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The raking-ratio method is a statistical and computational method which adjusts the empirical measure to match the true probability of sets of a finite partition. We study the asymptotic behavior of the raking-ratio empirical process indexed by a class of functions when the auxiliary information is given by estimates. We suppose that these estimates result from the learning of the probability of sets of partitions from another sample larger than the sample of the statistician, as in the case of two-stage sampling surveys. Under some metric entropy hypothesis and conditions on the size of the information source sample, we establish the strong approximation of this process and show in this case that the weak convergence is the same as the classical raking-ratio empirical process. We also give possible statistical applications of these results like the strengthening of the Z-test and the chi-square goodness of fit test.

Introduction

Description. The raking-ratio method is a statistical and computational method aiming to incorporate auxiliary information given by the knowledge of probability of a set of several partitions. The algorithm modifies a sample frequency table in such a way that the marginal totals satisfy the known auxiliary information. At each turn, the method performs a simple cross-multiplication and assigns new weights to individuals belonging to the same set of a partition in order to satisfy the known constraints: it is the "ratio" step of this method. After each modification, the previous constraints are no longer fulfilled in general. Nevertheless, under the conditions that all initial frequencies are strictly positive, if we iteratively cycle the ratio step through a finite number of partitions, the method converges to a frequency table satisfying the expected values 1 -see [START_REF] Sinkhorn | A relationship between arbitrary positive matrices and doubly stochastic matrices[END_REF]. It is the "raking" step of the algorithm. The goal of these operations is therefore to improve the quality of estimators or the power of statistical tests based on the exploitation of the sample frequency table by lowering the quadratic risk when the sample size is large enough. For a numerical example of the raking-ratio method, see Appendix A.1 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF]. For an example of a simple statistic using the new weights from the raking-ratio method see Appendix A. The following paragraph summarizes the known results for this method.

Literature. The raking-ratio method was suggested by Deming and Stephan and called in a first time "iterative proportions" -see Section 5 of [START_REF] Deming | On a least squares adjustment of a sampled frequency table when the expected marginal totals are known[END_REF]. This algorithm has been initially proposed to adjust the frequency table in the aim to converge it towards the least squares solution. Stephan [START_REF] Stephan | An iterative method of adjusting sample frequency tables when expected marginal totals are known[END_REF] then showed that this last statement was wrong and proposed a modification to correct it. Ireland and Kullback [START_REF] Ireland | Contingency tables with given marginals[END_REF] proved that the raking-ratio method converges to the unique projection of the empirical measure with Kullback-Leibler distance on the set of discrete probability measures verifying all knowing constraints. In some specific cases, estimates for the variance of cell probabilities in the case of a two-way contingency table were established: Brackstone and Rao [START_REF] Brackstone | An investigation of raking ratio estimators[END_REF] for N ď 4, Konijn [START_REF] Konijn | Biases, variances and covariances of raking ratio estimators for marginal and cell totals and averages of observed characteristics[END_REF] or Choudhry and Lee [START_REF] Choudhry | Variance estimation for the canadian labour force survey[END_REF], Bankier [START_REF] Bankier | Estimators based on several stratified samples with applications to multiple frame surveys[END_REF] for N " 2 and Binder and Théberge [START_REF] Binder | Estimating the variance of rakingratio estimators[END_REF] for any N . Results of these papers suggest the decrease of variance for the raked estimators of the cells of the table and for a finite number of iterations by providing a complex approximation of the variance of these estimators. Albertus and Berthet [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF] defined the empirical measure and process associated to the raking-ratio method and have proved the asymptotic bias cancellation, the asymptotic reduction of variance and so the diminution of the quadratic risk for these process. To prove it, they showed that the raking-ratio empirical process indexed by a class of functions satisfying some metric entropy conditions converges weakly to a specific centered Gaussian process with a lower variance than the usual Brownian bridge. Under general and natural conditions that are recalled below, they proved that the variance decreases by raking among the same cycle of partitions.

Auxiliary information learning. The main motivation of this paper is when the statistician does not have the true probability of sets of a given partition but has a source of information which gives him an estimation of this probability more precisely than if he used his own sample. This source can be of different types: preliminary survey of a large sample of individuals, database processing, purchase of additional data at a lower cost, the knowledge of an expert... We suppose in our model that only the estimate of the auxiliary information is transmitted by the source. This hypothesis ensures a fast speed of data acquisition and allows a plurality of sources of information and a diversity of partitions. It is a common situation in statistics since today's technologies like streaming data allow the collection and the transmission of such information in real time. The statistician can use this learned information as auxiliary information which is an estimate of the true one. The raking-ratio method makes it possible to combine shared information of several sources. The main statistical question of this article is whether the statistician can still apply the raking-ratio method by using the estimate of inclusion probabilities rather than the true ones as auxiliary information. We will show that the answer to this question is positive provided that we control the minimum size of the samples of the different sources of auxiliary information.

Organization. This paper is organized as follow. Main notation and results are respectively grouped at Section 2.1 and Section 2.2. Some statistical applications are given at Section 2.3. We end up by exposing all the proofs at Section 3. Appendix A contains a numerical example of the calculation of a raked mean on a generated sample. At Appendix B we do the calculation of the asymptotic variance of the raked Gaussian process in a simple case.

Results of the paper 2.1 Main notation

Framework. Let X 1 , . . . , X n , X be i.i.d. random variables defined on the same probability space pΩ, T , Pq with same unknown law P " P X1 on some measurable space pX , Aq. We endow the measurable space pX , Aq with P .

