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ARTICLE

Low-frequency vibrational modes of stable glasses
Lijin Wang1,2, Andrea Ninarello3,4, Pengfei Guan1, Ludovic Berthier 3, Grzegorz Szamel2 & Elijah Flenner2

Unusual features of the vibrational density of states D(ω) of glasses allow one to rationalize

their peculiar low-temperature properties. Simulational studies of D(ω) have been restricted

to studying poorly annealed glasses that may not be relevant to experiments. Here we report

on D(ω) of zero-temperature glasses with kinetic stabilities ranging from poorly annealed to

ultrastable glasses. For all preparations, the low-frequency part of D(ω) splits between

extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to

Debye behavior (Dex(ω) ~ω2) at low-frequency, with a strong correlation between the two

regimes. Quasi-localized modes obey Dloc(ω) ~ω4, irrespective of the stability. The prefactor

of this quartic law decreases with increasing stability, and the corresponding modes become

more localized and sparser. Our work is the first numerical observation of quasi-localized

modes in a regime relevant to experiments, and it establishes a direct connection between

glasses’ stability and their soft vibrational modes
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Amorphous solids exhibit universal low-temperature
properties, seen for instance in the heat capacity and
thermal conductivity1, that differ remarkably from crystal

physics. These properties are related to the vibrational density of
states D(ω). For a continuous elastic medium in three dimen-
sions, low-frequency excitations are phonons, and the density of
states follows D(ω)= ADω2, where AD is given by Debye theory2.
A well-known universal feature of amorphous solids is an excess
in vibrational modes over the Debye prediction that results in a
peak in D(ω)/ω2 at an intermediate frequency, called the boson
peak3–6.

More recently, another source of ‘excess modes’ has been
identified in computer simulations of model glasses7–12. It is
composed of quasi-localized low-frequency modes with a density
obeying Dloc(ω) ~ ω4. Quasi-localized modes are observed at
frequencies significantly lower than the boson peak and the link
between the two phenomena is not immediate, despite some
indications that they may be connected8,13. The quartic law was
predicted long ago using phenomenological models14,15, reana-
lyzed over the years16–18, and remains the focus of intense
research19,20. These predictions differ from two recent mean-field
approaches21,22, which predict instead a universal non-Debye
behavior that is quadratic in all spatial dimensions, also reported
numerically23. Interest in the low-frequency localized modes
extends beyond connections to theoretical models and the boson
peak. It was suggested that these modes are correlated with
irreversible structural relaxation in the supercooled liquid state24,
and that the spatial distribution of these soft modes is correlated
with rearrangements upon mechanical deformation and plasti-
city25–28. Localized defects are also central to theoretical
descriptions of glass properties at cryogenic temperatures29,30.

Recent numerical insights were obtained for glasses that are
very different from the ones studied experimentally, since they are
prepared with protocols operating on timescales that differ from
experimental ones by as many as ten orders of magnitude31. It is
therefore unknown whether any of the vibrational, thermal, or
mechanical properties derived from earlier computational study
of the density of states is experimentally relevant. For example, it
was reported9,32 that Dloc(ω) ~ ωβ with β ranging from 3 to 4
depending on the glass’s stability, with β= 4 for the two most
stable simulated glasses created by cooling at a constant rate. It
remains unclear, however, whether β would be different for
glasses with stability comparable to that of the experimental
glasses.

Our main achievement is to extend studies of the vibrational
density of states of computer glasses to an experimentally relevant
regime of glass stability for the first time. To this end, we build on
the recent development of a Monte Carlo method that allows us
to equilibrate supercooled liquids down to temperatures below
the experimental glass transition33–35 to prepare glasses that
cover an unprecedented range of kinetic stability, from extremely
poorly annealed systems to ultrastable glasses. We thus match the
large gap between previous numerical findings and the experi-
mental regime36. Recent studies have shown that that such stable
glasses may differ qualitatively from ordinary computer
glasses35,37,38. For example, qualitatively different yielding beha-
vior of well-annealed glasses compared to that of poorly annealed
glasses was reported in ref. 38. Since rearrangements upon
mechanical deformation are correlated with the spatial distribu-
tion of soft modes, this result suggested that the density of states
could also evolve dramatically with the stability.

