓.

1: Compute W
P
L
;

2: for i = 1 to N do
3: Ai := LiUi ; with Ui =

(
u
(i )
ℓk

)
ℓ,k

▷ LU factorization of Ai

4: J := (j1, . . . , jr j ); ▷ echelon idex sequence ofUi

5: Si ←

ci−1⋃
k=0

{j1 + kni , j2 + kni , . . . , jri + kni };

6: PiΛ ←
{
pℓ : pℓ ∈ P

i
and ℓ ∈ Si

}
;

7: H i
Λ ←




∑
d(pk )=d(pℓ )

u
(i )
ℓkp
†

k : pk ∈ P
i
and ℓ ∈ Si



;

8: PΛ ←

N⋃
i=1
PiΛ and HΛ ←

N⋃
i=1
H i

Λ;

9: return (PΛ,HΛ);

Proof. Since the elements of PΛ are indexed by the elements

of S then W
PΛ
L

is invertible and therefore PΛ is an interpolation

space for Λ. The elements of PΛ that correspond to the same

blocks of W
P
L

are ordered by degree. Then as a direct consequence

of Proposition 2.2, PΛ is a minimal degree interpolation space.

We prove now that for any p in PΛ, ρ (д) (p) ∈ PΛ. Considering
p = πj,α1 (b). By Proposition [21, Proposition 8] (3) we have that

ρ (д) (p) =

nj∑
β=1

r
j
βα (д)πj,β1 (b). As πj,β1 (b) ∈ PΛ for any 1 ≤ β ≤ nj ,

we conclude that ρ (д) (p) ∈ PΛ. Since PΛ is a basis of PΛ we can

conclude that PΛ is invariant under the action of ρ. □

Proposition 5.2. The setHΛ built it in Algorithm 1 is a symmetry
adapted basis for Λ↓.

Proof. By Proposition 2.3 we get thatHΛ is a basis of Λ↓. Let

H α
j = {h

j
1,α , . . . ,h

j
mj ,α } = V α

j
⋂
HΛ with 1 ≤ α ≤ c j . By the

block diagonal structure and Corollary 4.2 we have

h
j
ℓ,α =

∑
k

u
(j )
ℓk πj,α1

(
q
j
k

)
= πj,α1

*.
,

∑
k

u
(j )
ℓkq

j
k
+/
-
= πj,α1

(
h
j
ℓ,1

)
.

ThereforeH
j
Λ has the following structure

H
j
Λ =

{
h
j
1,1, . . . ,h

j
mj ,1
, . . . ,πj,nj 1

(
h
j
1,1

)
, . . . ,πj,nj 1

(
h
j
mj ,1

)}
.

Since for any ℓ, hℓ ,πj,21 (hℓ ), . . . πj,nj 1 (hℓ ) form a basis of an irre-

ducible representation ofG we can conclude thatHΛ is a symmetry

adapted basis of Λ. □

As pointed out in Section 4.1, we can construct a symmetry

adapted basis P of K[x]δ that is orthonormal with respect to the

apolar product. Then P = P† and the basis PΛ built in Algorithm 1

is orthonormal. Moreover if in the third step of Algorithm 1 we use

Gauss Elimination by segment as in [4], thenHΛ is an orthonormal

symmetry adapted basis of Λ↓.
With this construction we reproved that Λ↓ is invariant. The

above approach to computing a basis of Λ↓ is advantageous in
two ways. First Gaussian elimination is performed only on smaller

blocks. But also, when solving invariant and equivariant interpola-

tion problems, the result will respect exactly the intended invariance

or equivariance, despite possible numerical inaccuracy.

5.2 Computing interpolants
We consider an interpolation problem (Λ,ϕ)whereΛ is aG-invariant
subspace of K[x]∗ and ϕ : Λ → Km . Take P to be a symmetry

adapted basis of an invariant interpolation space P for Λ as ob-

tained from Algorithm 1. The interpolant polynomial p that solves

(Λ,ϕ) in P is given by

p =
N∑
i=1

ni∑
α=1

Ai

−1ϕ (Li,α )t (Pi,α )t , (12)

where Pi,α , Li,α are as in (10) and Ai =W
Pi,1

Li,1
. Note that we made

no asumption on ϕ. The invariance of Λ allows to cut the problem

into smaller blocks, independently of the structure of ϕ. This illus-
trate how symmetry can be used to better organize computation :

if we can choose the points of evaluation, the computational cost

can be alleviated by choosing them with some symmetry.

When ϕ is invariant or equivariant, Equation (12) can be further

reduced. If (Λ,ϕ) is an invariant interpolation problem, it follows

from Remark 1 that ϕ (L j ) = 0 for any j > 1. Therefore for solving

any invariant interpolation problem we only need to compute the

first block of W
P
L
, i.e., the interpolant is given by A1

−1ϕ (L1)t (P1)t .

More generally if (Λ,ϕ) is a ϑ − θ equivariant problem, such

that the irreducible representation ρi does not occur in θ , then
ϕ (Li ) = 0. The related block can thus be dismissed.

Example 5.3. Following on Example 3.2. Since we are interested

in building an interpolation space for an invariant problem, we

only need to compute bases of ΛG and K[x]G
≤5
. We have LG ={

eξ1,
∑

6

i=2 eξi ,
∑

11

i=7 eξi ,
∑

16

i=12 eξi

}
and PG = {1, x2

1
+ x2

2
, x4

1
+

2x2
1
x2
2
+ x4

2
, x5

1
− 10x3

1
x2
2
+ 5x1x

4

2
}. Since W = W

PG

LG
is a square

matrix with full rank, spanK (P
G ) contains a unique invariant in-

terpolant for any invariant interpolation problem. It has to be the

least interpolant.