Class of functions. Let M denote the set of real valued measurable functions on pX , Aq. We consider a class of functions F Ă M such that sup f PF |f | ď M F ă `8 for some M F ą 0 and satisfying the pointwise measurability condition, that is there exists a countable subset F ˚Ă F such that for all f P F there exists a sequence tf m u Ă F ˚with f as simple limit, that is lim mÑ`8 f m pxq " f pxq for all x P X . This condition is often used to ensure the P -measurability of F -see example 2.3.4 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF]. For a probability measure Q on pX , Aq and f, g P M let d 2 Q pf, gq " ş X pf ´gq 2 dQ. Let N pF, ε, d Q q be the minimimum number of balls with d Q -radius ε necessary to cover F and N r s pF, ε, d Q q be the least number of ε-brackets necessary to cover F, that is elements of the form rg ´, g `s " tf P F : g ´ď f ď g `u with d P pg ´, g `q ă ε. We also assume that F satisfies one of the two metric entropy conditions (VC) or (BR) discussed below.

Hypothesis (VC). For c 0 , ν 0 ą 0, sup Q N pF, ε, d Q q ď c 0 {ε ν0 where the supremum is taken over all discrete probability measures Q on pX , Aq.

Hypothesis (BR). For b 0 ą 0, r 0 P p0, 1q, N r s pF, ε, d P q ď exppb 2 0 {ε 2r0 q.

If we add to F all elements f 1 A pN q j for every N ą 0, 1 ď j ď m N and f P F, F still satisfies the same entropy condition but with a new constant c 0 or b 0 . We denote 8 pFq the set of real-valued functions bounded on F endowed with the supremum norm ||¨|| F . In this paper the following notations are used: for all f P F, A P A we denote P pf q " Erf pXqs, P pAq " P p1 A q, Erf |As " P pf 1 A q{P pAq, σ 2 f " Varpf pXqq and σ 2 F " sup f PF σ 2 f . Empirical measures and processes. We denote the empirical measure P n pFq " tP n pf q : f P Fu defined by P n pf q " 1 n ř n i"1 f pX i q and the empirical process α n pFq " tα n pf q : f P Fu defined by α n pf q " ? npP n pf q ´P pf qq.

For N P N, let A pN q " tA pN q 1 , . . . , A pN q m N u Ă A, be a partition of X such that P rA pN q s " pP pA pN q 1 q, . . . , P pA pN q m N qq ‰ 0.

Let P pN q n pFq " tP pN q n pf q : f P Fu be the N -th raking-ratio empirical measure defined recursively by P p0q n " P n and for all f P F,

P pN q n pf q " m N ÿ j"1 P pA pN q j q P pN ´1q n pA pN q j q P pN ´1q n pf 1 A pN q j q.
The empirical measure P pN q

n pFq uses the auxiliary information given by P rA pN q s to modify α n pFq such that P pN q n rA pN q s " pP pN q n pA pN q 1 q, . . . , P n pA pN q m N qq " P rA pN q s.

We denote α pN q n pFq " tα pN q n pf q : f P Fu the N -th raking-ratio empirical process defined for all f P F by α pN q n pf q " ? npP pN q n pf q ´P pf qq.

(

This process satisfies the following property α pN q n rA pN q s " pα pN q n pA pN q 1 q, . . . , α pN q n pA pN q m N qq " 0.

Gaussian processes. Under (VC) or (BR), F is a Donsker class, that is α n pFq converges weakly in 8 pFq to the P -Brownian bridge GpFq " tGpf q : f P Fu, the Gaussian process such that f Þ Ñ Gpf q is linear and for all f, g P F,

ErGpf qs " 0, CovpGpf q, Gpgqq " P pf gq ´P pf qP pgq.

For short, we denote GpAq " Gp1 A q for any A P A. Let G pN q pFq " tG pN q pf q : f P Fu be the N -th raking-ratio P -Brownian bridge, that is a centered Gaussian process defined recursively by G p0q " G and for any N ą 0, f P F, G pN q pf q " G pN ´1q pf q ´mN ÿ j"1

Erf |A pN q j sG pN ´1q pA pN q j q.

(2.2)

Albertus and Berthet established the strong approximation and the weak convergence when n goes to infinity in 8 pFq of α pN q n pFq to G pN q pFq for N fixed -see Proposition 4 and Theorem 2.1 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF]. For that they used the strong approximation of the empirical process indexed by a function class satisfying (VC) or (BR) -see Theorem 1 and 2 of [START_REF] Berthet | Revisiting two strong approximation results of Dudley and Philipp[END_REF]. They gave the exact value of σ pN q f " VarpG pN q pf qq and showed in particular for all f P F and

N 0 P N that σ pN0q f ď σ p0q f " σ f and σ pN1q f ď σ pN0q f if N 1 ě 2N 0 is such that A pN0´kq " A pN1´kq for 0 ď k ď N 0 - see Propositions 7, 8, 9.
Auxiliary information. For N ą 0 let P 1 N rA pN q s " pP 1 N pA pN q 1 q, . . . , P 1 N pA pN q m N qq be a random vector with multinomial law, n N trials and event probabilities P rA pN q s. This random vector corresponds to the estimation of the auxiliary information of the N -th auxiliary information source based on a sample of size n N " n N pnq " n not necessarily independent of X 1 , . . . , X n . We study the asymptotic behavior of the raking-ratio empirical process which uses P 1

N rA pN q s as auxiliary information instead of P rA pN q s. By defining the sequence tn N u we suppose that this information can be estimated by different sources that would not necessarily have the same sample size but still have a sample size larger than n. Let r P pN q n pFq " t r P pN q n pf q : f P Fu be the N -th raking-ratio empirical measure with learned auxiliary information defined recursively by r P p0q n " P n and for all N ą 0, f P F,

r P pN q n pf q " m N ÿ j"1 P 1 N pA pN q j q r P pN ´1q n pA pN q j q r P pN ´1q n pf 1 A pN q j q.
This empirical measure satisfies the learned auxiliary information since r P pN q n rA pN q s " p r P pN q n pA pN q 1 q, . . . , r P pN q n pA pN q m N qq " P 1 N rA pN q s. We define r α pN q n pFq " tr α pN q n pf q : f P Fu the N -th raking-ratio empirical with estimated auxiliary information defined for f P F by r α pN q n pf q " ? np r P pN q n pf q ´P pf qq.