Results
System preparation. We prepare glasses by instantaneously
quenching supercooled liquids equilibrated at parent temperature

Tp to T= 0, so that Tp uniquely controls the glass stability. We
find that the low-frequency part of the vibrational density of
states changes considerably when Tp varies, thus offering a direct
link between soft vibrational modes and kinetic stability. Fol-
lowing earlier work8,10, we divide modes into extended and quasi-
localized ones. As found for high parent temperature glasses7–10,
the density of states of the quasi-localized modes follows Dloc=
A4ω4, with the same quartic exponent for all glass stabilities. Our
work thus establishes the relevance of earlier findings about
quasi-localized modes and their effect on the density of states in
the experimentally relevant regime of glass stability. In addition,
we find that the overall scale A4 decreases surprisingly rapidly
when Tp decreases, showing that the density of the quasi-localized
modes is highly sensitive to the glass stability. This rapid decrease
contrasts with the modest changes found for other structural
quantities, such as mechanical moduli, sound speed, and Debye
frequency. Quasi-localized modes also become sparser and
increasingly localized at low Tp, and so the identification of soft
localized modes as relevant glassy defects controlling the physics
of amorphous solids becomes more convincing near the experi-
mental glass transition. Our results also suggest that ultrastable
glasses contain significantly fewer localized excitations than
ordinary glasses, which appears consistent with recent experi-
ments39–41.

We simulate a polydisperse glass forming system in three
dimensions, which is a representative glass-forming computer
model33. We use the swap Monte Carlo algorithm to prepare
independent equilibrated configurations at parent temperatures
Tp ranging from above the onset temperature of slow dynamics
To ≈ 0.200, down to Tp= 0.062, which is about 60% of the mode-
coupling temperature Tc ≈ 0.108 (Tc marks a crossover to
activated dynamics and corresponds typically to the lowest
temperature accessed by standard molecular dynamics). Impor-
tantly, our lowest Tp is lower than the estimated experimental
glass temperature Tg ≈ 0.07233, and no previous computational
study has explored such range of glass stability. In addition, we
also use a very high parent temperature which we refer to as
Tp=∞. We then probe vibrational properties of zero-
temperature glasses produced by an instantaneous quench from
equilibrated configurations at different Tp. The specific simulation
details are provided in Methods.

Macroscopic properties. We begin by presenting macroscopic
properties of the glasses as a function of the parent temperature
Tp. The inherent structure energy EIS is directly related to the
mobility of the particles42, and thus we show EIS in Fig. 1a as an
indicator of the increased stability of the glass. EIS deviates from
its high-temperature plateau when Tp becomes smaller than
the onset temperature, and decreases further with decreasing
Tp43. Similarly, the bulk modulus B decreases modestly
with decreasing Tp (Fig. 1b). By contrast, the shear modulus G
in Fig. 1c remains nearly temperature-independent until the-
mode-coupling temperature, which is below the onset tempera-
ture, and then the shear modulus increases with decreasing Tp.
Associated with the increase in the shear modulus is a decrease in
the Debye level AD ¼ 3=ω3

D, where the Debye frequency
ωD ¼ 18π2ρð Þ= c�3

l þ 2c�3
t

�� �1=3
. The decrease of AD is mainly

controlled by the increase of the shear modulus since the trans-
verse speed of sound ct ¼

ffiffiffiffiffiffiffiffi
G=ρ

p
is 2.4–2.6 times smaller than the

longitudinal speed of sound cl. The overall relative variations of
mechanical moduli and Debye frequency are, however, relatively
mild given the broad range of glass stabilities covered in Fig. 1.

