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Abstract

This paper deals with supervised classification and feature selection. A classical
approach is to project data on a low dimensional space with a strict control on
sparsity. This results in an optimization problem minimizing the within sum of
squares in the clusters (Frobenius norm) with an ¢; penalty in order to promote
sparsity. It is well known though that the Frobenius norm is not robust to outliers.
In this paper, we propose an alternative approach with an £; norm minimization
both for the constraint and the loss function. Since the ¢; criterion is only convex
and not gradient Lipschitz, we advocate the use a Douglas-Rachford approach. We
take advantage of the particular form of the cost and, using a change of variable,
we provide a new efficient tailored primal Douglas-Rachford splitting algorithm.
We also provide an efficient classifier in the projected space based on medoid
modeling. The resulting algorithm, based on alternating minimization and primal
Douglas-Rachford splitting, is coined ADRS. Experiments on biological data sets
and computer vision dataset show that our method significantly improves the results
obtained with a quadratic loss function.

1 Introduction

This paper deals with supervised classification with feature selection in high dimensional spaces. In
this paper we consider methods where feature selection is embedded in a classification process [30].
However, classification in high dimension suffers from the curse of dimensionality: As dimensions
increase, vectors become indiscernible and the predictive power of the aforementioned methods is
drastically reduced [1} 28]]. In order to overcome this issue, the main idea of the following methods
is to project data in a low dimensional space. A popular approach for high-dimensional data is to
perform Principal Component Analysis (PCA) prior to classification. This approach is however
not relevant in general [36]]. Partial least squares method closely related to principal component
regression is designed to cope with this issue with high dimensional correlated features [37,29]. An
alternative approach is to perform dimension reduction by means of Linear Discriminant Analysis
(LDA) [12}114]. The authors of [2] and [ 18] propose a convex relaxation of this approach in terms of
a suitable semi-definite program (SDP) at the cost of an increased computational complexity. Nie
et al proposed a feature selection based on £ ; norm minimization [26]. A popular approach for
selecting sparse features in supervised classification or regression is the Least Absolute Shrinkage and
Selection Operator (LASSO) formulation [34}[19] 22} 25 [38]]. The LASSO formulation uses the ¢,
norm [5} 16, [15] [16] as an added penalty term instead of an ¢, term. However, an issue is that using an
£5 norm for the data is not robust to outliers. In this paper, we cope with this problem by minimizing
an /1 norm both on the penalty term and the loss function. In this case, the criterion is convex but
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not gradient Lipschitz. We propose so to use a Douglas-Rachford splitting method. This splitting
was successfully used in signal processing [18, 19} 117, [7}, 131} 133} 4]. However, for classification, we
cannot apply straightforwardly Douglas-Rachford since the proximal operator for the affine transform
Y — XW involved in the criterion is not available. We take advantage of the particular form of the
original cost: The sum of two /1 norms is equal to a single ¢; norm after a change of variables, and
the linear constraint can be integrated into the cost. We also provide an efficient classifier in the
projected space based on medoid modelling.

2 Robust supervised classification

2.1 A robust framework

Let X be the nonzero m X d matrix made of m line samples z1,...,z,, belonging to the d-
dimensional space of features. Let Y € {0, 1}™* be the label matrix where k > 2 is the number of
clusters. Each line of Y has exactly one nonzero element equal to one, 3;; = 1 indicating that the
sample x; belongs to the j-th cluster, see [2,[18] . Let W € R%** be the projection matrix, k < d.
The classical quadratic loss criterion in the projected space is:

1
mv[l/n§||Y—XW||§r+)\HW||1 (D

where ||.|| 7 stands for the Frobenius norm. Projecting the data in lower dimension is crucial to be able
to separate them. Besides, it is well known that the quadratic Frobenius loss criterion is not robust
to outliers, so we propose to minimize instead the ¢; loss cost, with an ¢; penalty regularization to
promote sparsity and induce feature selection. So, given the matrix of labels Y, we consider the
following convex supervised classification problem:

Problem 1
min [[Y = XW{[ + AW/}

Here, the ¢; norm of an m by n matrix A denotes the ¢; norm of its vectorization:

1Al = A0 =33 Jag.

i=1 j=1

2.2 An equivalent formulation

The cost in Problem [I] is the sum of two ¢; norms, which suggests to use a splitting algorithm
[LO]. Such methods are very efficient to minimize the sum of convex functions and do not require
differentiability properties. Note indeed that, having replaced the squared Frobenius norm by the /4
norm of Y — X'W, it is not possible to use forward-backward splitting [10] as none of the functions is
differentiable. In order to use the more general Douglas-Rachford scheme (see next subsection) that is
able to cope with mere convex functions, one still has to be able to compute their proximity operators.
Now, while the prox of the 1 norm is well known and expressed in terms of soft thresholding, there
is no explicit expression for the prox of the ¢; norm of the affine transform Y — X W. We propose to
introduce the auxiliary variable ¢ := (Y — XW)/X in R™** and to minimize

min [Wli +[I¢]

under the affine constraint
XW 4+ X =Y.

The sum of the two ¢; norms is equal to the single ¢; norm of the augmented variable W= (W, Q) €
R(@+m)xk et C be the affine subset of (d + m) x k matrices such that XTW = Y where

X := [X M,,) € R™*(d+m),

The problem can be recast as s
min | W[4
w



under the affine constraint o

XW=Y
Let moreover i be the indicator function of the set C', vanishing on C' and equal to +oo outside C'.
Then problem [T]is equivalent to

Problem 2 . .
min [Ty + ic (7).
This new problem is readily equivalent to the previous one as ||[W||; = ||W ||y + ||¢]l1. (Note that

the cost has been rescaled by a factor X.) Problem 2] involves two convex functions whose proximity
operators can be efficiently computed (see, e.g., Lemmal(l]), which allows to use a Douglas-Rachford
scheme.

Remark 1 Our approach can be seen as a special case of the alternating-direction method of
multipliers (ADMM, see [10]). Indeed, Problem|[I|falls into the following class:

(r;_l_i;; f(z)+9(y)

under the affine constraint y = Az, where x and y are vectors of finite dimensional spaces. Then
ADMM considers the augmented Lagrangian (v > 0 is a scalar parameter),

1 1
Ly(2,y,2) = f(x) + g(y) + ;(Z\ACB —y)+ %HASE —yl*.

The Lagrangian is minimized over x, then over y, and a third step of the method updates the Lagrange
multiplier z using a proximal maximization step. See also [7|] for a similar approach. In our case,
we take advantage of the fact that the two functions f and g are simple convex functions ({1 norms)
whose sum is again a known convex function (yet another {1 norm). This eliminates one function and
allows to penalize the affine constraint to integrate it into the cost. The resulting proximal operator is
a simple projection operator on a linear subspace, which is easily computed (see, e.g., Lemmall)).

2.3 Douglas-Rachford splitting

The method was initially proposed by [17] for solving matrix equations and used in signal and
image processing [8} 9, 31, 33]. Problem [2]amounts to minimizing the sum of two convex functions

FW)+G (W) and the (constant-step) Douglas-Rachford scheme is the following [10]: Fix ¢ > 0,
7>0,7€ (6,2 —¢), Vy € REH™XE and define

W, = prox,p(V,), 2)
Vorr = Vo + ’}/(pI'OXTG(QWn - V) — /VI\/;) 3)

Theorem 1 [10] Fore € (0,1), 7 > 0 and v € [e,2 — €], every sequence generated according to
(2H3) converges to a solution to Problem|2]

We recall that, given a lower semicontinuous convex function f from a vector space to R U {+o0},
the proximity operator prox ; of f maps a given x to the unique minimizer of f(y) + (1/2)|z — yl|*.
In our case, F' is the ¢; norm, so prox_p is given by soft thresholding (parameterized by 7). Indeed,
one can separate the variables and use the prox of the scaled absolute value dimension one:

soft(x,7) = xz+r7ifz < —7,
= 0ifz e [-7,7],
= x — 7 otherwise.
Since G is an indicator function, whatever 7 the associated prox simply is the projection operator on

the affine subspace C' of (d 4+ m) x k matrices. For the sake of completeness, we recall the associated
expression of this projection.