(2.3)

Main results

For N 0 ą 0, denote K F " maxp1, M F q and p pN0q " min n pFq are defined on the set

1ďN ďN0 min 1ďjďm N P pA pN q j q, m pN0q " sup 0ďN ďN0 m N , n pN0q " min 1ďN ďN0 n N ą n.
B n,N0 " " min 0ďN ďN0 min 1ďjďm N P n pA pN q j q ą 0 * , which satisfies PpB C n,N0 q ď N0 ÿ N "1 m N p1 ´pN q n ď N 0 m pN0q p1 ´ppN0q q n ,
where B C n,N0 " ΩzB n,N0 . The following proposition bounds the probability that ||r α pN q n || F deviates from a certain value.

Proposition 1. For any N 0 P N, n ą 0 and t ą 0, it holds under the event

B n,N0 P ˆsup 0ďN ďN0 ||r α pN q n || F ą t ˙ď N 0 P ˜||r α p0q n || F ą tp N0 pN0q 4 N0 m N0 pN0q K N0 F p1 `t{ ? nq N0 2N 3 0 m pN0q exp ˜´n pN0q p 2 pN0q t 2 2nm 2 pN0q K 2 F ¸. (2.4)
Under (VC) and the event B n,N0 there exists t 0 ą 0 such that for all t 0 ă t ă 2M F ? n,

P ˆsup 0ďN ďN0 ||r α pN q n || F ą t ˙ď D 1 t ν0 expp´D 2 t 2 q `2N 3 0 m pN0q exp ˜´n pN0q p 2 pN0q t 2 2nm 2 pN0q K 2 F ¸, (2.5) 
where D 1 , D 2 ą 0 are defined by (3.7). Under (BR) and the event B n,N0 there exists t 0 , C ą 0 such that for all t 0 ă t ă C ? n,

P ˆsup 0ďN ďN0 ||r α pN q n || F ą t ˙ď D 3 expp´D 4 t 2 q `2N 3 0 m pN0q exp ˜´n pN0q p 2 pN0q t 2 2nm 2 pN0q K 2 F ¸, (2.6) 
where D 3 , D 4 ą 0 are defined by (3.9).

Proposition 1 proves that if F satisfies (VC) or (BR) then almost surely ||α n || F " Op a logpnqq. If F satisfies (VC), let define v n " n ´α0 plog nq β0 with α 0 " 1{p2 `5ν 0 q P p0, 1{2q and β 0 " p4 `5ν 0 q{p4 `10ν 0 q. If F satisfies (BR), let define v n " plog nq ´γ0 with γ 0 " p1 ´r0 q{2r 0 . The following result establishes the strong approximation of r α pN q n pFq by G pN q pFq. Theorem 2.1. Let N 0 P N. There exists d 0 , n 0 ą 0, a sequence tX n u of independent random variables with law P and a sequence tG n u of versions of G supported on a same probability space such that for all n ą n 0 ,

P ˜sup 0ďN ďN0 ||r α pN q n ´GpNq n || F ą d 0 ˜vn `d n logpnq n pN0q ¸¸ă 1 n 2 , (2.7) 
where

G pN q n is the version of G pN q derived from G p0q n " G n through (2.2).
By Borel-Cantelli lemma we have almost surely for large n,

sup 0ďN ďN0 ||r α pN q n ´GpNq n || F ď d 2 ˜vn `d n logpnq n pN0q ¸. (2.8)
Sequence v n in the previous bound is the deviation from α pN q n pFq to G pN q n pFq while b n logpnq{n pN0q represents the deviation from r α pN q n pFq to α pN q n pFq. Under the condition that the sample size of the sources are large enough, Theorem 2.1 implies that the sequence pr α p0q n pFq, . . . , r α pN0q n pFqq converges weakly to pG p0q pFq, . . . , G pN0q pFqq on 8 pF Ñ R N0`1 q as the same way as pα p0q n pFq, . . . , α pN0q n pFqq.

Statistical applications

Improvement of a statistical test. Any statistical test using the empirical process can be adapted to use auxiliary information to strengthen this test. It suffices to replace in the expression of the test statistic the process α n pFq by α pN q n pFq if we have the true auxiliary information or by r α pN q n pFq if we have an estimation of this information. The two following subsections give an example of application in the case of the Z-test and the chi-squared goodness of fit test. In both case, we transform the statistic of theses tests and keep the same decision procedure. In the first case, we show that this new statistical test has the same significance level but a higher power. For the second case, we prove that the confidence level decreases and that under pH 1 q, the new statistic goes to infinity as the same way as the usual one. Z-test. This test is used to compare the mean of a sample to a given value when the variance of the sample is known. The null hypothesis is pH 0 q : P pf q " P 0 pf q, for some f P F and a probability measure P 0 P 8 pFq. The statistic of the classical Z-test is Z n " ? n P n pf q ´P0 pf q σ f .