Classification of quasi-localized and extended modes. By
examining the participation ratio P(ω) as a function of ω at
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different parent temperatures (see Fig. 2), we observe all the
features that characterize the Tp-dependence of the density of
states. A value of P(ω)= 1 indicates a mode where all the particles
participate equally, a value of P(ω)=N−1 indicates a mode where
only one particle participates, and a value of P(ω)= 2/3 indicates
a plane wave. The sharp peaks in P(ω) at low frequencies are due
to the phonon modes, with the first peak corresponding to the
first allowed transverse phonon at ωt= ct2π/L, L being the box
length. An increase in ωt indicates an increase in ct ¼

ffiffiffiffiffiffiffiffi
G=ρ

p
. The

low-frequency modes can be naturally divided into quasi-
localized modes (small P) and extended modes (large P)
through an appropriate thresholding procedure8,10, this decom-
position becoming sharper as L increases and Tp decreases. The
value P0= 0.006 is appropriate, as shown in Fig. 2, but we
checked that our results are not qualitatively affected by a rea-
sonable change of P0. As Tp decreases, phonon modes shift to
larger frequencies, as expected from the evolution of the
mechanical moduli, whereas quasi-localized modes become
increasingly localized and well-separated from the phonons. We
also checked that our results hold for small system sizes where
allowed phonon modes are shifted to much higher frequencies7.

Properties of quasi-localized modes. We examined the density
of states for the quasi-localized modes Dloc(ω), which are shown
in Fig. 3a for a few representative Tp. At low frequencies, Dloc(ω)
=A4ω4 for each parent temperature with a prefactor A4 that
depends on the glass stability. We show the resulting A4(Tp) in
Fig. 3b. The prefactor A4 stays nearly constant for high enough
Tp, but decreases sharply when Tp decreases below the mode-
coupling temperature Tc. This observation is robust against
changing the system size. The decrease of A4 at low Tp correlates
well with the evolution of shear modulus and Debye level in
Fig. 3c, d. We note that a study of less stable glasses32 found an
increase in the lowest frequency of quasi-localized modes with
decreasing parent temperature, which, under certain assumptions,
may be related to the change of A4 reported here. A major result
of our study is that the quartic law governing Dloc(ω) is obeyed
irrespective of the glass stability, thus extending the validity of
previous findings to the experimentally relevant regime.

In Fig. 3c we show the probability distribution for finding a
mode with a participation ratio P for the modes with P < P0 for N
= 48,000 particles. With decreasing Tp, the distribution becomes

narrower and the peak position shifts to smaller P values. We find
that the average participation ratio decreases with decreasing Tp,
which is evident from Fig. 3c. This confirms that these modes
become more localized with decreasing parent temperature,
which had been observed for less stable glasses9,13,32. Since the
density of states is a function of the structure of the quenched
system, we conclude that subtle local structural changes occur for
Tp below Tc that strongly affect soft vibrational motion in the
quenched glass.

To visualize the increasing mode localization, we define a
‘softness’25 for particle i as AðiÞ ¼ ð1=MÞPM

l¼1 jel;ij, where the
sum is taken over the M= 40 lowest frequency quasi-localized
modes for one inherent structure (we have checked that our
conclusions hold when we take other values of M= 5–40). The
softness quantifies the vibrational amplitude of low-frequency
quasi-localized modes. In the snapshots of Fig. 4, particles are
represented with a size proportional to A(i) for (a) Tp= 0.200 and
(b) Tp= 0.062. For the highest Tp, clusters contributing to
localized modes are relatively numerous, quite extended, and
strongly coupled to their environment. At the lowest Tp, each
cluster is localized around just a few particles, there are much
fewer clusters, and they offer a stronger contrast with the
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immobile background. To quantify these observations, we
measured the probability distribution of A(i) (Fig. 4c). These
distributions show a power-law tail at large A values, PðAiÞ ¼
λðTpÞA�α