For ϕ given in Example 3.2, one finds the interpolant p by solv-

ing the 5 × 5 linear system Wa = ϕ (LG ). The solution a =
(−0.3333333, 3.295689,−36.59337, 45.36692)t provides the coeffi-

cients of PG in p. The graph of p is shown in Figure 1. If p given

above is only an approximation of the least interpolant, due to nu-

merical inaccuracy, it is at least exactly invariant. Had we computed

the least interpolant with the algorithm of [4], i.e., by elimination

of the Vandermonde matrix based on the monomial basis, the least

interpolant obtained would not be exactly invariant because of the

propagation of numerical inacurracies.

We define the deviation from invariance (ISD) ofp =
∑
degα ≤5 aαx

α

as σ (a20, a02 ) + σ
(
a40,

a
22

2
, a04

)
+ σ

(
a50, −

a
32

10
,
a
14

5

)
+

∑
β∈B |aβ | where σ

is the standard deviation, and B represents the exponents of the

monomials that do not belongs to any of the elements in PG . In
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Table 1 we show the ISD for the interpolant p computed with dif-

ferent precisions. The obtained polynomials are somehow far from

being G−invariant.

# Digits 10 15 20 30

ISD 72.9614 40.0289 6.0967 < 10
−9

Table 1: ISD values for different digits of precision

In the same spirit, let us mention that the condition number of

W
M
Λ , whereM is the monomial basis of K[x]≤5, is more than 10

2

times the condition number of W
PG

LG
. This is an indicator that two

additional digits of precision are lost in the computation.

Example 5.4. Following up on Example 4.4. Let θ be the permuta-

tion representation of D3 in R
3
. θ decomposes into two irreducible

representations, the trivial representation and the irreducible rep-

resentation ϑ of dimension 2. Let ϕ : Λ→ R3 a ϑ − θ equivariant

map determined by ϕ (ϱ1) = (1,−1, 5)t . For solving (Λ,ϕ) we need
only consider the first and third block of the Vandermonde matrix

computed in Example 4.4. The ρ∗ − θ equivariant map that solve

(Λ,ϕ) is P = (p1,p2,p3) with:

p1 :=
705

4256

x2
1
+

135

4256

x2
2
+
31

56

√
3x1 +

93

56

x2 −
15

112

√
3x1x2

p2 :=
705

4256

x2
1
+

135

4256

x2
2
+
31

56

√
3x1 −

93

56

x2 +
15

112

√
3x1x2

p3 := −
75

2128

x2
1
+

495

2128

x2
2
−
31

28

√
3x1.

In Figure 4 we show the image of R2 by P and the tangency condi-

tions imposed by ϕ.

Figure 4: Parameterized surface with tangency constraints.

Example 5.5. Following up on Example 3.6. Since the representa-

tionϑ ofD3 inR
2
is irreducible, for computing anyϑ−ϑ equivariant

we only need to compute the third isotopic block in the Vander-

monde matrix W
P3

L3
, where P is a basis for the interpolation space

PΛ built by Algorithm 1. This block is W =

(
A3

A3

)
. The rows

correspond to

L3
:=

[
L3,1,L3,2

]
,L3,1

:= [λ1, λ2, λ3, λ4] and L3,2
:= [λ5, λ6, λ7, λ8]

with λ1 = eξ
1
+ eξ

2
− eξ

4
− eξ

5
λ5 =

√
3

2
(−eξ

1
+ eξ

2
+ 2eξ

3
+ eξ

4
− eξ

5
− 2eξ

6
),

λ2 = eξ
3
− eξ

4
− eξ

5
+ eξ

6
, λ6 =

√
3

2
(−2eξ

1
+ 2eξ

2
+ eξ

3
− eξ

4
− eξ

5
− eξ

6
).

λ3 = eξ
7
+ eξ

8
− eξ

10
− eξ

1
1

λ7 =
√
3

2
(−eξ

7
+ eξ

8
+ 2eξ

9
+ eξ

10
− eξ

1
1
− 2eξ

12
),

λ4 = eξ
9
− eξ

10
− eξ

1
1
+ eξ

12
, λ8 =

√
3

2
(−2eξ

7
+ 2eξ

8
+ eξ

9
− eξ

10
− eξ

1
1
− eξ

12
).

The columns correspond to

P3
:=



P3,1
:=

[
x, x 2 − y2, x 3 + xy2, x 4 − y4

]
,

P3,2
:=

[
y, −2xy, y (x 2 + y2), −2xy (x 2 + y2)

]

.

A3 = −
2

27

*...
,

72

√
3 −288 608

√
3 −2432

9

√
3 90 76

√
3 760

45

√
3 −90 140

√
3 280

9

√
3 18 28

√
3 504

+///
-

We thus determine that the equivariant interpolant for the interpo-

lation problem described in Example 3.6 is given by :

p1 =
α

320

x +
3 β

640

(x2 − y2) +
9γ

8960

x (x2 + y2) +
27δ

17920

(x4 − y4)

p2 =
α

320

y −
3 β

320

xy +
9γ

8960

y (x2 + y2) −
27δ

8960

xy (x2 + y2)

where

α =
√
3(25a − 114b ) + 494d − 185 c, β =

√
3(114d − 25 c ) + 38b − 5a,

γ =
√
3(42b − 25a) + 185 c − 182d, δ =

√
3(25 c − 42d ) + 5a − 14b .
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