Under pH 0 q, asymptotically the statistic Z n follows the standard normal distribution. We reject the null hypothesis at the α level when |Z n | ą t α , t α " Φp1 ´α{2q with Φ the probit function. Let define the following statistics

Z pN q n " ? n P pN q n pf q ´P0 pf q σ pN q f , r Z pN q n " ? n r P pN q
n pf q ´P0 pf q σ pN q f , Since the law P is unknown, σ f and σ pN q f

for N ě 1 are usually unknown but a consistent estimation of these variances can be used to calculate Z n , Z pN q n or r Z pN q n -a concrete example of this remark is given at the following paragraph. Doing it does not change the asymptotic behavior of the random variables Z n , Z pN q n and r Z pN q n , whether the hypothesis pH 0 q is verified or not. The statistical tests based on the reject decision |Z pN q n | ą t α and | r Z pN q n | ą t α have the same significance level than the usual test based on the decision |Z n | ą t α since, under pH 0 q, Z pN q n and r Z pN q n converge weakly to N p0, 1q -see Proposition 6 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF]. The following proposition shows that the ratio of the beta risk of the usual Z-test and the new statistical test with auxiliary information goes to infinity as n Ñ `8.

Proposition 2. Assume that σ pN q f ă σ f . Under pH 1 q, for all α P p0, 1q and n large enough one have

Pp|Z n | ď t α q Pp|Z pN q n | ď t α q ě exp ˜npP pf q ´P0 pf qq 2 ˜1 σ pN q f ´1 σ f ¸¸.
(2.9)

Z-test in a simple case. To calculate Z pN q n or r Z pN q n one needs the expression of σ pN q f . To illustrate how to get it we work on a simple case, when the auxiliary information is given by probabilities of two partitions of two sets. More formally for k P N ˚we define A p2k´1q " A " tA, A C u and A p2kq " B " tB, B C u. By using Proposition 7 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF] we give simple expressions of σ pN q f for N " 1, 2. For the sake of simplification, let denote p A " P pAq, p A " P pA C q, p B " P pBq, p B " P pB C q, p AB " P pA X Bq, ∆ A " Erf |As ´Erf s, ∆ B " Erf |Bs ´Erf s,

(2.10) then, 

σ p1q f " σ f ´Erf
σ f ´pB p B pErf |Bs ´Erf |B C sq 2 ´˜p A p A `pB p B pp AB ´pA p B q p 2 A p 2 A ¸pErf |As ´Erf |A C sq 2 ,
where P A|B , P B|A are stochastic matrices given by (B.1), Erf |As, Erf |Bs are conditional expectation vectors given by (B.2) and VarpGrAsq, VarpGrBsq are the covariance matrices of GrAs " pGpAq, GpA C qq and GrBs " pGpBq, GpB C qq that is the matrices given by (B.3). Albertus and Berthet proved that the raked Gaussian process G pN q converges almost surely as N Ñ `8 to some centered Gaussian process G p8q with an explicit expression. The stabilization of the raking-ratio method in the case of two marginals when N Ñ `8 is fast since the Levy-Prokhorov distance between G pN q and G p8q is almost surely at most OpN λ N {2 q for some λ P p0, 1q -see Proposition 11 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF]. We denote P p8q n pFq the raked empirical measure after stabilization of the raking-ratio algorithm and σ p8q f " VarpG p8q pf qq the asymptotic variance. Let define the following statistic

Z p8q n " ? n P p8q n pf q ´P0 pf q σ p8q f
.

According to Proposition 2, the statistical test based on the reject decision |Z p8q n | ą t α has the same significance level than the usual Z-test based on |Z n | ą t α but it is more powerful as n goes to infinity. In the case of two marginals with two partitions, one can give an explicit and simple expression of the asymptotic variance. By using the notations of (2.10) one have

σ p8q f " σ 2 f ´pA p B `pA ∆ 2 A `pB ∆ 2 B ´pA p B p∆ A ´∆B q 2 ´2p AB ∆ A ∆ B pA p B p A p B ´pp AB ´pA p B q 2 .
(2.11)

The calculation of this variance needs the expression of G p8q so it is made at Appendix B. If we do not have the values given by (2.10) one can use their consistent estimators to estimate the value of σ p8q f . If ∆ A " ∆ B " 0 then naturally the auxiliary information is useless since σ p8q f " σ f , so there is no reduction of the quadratic risk. If A is independent of B then p AB " p A p B and

σ p8q f " σ f ´ˆp A p A ∆ 2 A `pB p B ∆ 2 B ˙.
Chi-square test. The chi-squared goodness of fit test consists of knowing whether the sample data corresponds to a hypothesized distribution when we have one categorical variable. Let B " tB 1 , . . . , B m u be a partition of X . The null hypothesis is pH 0 q : P rBs " P 0 rBs, (2.12)

where P rBs " pP pB 1 q, . . . , P pB m qq and P 0 rBs " pP 0 pB 1 q, . . . , P 0 pB m qq, for some probability measure P 0 . The statistic of the classical chi-squared test is

T n " n m ÿ i"1
pP n pB i q ´P0 pB i qq 2 P 0 pB i q .

Under pH 0 q, asymptotically the statistic T n follows the χ 2 distribution with m ´1 degrees of freedom. We reject the null hypothesis at the level α when

Z n ą t pmq α , t pmq α
" Φ m p1 ´αq where Φ m is the quantile function of χ 2 pmq. We want to know if the following statistics

T pN q n " n m ÿ i"1 pP pN q n pB i q ´P0 pB i qq 2 P 0 pB i q , r T pN q n " n m ÿ i"1 p r P pN q
n pB i q ´P0 pB i qq 2 P 0 pB i q , somehow improve the test. The following proposition shows that the power of the test is improved with these new statistics.