i with α ≈ 3.7. At low Tp the tail is well separated from
the core of the distribution at small A, and mobile particles with
large A are better defined. There is also a pronounced decay of the
probability of finding large A values at low Tp since λ(0.2)/λ
(0.062) ≈ 4.3, which indicates a greater than four fold decrease in
the number of soft particles with large vibrational amplitudes.
The interpretation of quasi-localized modes as relevant glassy
defects controlling mechanical and thermal properties of glasses is
therefore more convincing for stable glasses than it is for
conventional computer glasses.

Properties of extended modes. Next, we examine the density of
states of extended modes, Dex(ω), with a participation ratio
greater than P0. In Fig. 5a, b we show the reduced density of states
Dex(ω)/ω2 for two parent temperatures. For each temperature, the
Debye level is reached at low enough ω and a boson peak is
observed at larger frequencies. Using our localization criterion,
we find that modes near the boson peak are not localized, but this
does not imply that they have a phononic character. The boson
peak narrows slightly with decreasing Tp. The Debye level, the
boson peak location, height, and width all change modestly as Tp
is varied over the entire range studied. The changes observed in
our study agree qualitatively with those found by Grigera et al. 4.

In Fig. 5c we examine scaling properties of the density of states
of extended modes. We rescale ω by the boson peak frequency,

ωBP, and plot the rescaled density of states Dex/(ADω2). We
observe an excellent collapse on the low-frequency side of the
boson peak. This shows that in this frequency range the reduced
frequency dependence has a universal shape, as reported before44.
Second, the collapse also shows that the height of the boson peak
correlates with the Debye level AD. These results agree with
experiments on molecular glass formers45–47. However, some of
the same experiments report that the boson peak position scales
as the Debye frequency45,47, which is not consistent with our
results. We also find that a scaling of ωBP with the bulk modulus
suggested in ref. 48 is inconsistent with our results. Note that we
study the evolution of the boson peak as a function of the
preparation temperature, while experiments sometimes examine
the temperature evolution of the boson peak for a given glass
preparation. We also note that a correlation between the boson
peak and quasi-localized modes has been proposed by studying
systems at different pressures around the unjamming transition49.

Since the boson peak occurs in a different frequency range than
the ω4 scaling of Dloc(ω), it is not clear that there could be a
relationship between the boson peak and the low-frequency
quasi-localized modes. Simulations close to jamming suggest that
A4 � ω4

BP
8, but we do not find that this relation holds with

changing Tp. An alternative possibility can be obtained from
dimensional analysis, where a characteristic frequency for quasi-
localized modes can be defined as A�1=5

4
32. We find that A�1=5

4 �
ωBP for glasses with Tp < Tc (Fig. 6), but this relation does not
hold for glasses created with Tp > Tc. We note that ωBP is constant
for Tp > Tc, see the inset to Fig. 6, and only changes for Tp < Tc.
Again we find that Tc marks a change in the behavior of D(ω).
Given the relatively small changes in both ωBP and A�1=5

4 over our
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entire range of parent temperatures studied, it is not clear that a
power law is the proper relationship between these quantities and
further work is needed to verify it.

Discussion
In summary, we report the first characterization of the vibrational
density of states of computer glasses prepared over a range of
glass stability that bridges the gap between ordinary simulations
and experimental studies. At low-frequency extended and quasi-
localized modes coexist, and both types of modes evolve differ-
ently when the glass stability is varied. We find a relatively mild
temperature dependence of extended modes, with a strong cor-
relation between the Debye level and the boson peak. By contrast,
quasi-localized modes evolve more strongly when Tp decreases
below the mode-coupling temperature, but their density of states
is always described by Dloc � A4ω

4. Unexpectedly, the tempera-
ture dependence of the prefactor A4(Tp) is more interesting than
the value of the quartic exponent, which is insensitive to the
degree of annealing.