Lemma 1 Let A be an m x n matrix of rank m < n, and let b be a vector in R™. The orthogonal
projection of z € R™ on the affine subspace {x € R™ | Az = b} is

proj(z, A,b) = z — AT(AAT) "1 (Az — b). 4)
Proof. The projection Z is characterized by the fact that z — Z belongs to (ker A)* = Im AT, plus
the fact that AZ = b. So there is some 7 in R™ such that Z = z — A7, and
y=Az— AATy.
Since AAT is invertible, j = (AAT)~(Az — y) which gives the desired expression. O

The lemma can readily be applied in R(¢+") %% to obtain the prox of G, independently of 7, and
(2}3) can be translated into Algorithm T}

Algorithm 1 Supervised classification Douglas-Rachford algorithm. The operators soft and proj
denote the soft thresholding and projection operators, respectively.

1: Input: X, \,Y,~,7,V,N

2: X + [X A\,

3: forn=0,...,N do

4. W «soft(V,7)

5. V<« V+y(projCW -V, X,Y)—-W)

6: end for

72 (W, Q) « W

8: Output: W

Feature selection and scalability. In applications, particularly in biological ones, the issue of
feature selection may be even more important than classification itself. This selection is achieved
by means of the ¢; sparsity inducing penalty in Problem cost. A feature i € {1,...,m} is then
selected if the corresponding line in the matrix of weights W is not zero (|| (4, :)|| # 0). The set of
nonzero columns is interpreted as the signature of the corresponding cluster. In order to evaluate this
signature, we compute the projected matrix X W. Each block shows the correlation between the data
and the signature. We precompute X7 (X X7)~1) only once. Note that matrix (X X7 is a small
(m x m) matrix, so we can use fast adapted algorithm to compute the inverse. The complexity of the
resulting iterations is O(d x k x d) for the proximal part, plus O(d x k) for the projection.

2.4 Classification using medoid

In order to build a robust classifier, we compute a medoid for each cluster. For the j-th cluster, a
medoid p; is any member of the class minimizing the average dissimilarity inside the class in the
projected space: p; := (XW)(z, :) where

ieag min 3 JXW)G) - (XW)E)L.
i s.t. y”fle” ye;=1, b#£i
I

Let us define 1 € R™*¥, the medoid matrix of the clusters. Computing medoids minimization can
be reformulated as minimizing the following ¢; norm:

min ||[Yu — XW||;.
m

Then, a new query x (a dimension d row vector) is classified according to the following rule: It
belongs to the (supposedly unique) class j such that

j € arg min [[zW — g1
=Lk

The cost of medoid computation is expected to be O(m X k) in average [3].



2.5 Alternating Minimization

In this section, we iterate the previous procedure. Let define now the within cluster sum of absolute
difference criterion:

Problem 3

min ||[Yu — XW/||1 + A|W]1.
W, u

We propose an alternating (or Gauss-Seidel) scheme. Given the medoid matrix p, the first subproblem
in W is solved by using our primal Douglas-Rachford algorithm. Conversely, given the matrix of
weights W, the second subproblem in x is solved by medoid computation on the projected data as
explained in the previous section. Algorithm [2]summarizes the resulting alternating minimization.

Algorithm 2 Supervised classification with alternating minimization and Douglas-Rachford splitting
algorithm.

I: Input: X, u=1,,,\Y,v=1,7,V,N, L

2 X  [X A,]

3: for{=0,...,Ldo

4. forn=0,...,N do

5: W« soft(V, 1)

6: V«—V +~(proj2W —V, X, Yu) — W)
7. endfor

s (W)« W

9:  u < medoids(Y,XW)

10: end for

11: Output: W, u

Proposition 1 As each step of the alternating minimization scheme decreases the {1norm ||Y u —
XW |1, which is nonnegative, the following readily holds.