Proposition 3. Under pH 0 q and for all α ą 0, lim nÑ`8

PpT pN q n ą t pmq α q ď lim nÑ`8

PpT n ą t pmq α q " α, (2.13) and if n logpnq " opn pN q q then lim nÑ`8

Pp r T pN q n ą t pmq α q ď α.

(2.14)

Under pH 1 q and for all α ą 0, almost surely there exists n 0 ą 0 such that for all n ą n 0 ,

minp|T n |, |T pN q n |, |T pN q n |q ą t pmq α .
(2.15) Figure 2.3 is a numerical example of Proposition 3 under pH 0 q. We simulate a two-way contingency table with fixed probabilities P rBs, P rAs and we apply the chi-square test with the null hypothesis (2.12). With Monte-Carlo method, we simulate the law of T n for n " 1000 and the law of T p1q n

with the auxiliary information given by P rAs.

Costing data. Another possible statistical application is to study how to share resources -economic resource, temporal resource, material resource, ...

-to learn auxiliary information from inexpensive data in order to improve the study of statistics on expensive objects. More formally we have a budget B, for our estimates we can buy an individual X i at a fixed price C ą 0 and for the estimation of auxiliary information P rA pN q s, N " 1, . . . , N 0 , we can buy the information P 1 N rA pN q s at a price c N n N where c N is the price for one individual far less than C. The objective is therefore to minimize the bound v n bn logpnq{n pN0q proposed by Theorem 2.1 by choosing n high-cost individuals and the n 1 , . . . , n N0 low-cost individuals while respecting the imposed budget. So we have to satisfy the following constraint

Cn `c1 n 1 `¨¨¨`c N0 n N0 ď B.
(2.16)

To simplify the problem we will suppose that for all 1 ď N ď N 0 , n N " n 0 and c N " c 0 {N 0 for some c 0 ą 0. It is the case if one pay the auxiliary information from the same auxiliary information source and if one pay all N 0 information only once time. Inequality (2.16) becomes

Cn `c0 n 0 ď B.

(2.17)

There are several ways to answer this problem. If we want only the strong approximation rate of α pN q n by G pN q dominates in the uniform error of (2.8), we have to choose n 0 such that n 0 ě n logpnq{v 2 n . If we take n 0 " rn logpnq{v 2 n s we could find the maximum value of n satisfying (2.17). Since v n ą a logpnq{n we know that

n ě n min " Z ? C 2 `4c 0 B ´C 2c 0 ^.
(2.18)

If we have no way of finding the optimal n -if we do not have the rate v n or if we want to avoid additional calculations -we can take n " n min and n 0 " tpB ´Cnq{c 0 u if one want to use the entire budget or n 0 " rn logpnq{v 2 n s otherwise.

Proof

For all this section let fix N 0 ą 0 and let Λ n , Λ 1 n ą 0 be the following supremum deviations

Λ n " max ˆsup 0ďN ďN0 ||r α pN q n || F , sup 0ďN ďN0 ||α pN q n || F ˙, Λ 1 n " sup 1ďN ďN0 sup 1ďjďm N |α 1 N pA pN q j q|,
where α 1 N pA pN q j q " ? n N pP 1 N pA pN q j q ´P pA pN q j qq. Immediately, by Hoeffding inequality we have for all λ ą 0,

P `Λ1 n ą λ ˘ď 2N 0 m pN0q exp `´2λ 2 ˘. (3.1)
Now, we give useful decomposition of α pN q n pFq and r α pN q n pFq which will be used in the following proofs. By using definition (2.1) of α pN q n pFq we have α pN q n pf q " ? n ˜mN ÿ j"1 P pA pN q j q P pN ´1q n pA pN q j q P pN ´1q

n pf 1 A pN q j q ´P pf 1 A pN q j q " m N ÿ j"1 P pA pN q j qα pN ´1q n pf 1 A pN q j q ´P pf 1 A pN q j qα pN ´1q n pA pN q j q P pN ´1q n pA pN q j q . (3.2)
As the same way, by using (2.3) we have

r α pN q n pf q " m N ÿ j"1 P 1 N pA pN q j q r P pN ´1q n pA pN q j q r α pN ´1q n pf 1 A pN q j q ´P pf 1 A pN q j q r P pN ´1q n pA pN q j q ˆr α pN ´1q n pA pN q j q ´c n n N α 1 N pA pN q j q ˙. (3.3) 

Proof of Proposition 1

We prove (2.4), (2.5) and (2.6) respectively at Step 1, Step 2 and Step 3.

Step 1. Let 0 ď N ď N 0 . With (3.3) one can write that

Pp||r α pN q n || F ą tq ď P ¨KF m pN q ˆ2||r α pN ´1q n || F `b n n pN q Λ 1 n ṗpNq ´||r α pN ´1q n || F { ? n ą t ‹ ‹ ' ď P ˆΛ1 n ą c n pN q n tp pN q 2m pN q K F Ṗ ˆ||r α pN ´1q n || F ą tp pN q 4m pN q K F p1 `t{ ? nq ď P ˆΛ1 n ą c n pN0q n tp pN0q 2m pN0q K F Ṗ ˆ||r α pN ´1q n || F ą tp pN q 4m pN q K F p1 `t{ ? nq ˙. (3.4) 
By (3.1) and induction on (3.4), we find

P ´||r α pN q n || F ą t ¯ď P ˜||r α p0q n || F ą tp N pN q 4 N m N pN q K N F p1 `t{ ? nq N 2N 2 0 m pN0q exp ˜´n pN0q p 2 pN0q t 2 2nm 2 pN0q K 2 F ¸. r α p0q n pFq " α n pFq " α p0q n pFq, (3.5) 
we can apply Talagrand inequality to control the deviation probability of ||r α p0q n || F as described in the next two steps.