The increasing localization of the modes implies that subtle yet
significant changes occur in the local structure of the glass that
are not reflected in the pair correlation function, which is nearly
identical for parent temperatures below Tc. Since soft modes have
been linked to irreversible relaxation24 and rearrangements under
shear25–28, it follows that the reduction of these soft modes can
have significant implications for glassy dynamics. In turn this
reduction indicates that there are fewer soft spots, which should
increase the strength of the glass. This hypothesis is supported by
the observation that the decrease in Dloc(ω) mirrors the increase
of the shear modulus, and also correlates very well with the
evolution of the ductility of the produced glasses38,50. Since we
can now equilibrate amorphous systems at temperatures low
enough so that they do not flow, another perspective would be to
analyze the density of states at finite temperatures through the
Fourier transform of the velocity autocorrelation function51, or by
diagonalizing the covariance matrix of displacements52. Future
studies should examine the difference between these procedures
to provide insights into thermal anharmonicities of stable glasses,
and more generally into their low-temperature transport
properties.

Methods
Simulations. We simulate a polydisperse model glass former of sizes between N=
48,000 and 450,000 particles with equal mass at a number density ρ= 1.033. The
interaction between two particles i and j is given by VðrijÞ ¼ σ ij

rij

� �12
þvðrijÞ when

their separation rij � rcij ¼ 1:25σij and zero otherwise. We use

vðrijÞ ¼ c0 þ c2
rij
σ ij

� �2
þc4

rij
σ ij

� �4
, where the coefficients c0, c2, and c4 ensure the

continuity of V(rij) up to the second derivative at the cutoff rcij . The probability of
particle diameters σ is P(σ)= A/σ3, where σ∈[0.73,1.63] and we use a non-additive
mixing rule, σ ij ¼ σ i þ σj

2 ð1� 0:2jσi � σ jjÞ. For N ≤ 192,000 we use the swap Monte
Carlo algorithm to prepare independent equilibrated configurations at parent
temperatures Tp ranging from above the onset temperature of slow dynamics (To ≈
0.200) down to Tp= 0.062, which is about 60% of the mode-coupling temperature
(Tc ≈ 0.108), and is lower than the estimated experimental glass temperature (Tg ≈
0.072)33. In addition, we also use a very high parent temperature, which we refer to
as Tp=∞. Due to very long equilibration times for systems of N > 192,000 particles
we only study systems with N > 192,000 for Tp=∞.

Density of states calculation. Following equilibration at a temperature Tp, zero-
temperature glasses are produced by instantaneously quenching equilibrium con-
figurations to their inherent structures using the Fast Inertia Relaxation Engine
algorithm53. We then calculate the modes by diagonalizing the Hessian matrix
using Intel Math Kernel Library (https://software.intel.com/en-us/mkl/) and
ARPACK (http://www.caam.rice.edu/software/ARPACK/). We calculate all the
normal modes for the 48,000 particle systems, but only the low-frequency part of
the spectrum in systems with N > 48,000. We characterize the modes through the
density of states DðωÞ ¼ 1

3N�3

P3N�3
l¼1 δðω� ωlÞ and the participation ratio
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PðωlÞ ¼
PN

i¼1
jel;i j2

� �2

N
PN

i¼1
jel;i j4

, where el,i is the polarization vector of particle i in mode l with

frequency ωl. For a mode localized to one particle P(ω)=N−1, and for an ideal
plane wave P(ω)= 2/3. The phonon modes occur at discrete frequencies, and care
has to be taken in the binning procedure to calculate the density of states of
extended modes, Dex(ω). To perform this calculation, we determine the phonon
frequencies from the peak positions of the participation ratio versus frequency, and
tune the bin size to smooth Dex(ω).To obtain the shear modulus G and the bulk
modulus B we use the method described in ref. 54.

Data availability
All data will be available from the authors upon request.
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