The (ynorm ||Y u — XW ||y converges as the number of iterates L in Algorithm|2| goes to infinity.
This property is illustrated in the next section on real data.

3 Application to real datasets

3.1 Experimental settings

We compare the labels obtained from our classification with the true labels to compute the MCE
(misclassification error, i.e. the number of misclassified observations divided by the number of
observations) on the test set. We provide TSNE results for visual evaluation [35]]. In order to evaluate
the signature, we plot the heat map of matrix X W in order to visualize the correlation between the
data and the signature. We compare our ADRS method with four state of the art methods: Filter
method using Ttest (we rank the features according to their p-values using a PLS classifier (Partial
least squares) [37]]), PLS with a sequential selection of features [20]], and the Frobenius norm criterion
(T) using the classical forward-backward algorithm. We compare algorithms on three public datasets
which are available at https://archive.ics.uci.edu/ml/datasets. In our experiments, we
set v = 1 and N = 10 (see Figure [I] for preliminary observations on convergence). Results are
reported after a 4-fold cross-validation.
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Figure 1: Convergence of our primal Douglas-Rachford algorithm: The decay of ||Y . — X W||1 versus the
number of iterations N emphasizes the fast convergence.

3.2 Dataset: Ovarian [21]

The data available on UCI data base were obtained from two sources: The National Cancer Institute
(NCI) and the Eastern Virginia Medical School (EVMS). All the data consist of mass-spectra obtained
with the SELDI technique. The samples include patients with cancer (ovarian or prostate cancer).
Healthy or control patients form a set of 216 samples with 15000 features. Applying classical Ttest,
there are 40% p-values smaller than 0.05, thus 6000 features that have strong potential discrimination.

0.2

0.1

-0.2-

L L L
-0.2 -0.1 o 0.1 0.2 0.3

Figure 2: Ovarian: The data in the projected space X W show that the centroids and the medoids are very close.

Table 1: MCE on Ovarian dataset (216 samples, 15000 features, k = 2 clusters which have 121 and
95 samples, respectively): For 100 selected features, ADRS outperforms Ttest by 11.1% , Frobenius
by 7% and PLS by 7.9%).

Ovarian Ttest | Frobenius | PLS | ADRS
MCE % 100 features | 14.82 10.65 11.57 | 3.70
MCE % 200 features | 12.03 6.48 10.65 | 2.78
MCE % 300 features | 13.43 6.48 9.72 1.85
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Figure 3: The MCE versus the number of selected features selected on Ovarian shows that MCE decreases with
the number of genes for ADRS, Frobenius and PLS. Note that Ttest assume that data are independent, which is

not the case for proteomics dataset.

Cancer Normal

Figure 4: The heatmap of correlation between data and signature, left with ADRS, right with a quadratic

(Frobenius) cost.

Table 2: This table shows the mean of the correlation on the diagonal of the previous heatmap. The
signature obtains with ADRS readily improves the one obtained using a Frobenius norm.

Ovarian | Cancer | Normal
ADRS 0.43 0.55
Frobenius 0.12 0.16

3.3 Dataset:FaceDrive [13]].

The FaceDrive dataset contains image sequences of subjects while driving in real scenarios. It is
composed of 606 samples with 4800 features each, acquired over different days from 4 drivers with
several facial features like glasses and beard. A set of labels assigning each image into 3 possible
clusters are given. Note that this dataset is highly unbalanced.
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Figure 5: The Tsne of the the data in the projected space X w shows that the centroids and the medoids are very
close in the minority class while they are far in the majority class.

Table 3: MCE on Facedrive (606 samples, 6400 features, k = 3 clusters which have 27, 546 and 33
samples, respectively): For 1500 selected features, ADRS outperform Frobenius by 2.3%, and PLS
by 3.6%).

Facedrive Ttest+svm | Frobenius | PLS | ADRS
MCE % 1000 features 7.75 8.89 8.41 5.87
MCE % 1500 features 8.25 6.6 792 | 4.29
MCE % 2000 features 7.43 6.08 776 | 4.01

3 L L L L L L
1000 1200 1400 1600 1800 2000 2200
Features selected

Figure 6: The MCE and the number of selected features selected on Facedrive shows that 1500 features are
necessary to obtain the best MCE.

I N

Figure 7: heatmap of correlation, Left using ADRS , Right using Frobenius



Table 4: This table shows the mean of the correlation on the diagonal of the previous heatmap. Again,
ADRS signature improves the signature obtained with a Frobenius cost.

FaceDrive | Cluster]l | Cluster2 | Cluster3
ADRS 0.42 0.04 0.32
Frobenius 0.17 0.02 0.10

3.4 Dataset: Gene expression cancer RNA-Seq Data Set.

This data is a subset of the RNA-Seq (HiSeq) PANCAN dataset, of patients having dif-
ferent types of tumor: BRCA, KIRC, COAD, LUAD and PRAD. It is available at
https://archive.ics.uci.edu/ml/datasets and https://www.synapse.org. This
dataset is composed of 801 cells with 20531 genes. There are k£ = 5 clusters which have 300, 78,
146, 141, and 136 samples, respectively.

L L L L L L L L
-40 -30 -20 -10 o 10 20 30 40 50

Figure 8: The Tsne of the data in the projected space Xw shows that the distance between centroids and
medoids depends on the clusters.
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Figure 9: The MCE versus the number of selected features selected on Cancer dataset shows that only 20

features are necessary to ADRS to obtain an accurate MCE.

Table 5: MCE on Cancer dataset ( 801 cells and 20531 genes with £ = 5 clusters ): For 20 genes,
ADRS outperforms Frobenius by 0.8% , and PLS by 6.4%.

Cancer Ttest+svm | Frobenius | PLS | ADRS
MCE % 10 genes 10.74 5.12 14.11 4.12
MCE % 20 genes 7.99 2.11 7.74 1.34
MCE % 40 genes 10.49 1.5 7.49 1.3
MCE % 80 genes 5.99 I.1 4.74 1.0
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Figure 10: heatmap of correlation, Left using ADRS , Right using Frobenius

Table 6: This table shows the mean of the correlation on the diagonal of the previous heatmap, it
shows that ADRS signature outperforms Frobenius signature.
Pancancer | BRCA | COAD | KIRC | LUAD | PRAD
ADRS 0.63 0.90 0.82 0.82 0.83
Frobenius 0.55 0.75 0.73 0.67 0.74

4 Conclusion

In this paper, we propose to minimize the /; norm related to the data term with an ¢; regularization.
This problem can be solved by classical ADMM algorithm [[10} 27 [7]. Our contribution is twofold.
First, we provide a new primal Douglas-Rachford splitting algorithm adapted to the criterion. Second,
we propose a new efficient classification algorithm (ADRS) using medoid and alternating mini-
mization. Experiments on biological datasets and a computer vision dataset show that our method
significantly improves the results of methods using a quadratic loss function.

5 Appendix: Minimize Frobenius norm using a gradient-projection splitting
method

The criterion is given by:

1
min o [|Y ~ XWE + MWl

To solve this problem, we use a gradient-projection method. It belongs to the class of splitting
methods ([10} 1T}, 23, 24, [32]]) using separately the convexity properties of the Frobenius cost on one
hand, and of the convexity of the set C' on the other. We use the following forward-backward scheme
to generate a sequence of iterates. For any fixed step v € (0,2/02 . (X)), the forward-backward
scheme applied to the above criterion converges towards a solution.

Algorithm 3 Forward-Backward splitting
Input: X, Y, Wy, N, v, T
forn=0,...,Ndo
Ve W—yXT(XW -Y)
W« prox(V, 1)

end for

Output: W

where prox(V, 7) denotes the proximity operator of the ¢; norm (soft thresholding) already define in
section

10
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