Step 2. According to Theorem 2.14.25 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], if F satisfies (VC) there exists a constant D " Dpc 0 q ą 0 such that, for t 0 large enough and t ě t 0 ,

P ´||r α p0q n || F ą t ¯ď ˆDt M F ? ν 0 ˙ν0 exp ˆ´2t 2 M 2 F ˙. (3.6) 
Inequalities (2.4) and (3.6) imply (2.5) for all t 0 ď t ď 2M F ? n, where D 1 , D 2 ą 0 are defined by

D 1 " N 0 ˜Dp N0 pN0q ν 0 4 N0 m N0 pN0q K N0`1 F ¸ν0 , D 2 " p 2N0 pN0q 72 N0 m 2N0 pN0q K 3N0`1 F . (3.7) 
Step 3. According to Theorems 2.14.2 and 2.14.25 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], if F satisfies (BR), there exists universal constants D, D 1 ą 0 such that for all t 0 ă t ă t 1 ,

P ´||r α p0q n || F ą t ¯ď expp´D 2 t 2 q, (3.8) 
where t 0 " 2DM F p1 `b0 {p1 ´r0 qq, t 1 " 2Dσ 2

F ? n{M F , D 2 " D 1 {4D 2 σ 2
F . Therefore (2.4) and (3.8) yields (2.6) where D 3 , D 4 ą 0 are defined by

D 3 " N 0 , D 4 " D 2 p 2N0 pN0q 8 N0 m 2N0 pN0q K 2N0 F p1 `2Dσ 2 F {M F q 2N0 . (3.9) 

Proof of Theorem 2.1

According to Proposition 1, inequality (3.1) and Proposition 3 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF], there exists D ą 0 such that

P ´tΛ n ą D a logpnqu ď tΛ 1 n ą D a logpnqu ¯ď 1 3n 2 . (3.10) 
According to Theorem 2.1 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF], one can define on the same probability space a sequence tX n u of independent random variable with law P and a sequence tG n u of versions of G satisfying the following property. There exists n 1 , d 1 ą 0 such that for all n ą n 1 ,

P ˆsup 0ďN ďN0 ||α pN q n ´GpNq n || F ą d 1 v n ˙ď 1 3n 2 , where G pN q n is the version of G pN q derived from G p0q n " G n through (2.
2). To show (2.7) it remains to prove, by (3.5), that for all n large enough and some d 0 ą 0,

P ˜sup 0ďN ďN0 ||r α pN q n ´αpNq n || F ą d 0 d n logpnq n pN0q ¸ď 2 3n 2 .
Let 1 ď N ď N 0 . Decompositions of α pN q n and r α pN q n respectively given by (3.2) and (3.3) imply that

r α pN q n pf q ´αpNq n pf q " m N ÿ j"1 P 1 N pA pN q j q r P pN ´1q n pA pN q j q pr α pN ´1q n pf 1 A pN q j q ´αpN´1q n pf 1 A pN q j qq `αpN´1q n pf 1 A pN q j q

˜P1

N pA pN q j q r P pN ´1q n pA pN q j q ´P pA pN q j q P pN ´1q n pA pN q j q P pf 1 A pN q j q ˜r α pN ´1q n pA pN q j q r P pN ´1q n pA pN q j q ´αpN´1q n pA pN q j q P pN ´1q n pA pN q j q ç n n N P pf 1 A pN q j q r P pN ´1q n pA pN q j q α 1 N pA pN q j q.

(3.11) By (3.5) for N " 1 we have in particular r α p1q n pf q ´αp1q n pf q " m1 ÿ j"1

α n pf 1 A p1q j q ˜P1 n1 pA p1q j q ´P pA p1q j q P n pA p1q j q ç n n 1 P pf 1 A p1q j q P n pA p1q j q α 1 n1 pA p1q j q,
which is uniformly and roughly bounded by

||r α p1q n ´αp1q n || F ď m pN q K F Λ 1 n p pN q ´Λn { ? n c n n pN q p1 `Λn { ? nq. (3.12) 
Let C n,N " 4m pN q K F {pp pN q ´Λn { ? nq 2 . Equality (3.11) implies also

||r α pN q n pf q ´αpNq n pf q|| F ď C n,N ˜||r α pN ´1q n ´αpN´1q n || F `Λ2 n ? n `Λ1 n pΛ n `?nq ? n pN q ¸.
By induction of the last inequality and noticing that for all n ą 0, m pN q K F {pp pN q Λn { ? nq 2 ě 1, we have

||r α pN q n pf q ´αpNq n pf q|| F ď C N ´1 n,N ||r α p1q n ´αp1q n || F `pN ´1qC N ´1 n,N ˜Λ2 n ? n `Λ1 n pΛ n `?nq ? n pN q ¸,
then inequality (3.12) immediately implies that

||r α pN q n pf q ´αpNq n pf q|| F ď N C N n,N ˜Λ2 n ? n `Λ1 n pΛ n `?nq ? n pN q ¸.
Since the right-hand side of the last inequality is increasing with N we find that for all t ą 0, ||r α pN q n pf q ´αpNq n pf q|| F ą t n ˙ď 2 3n 2 , for all n ą n 2 and

P
t n " 4 N0`1 C 0 D p 2N0 pN0q ˜d n logpnq n pN0q `D logpnq ? n ¸.
By definition of v n , there exists d 2 ą maxpd 1 , 4 N0`1 C 0 D{p 2N0 pN0q q and n 3 ą 0 such that for all n ą n 3 ,

d 2 ˜vn `d n logpnq n pN0q ¸ą d 1 v n `tn .
Then (2.7) is proved for d 0 " d 2 and n 0 " maxpn 0 , n 1 , n 3 q.

Proof of Proposition 2

According to Theorem 2.1 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF] and Theorem 2.1, we can construct i.i.d random variables X 1 , . . . , X n with law P and z n " N p0, 1q such that for n ą n 1 for some n 1 ą 0, PpZ n q ď 1{n 2 with

Z pN q n " t|α n pf q{σ f ´zn | ą u n u ď ! |α pN q n pf q{σ pN q f ´zn | ą u n ) ,
where u n is a sequence with null limit. The strong approximation implies that lim nÑ`8

Pp|Z n | ď t α q Pp|z n `Mn {σ f | ď t α q " 1, lim nÑ`8 Pp|Z pN q n | ď t α q Pp|z n `Mn {σ pN q f | ď t α q " 1, (3.14) 
with M n " ? npP pf q´P 0 pf qq.If we denote f µ,σ 2 the density function of N pµ, σ 2 q then

Pp|z n `Mn {σ f | ď t α q ě 2t α inf r´tα,tαs f Mn,1 ě 2t α ? 2π exp `´pM n {σ f `tα q 2 ˘, Pp|z n `Mn {σ pN q f | ď t α q ď 2t α sup r´tα,tαs f Mn,1 ď 2t α ? 2π exp ´´pM n {σ pN q f ´tα q 2 ¯.
which implies

Pp|z n `Mn {σ f | ď t α q Pp|z n `Mn {σ pN q f | ď t α q ą exp ˜M 2 n ˜1 σ pN q f ´1 σ f ¸´2t α |M n | ˜1 σ pN q f `1 σ f ¸For n large enough Pp|z n `Mn {σ f | ď t α q Pp|z n `Mn {σ pN q f | ď t α q ě exp ˜M 2 n ˜1 σ pN q f ´1 σ f ¸¸. (3.15) 
Then (3.14) and (3.15) imply (2.9).

Proof of Proposition 3

Denote X ¨Y the product scalar of X and Y and C P R m the random vector defined by C " pC 1 , . . . , C m q " p1 B1 { a P pB 1 q, . . . , 1 Bm { a P pB m qq.

We deal with the case pH 0 q at Step 1 and the case pH 1 q at Step 2.

Step 1. Under pH 0 q, T n " α n rCs ¨αn rCs T , T pN q n " α pN q n rCs ¨αpNq n rCs T and r T pN q n " r α pN q n rCs ¨r α pN q n rCs T . Statistic T n converges weakly to a multinormal random variable Y " N p0, Σq while T pN q n , r T pN q n converge weakly to Y pN q " N p0, Σ pN q q according to Theorem 2.1 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF] and Theorem 2.1. By Proposition 7 of [START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF], Σ ´ΣpNq is positive definite which implies for all α ą 0, PpY ¨Y T ě t α q ě PpY pN q ¨pY pN q q T ě t α q, and consequently (2.13), (2.14) by definition of weak convergence.

Step 2. Under pH 1 q, there exists i P t1, . . . , mu such that P 0 pB i q ‰ P pB i q which implies minp|T n |, |T pN q n |, r T pN q n |q ą ´Λ2 n ´2? nΛ n |P 0 pC i q ´P pC i q| `npP 0 pC i q ´P pC i qq 2 .

By Borel-Cantelli and (3.10) with probability one there exists n 1 ą 0 such that for all n ą n 1 , Λ n ă D a logpnq. For n ą n 1 , we have

t n ă minp|T n |, |T pN q n |, r T pN q n |q, t n " ´D2 logpnq ´2D a n logpnq|P 0 pC i q ´P pC i q| `npP 0 pC i q ´P pC i qq 2 .
Since lim nÑ`8 t n " `8, for all α P p0, 1q there exists n 2 ą 0 such that t n ą t α for all n ą n 2 . Inequality (2.15) is satisfied for n 0 " maxpn 1 , n 2 q.

A Numerical example of a raked mean

The usual way to calculate the mean of X 1 , . . . , X n is to sum the data X i multiplied by the weights w i " 1{n. If we have the auxiliary information P rA pN q s " pP pA pN q 1 q, . . . , P pA pN q m N qq for 1 ď N ď N 0 we want to change iteratively the initial weights w i in new weights w pN q i 1 such that ř n i"1 w pN q i and n ÿ i"1 w pN q i 1 pN q Aj pX i q " P pA pN q j q,

for any 1 ď N ď N 0 and 1 ď j ď m N . Recall that it does not imply that

ř n i"1 w pN1q i 1 pN2q 
Aj pX i q " P pA pN2q j q with N 1 ‰ N 2 and 1 ď j ď N 2 . For this example one takes N 0 " 2, A p2q " tA 1 , A 2 , A 3 u, B " tB 1 , B 2 u and one generates normal random values X i with fixed variances σ 2 " 0.1 and such that the probabilities and conditional expectations are given by the following table: 

P pA i X B j q A 1 A 2 A 3 B 1 0.

˙.

The eigenvalues of P A|B ¨PB|A and P B|A ¨PA|B are 1 and T 1 " T 2 " pp AB ṕA p B q 2 {p A p A p B p B . Their eigenvectors associated to T 1 and T 2 are respectively pp B {p B , ´1q t and pp A {p A , ´1q t which implies

U 1 " ˆ1 p A {p A 1 ´1 ˙, U 2 " ˆ1 p B {p B 1 ´1 ˙.
For the case of two marginals, Albertus and Berthet showed that G pN q converge almost surely to G p8q pf q " Gpf q ´S1,even pf q t ¨GrAs ´S2,odd pf q t ¨GrBs where S 1,even pf q " U 1 ˆ0 0 0 p1 ´T1 q ´1˙¨U ´1 1 ¨V1 pf q " C 1,even pf q ˆ´p A p B p A p B ˙, C 1,even pf q " Erf |Bspp AB ´pA p B q ´Erf |Asp A p B ´Erf spp AB ´pA q p A p B p A p B ´pp AB ´pA p B q 2 , S 2,odd pf q " U 2 ˆ0 0 0 p1 ´T2 q ´1˙¨U ´1 2 ¨V2 pf q " C 2,odd pf q ˆ´p A p B p A p B ˙, C 2,odd pf q " Erf |Aspp AB ´pA p B q ´Erf |Bsp A p B ´Erf spp AB ´pB q p A p B p A p B ´pp AB ´pA p B q 2 .

By linearity of f Þ Ñ Gpf q and the fact that Gpaq " 0 for any constant a P R one can write G p8q pf q " G pf `pB C 1,even pf q1 A `pA C 2,odd pf q1 B q , which implies that σ p8q f " VarpG p8q pf qq " Varpf q `Varpp B C 1,even pf q1 A `pA C 2,odd pf q1 B q `2Covpf, p B C 1,even pf q1 A `pA C 2,odd pf q1 B q " Varpf q `pA p A p 2 B C 2 1,even pf q `p2 A p B p B C 2 2,odd pf q `2p A p B C 1,even pf qC 2,odd pf qpp AB ´pA p B q `2p A p B pC 1,even pf q∆ A `C2,odd pf q∆ B q With some calculations we find the simple expression of σ p8q f given by (2.11).

  F N 0 q N0 ą 0. There exists n 2 ą 0 such that for all n ą n 2 it holds D a logpnq{n ď p pN0q {2 ď 1{2. For n ą n 2 we have according to (3.10) and (3.13),

	ˆsup							ď
	1ďN ďN0	||r α pN q n pf q ´αpNq n pf q|| F ą t
	P	˜C0 pp pN0q ´Λn { ?	nq 2N0	˜Λ2 n ? n	`Λ1 n pΛ n `?nq ? n pN0q	¸ą t ¸,	(3.13)
	with C 0 " N 2 0 p4m pN0q K P ˆsup 1ďN ďN0 ||r α pN q n pf q ´αpNq n pf q|| F ą t	ď
		P ´Λn ą D	a	logpnq	P
			˜Λ1 n ą	1 2	c	n pN0q n	pN0q 4 N0 C 0 ˜tp 2N0	? ´D2 logpnq n	¸ḑ
		1 3n 2	`P ˜Λ1 n ą	1 2	c	n pN0q n	pN0q 4 N0 C 0 ˜tp 2N0	? ´D2 logpnq n	¸¸.
	By using (3.10) again, the last inequality implies
		P ˆsup					
			1ďN ďN0				

Table 1 :

 1 Probabilities of setsWe use the notations of the section 4.4 of[START_REF] Albertus | Auxiliary information: the raking-ratio empirical process[END_REF] concerning the proof of their Proposition 11 in the aim to establish the expression of G p8q . The calculation uses the two following stochastic matricesP A|B " ˆP pA|Bq P pA C |Bq P pA|B C q P pA C |B C q ˙" ˆpAB {p B 1 ´pAB {p B pp A ´pAB q{p B 1 ´pp A ´pAB q{p B ˙, P B|A " ˆP pB|Aq P pB C |Aq P pB|A C q P pB C |A C q ˙" ˆpAB {p A 1 ´pAB {p A pp B ´pAB q{p A 1 ´pp B ´pAB q{p A Erf |As " pErf |As, Erf |A C sq, Erf |Bs " pErf |Bs, Erf |B C sq, ˙´ˆp AB {p A 1 ´pAB {p A pp B ´pAB q{p A 1 ´pp B ´pAB q{p A pErf spp A ´pAB q ´Erf |Asp A p B `Erf |Bspp AB ´pA p B qq ¨ˆ´1{p A p B 1{p A p B ˙´ˆp AB {p B 1 ´pAB {p B pp A ´pAB q{p B 1 ´pp A ´pAB q{p B ˙¨ˆE rf |As Erf |A C s " pErf spp B ´pAB q ´Erf |Bsp A p B `Erf |Aspp AB ´pA p B qq ¨ˆ´1{p A p B 1{p A p B

		2 0.25 0.1
	B 2	0.25 0.1 0.1

0.75 -0.5 1 B 2 0.5 0.25 -0.5 In this case, the usual mean is the sum of all X i over 10 that is we assign the weight 1{n " 0.1 at each X i and we have P n pXq » 0.055. When we rake one time we assign the weights 0.15, 0.07, 0.1 at individuals belonging respectively to A 1 , A 2 , A 3 . The raked mean for N " 1 is

P p1q

n pXq " 0.15 ˆP pA 1 q P n pA 1 q `0.07 ˆP pA 2 q P n pA 2 q `0.1 ˆP pA 3 q P n pA 3 q » 0.2.

When the algorithm is stabilized in this case the final weights are given by the following table: