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Diffusion of interstitial carbon atoms in iron is the rate-limiting phenomenon of a number of phase 

transitions in body-centered (bec) and body-centered tetragonal (bct) phases such as ferrite and 

martensite. These phases being rarely stress-free and undeformed, the influence of stress/strain on the 

diffusivity of carbon is essential, although scarcely documented. We developed a model of carbon 

elastodiffusion in bct-iron. We combined anisotropie linear elasticity theory of point defects, the dilute 

approximation of regular solutions and the multisite model of random walk into a coherent mean-field 

theory. The model allows predicting the effects of composition, temperature and mechanical loading on 

the anisotropy of carbon diffusion. Density functional theory calculations have provided most of the 

materials parameters. The predictions were successfully tested against kinetic Monte Carlo simulations. 

Our results show that compression of the crystal increases carbon diffusivity, while tension has the 

opposite effect. Axial straining is accompanied by a large anisotropy of diffusion. This effect could be 

exploited to produce stress-controlled diffusion channeling for the engineering of anisotropie micro­

structures during thermal ageing of martensitic Fe-C alloys. 

1. Introduction

Martensite and bainite, microstructural constituents of high­
strength Fe-C alloys, share the body-centered tetragonal (bct) 
crystal structure. They are often described as tetragonally distorted 
bcc-iron [1,2). Indeed, in carbon-supersaturated stress-free 
martensite, preferential occupation of one of the three octahedral 
sublattices by the carbon atoms results in the symmetry breaking of 
the cubic host lattice into a variant of tetragonal crystal. Zener [3) 
was the first to propose that this long-range ordering is driven by 
the reduction in carbon-induced strain energy. Accordingly, ther­
modynamic equilibration may produce an order - disorder tran­
sition, leading to partially ordered bct-iron. In practical situations, 
however, a crystal variant is subjected to internai stresses ( co­
herency stresses, dislocation stress fields, etc.) [4) and to externally 
applied stresses. These stresses add to the carbon-induced stresses 
and are likely to affect the degree of carbon ordering. 

Ferrite, on the other hand, is usually defined as the low-carbon 
cubic phase. However, a ferrite crystal submitted to an axial stress, 
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e.g. along <001>, deforms into a tetragonal crystal. This is why
ferrite and martensite pertain to the same "phase region" [5): they
are two instances of bct-iron in the Fe-C-stress phase diagram. They
differ only by their degree of long-range order: ferrite is the low­
order, low-tetragonality instance white martensite is the high­
order, high-tetragonality one [6).

Various models of order-disorder transition during low­
temperature ageing [7-11) or severe plastic deformation [12,13) 
have been proposed in the literature. Sorne of them include the 
effect of particular mechanical loadings [7,14,15). None includes a 
comprehensive study of the effects of tensile and compressive 
stress, neither do they fully treat the ferrite - martensite ordering 
transition under applied stress. 

The first stages of low-temperature ageing of carbon­
supersaturated iron ( ordering, clustering and spinodal decompo­
sition) involve carbon diffusion in the crystal lattice [16). Unfortu­
nately, carbon diffusivity in supersaturated iron is difficult to 
measure because of the instability of the solid solution. For this 
reason, only indirect evaluations have been performed [17,18). The 
scarce measurements of the effect of pressure on carbon diffusivity 
are also indirect and unprecise [19,20). Migration of carbon atoms 
in the lattice occurs by successive jumps from octahedral to first-



nearest-neighbor octahedral sites via saddle-point tetrahedral sites 
[21 ]. Hillert suggested that diffusion in martensite is impaired by 
the trapping of most carbon atoms in the energetically favored 
crystal sites [22). This mechanism was confirmed by recent Mo­
Iecular Dynamics (MD) simulations with an EAM potential [11). 
However, to date a mode) of carbon diffusivity in martensite is 
lacking, and the effect of stress and partial ordering on the 
anisotropy of diffusion is not documented. 

The purpose of this paper is to provide a quantitative model of 
carbon diffusion in bct-iron as function of carbon content, tem­
perature and mechanical loading. The effect of an external strain or 
stress field is presented in the case of tetragonal crystal symmetry. 
Via modelling of the degree of ordering, ferrite and martensite are 
both treated in a coherent approach. Fe-C alloy thermodynamics is 
described by a mean-field elastochemical model based on the 
anisotropie elasticity theory of point defects and the dilute 
approximation of regular solutions (6). Carbon diffusivity is derived 
from the thermally activated jump frequencies by using the 
multisite method (23,24). Most material parameters of the model 
were calculated by density functional theory (DFT) calculations. 
Kinetic Monte Carlo (KMC) simulations have been used to test the 
predictions of the analytical formulae. 

The next section of the paper describes the modelling methods 
and parameters. lt starts with the order-disorder transition, follows 
with the carbon jump frequencies and diffusivities; it briefly pre­
sents the Monte Carlo and DFT set-ups. Results for tracer diffusion 
and diffusion in supersaturated bct-iron are presented in Secs. 3 
and 4. Cases of fixed strain field and fixed stress field are distin­
guished. The results are compared to the Iiterature in Sec. 5. The 
possibility of controlling diffusion anisotropy for microstructure 
design is discussed. 

2. Modelling methods and parameters

2.1. Order-disorder transition 

Thermodynamics of the Zener ordering in mechanically Ioaded 
bct-iron has been recently described within an elastochemical 
mean-field theory [6). The mode) is based on the continuum elas­
ticity theory of point defects coupled with the thermodynamics of 
dilute solid solutions. It relies on two main hypotheses: 

- The material parameters (dipole tensor, stiffness tensor) are
composition- and temperature-independent in the range of

(a) 

0-10 at.% C and 0-1000 K. This hypothesis of homogeneous
elasticity is correct within an accuracy of about 10% [25,26);

- Hillert's [22) assumption that the strain induced by the popu­
lation of carbon atoms is uniform in the crystal (the mean-field
approximation). This was confirmed by previous studies [27,28].

We summarize in the following the main results of the elas­
tochemical model that are useful to the present study. The details 
can be found in Ref. [6). 

Distortion of the bec Iattice results in a Joss of crystal symmetry 
such that the octahedral and tetrahedral interstitial sites differen­
tiate into 3 sets each: Ox, O

y
, Oz and Tx, T

y
, Tz, also Iabelled O; and T;, 

i = 1, 2 or 3 (Fig. 1 ). For example, sites Oz and Tz are characterized by 
their axial direction z, and their transverse directions x and y. The 
octahedral sites are the stable positions for carbon atoms, whereas 
the tetrahedral sites are saddle point positions for carbon migra­
tion. Diffusion occurs via O-T-O-... chains of carbon jumps [21 ]. 

In the frame of the anisotropie elasticity theory of point defects, 
the dipole tensor quantifies the far-field stress induced by a point 
defect in an undeformed cubic crystal. An interstitial carbon atom 
in bcc-iron is thus characterized by its di pole tensor po, or pr, ( i = 1, 
2 or 3), depending on its sitting site. Because the octahedral and 
tetrahedral sites have tetragonal symmetry, ail tensors are diagonal 
and have only two independent components [29). For example, po, 
as components P11 = P22 = Pf and P33 = �. Alternatively, the 
tensor of relaxation volume characterizes the carbon-induced 
distortion of the free crystal. It derives from the dipole tensor via 
the (symmetric) compliance tensor S: v0 = SP0 and vr = SPr. The 
relaxation volume of a carbon atom is the first invariant of V: v0 = 
tr(v°) = (S11 + 2S12)(� + 2/1), and equivalently for vr. 

Stiffness constants and dipole tensors were calculated ab initio 

in the framework of the density functional theory (DFT). Calcula­
tions were performed according to the computational details 
described in Ref. [26]. The defect elastic dipole tensors P0 and pT 

were calculated with the residual stress method [30]. To correct for 
the periodic images of the carbon atom, the residual stress on the 
supercell was fitted with a parabolic function of the supercell in­
verse volume. The resulting tensor components are listed in Table 1. 

Table 1 

lndependent material parameters used in the calculations. 

ao (nm) � (eV) f'? (eV) P! (eV) Pl (eV) C11 (GPa) C12 (GPa) Hg, (eV) vo (THz) 

0.2855 10.0 17.0 14.8 5.37 267 

(b) O, (c) T,

147 0.872 149 

Fig. 1. (a) Body-centered orthorhombic cell. Iron atoms (white), octahedral interstitial sites (large colored spheres), and tetrahedral interstitial sites (small colored spheres). Red, 
green, blue colors refer to site types according to R = 1, G = 2, B = 3. (b) Octahedral z-site. ( c) Tetrahedral z-site. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 



They are close to the values recently computed by DFf using
different procedures [31 ]. As carbon atoms inserted in O or T sites
induce lattice expansions in x, y and z directions, ait components of
p0 and pT are positive. pO is of prolate character, i.e. the singlet value 
is larger than the doublet value (l{l > PJ ), whereas pT is of oblate 
character (}1 < �). The implications of this will be examined in 
Secs. 3 and 4. For coherency, we adopted the stiffness coefficients 
calculated in the same conditions as the dipole tensors, although 
they differ by 15-20% from the experimental values [25). The 
magnitude of this disparity is usually observed in metals. It will 
have no incidence on the calculated effects of an applied strain on 
the diffusivities. It will induce a relative error of the order of 1 % on 
the calculated migration energies for an applied stress of 1000 MPa. 
The relative error on the calculated lattice parameters will be of the 
same order. These errors will have little influence on the general 
conclusions of the paper. 

In the mean-field approximation, a configuration of carbon
atoms in the crystal is defined by the a tom fractions c; = n;/n, where
n; is the number of carbon atoms on the octahedral sites of type i,
and n is the total number of iron atoms. The fraction c = I: c; is the
number of carbon atoms per iron atom in the crystal. We define the
average di pole tensor P of the carbon atoms on octahedral sites, per
iron a tom, as P = I: c;P0;

Under applied strain, the site energies of the three sets of
octahedral sites differ, leading to preferential occupation at equi­
librium. The site energies of the tetrahedral sites also differ,
affecting the diffusivity of carbon as function of temperature,
composition and strain. For the equilibrium calculations, two cases
must be distinguished, depending whether the strain tensor or the
stress tensor is constrained to a constant value during
transformations.

2.1.1. Case of fixed strain field 

In this situation, the uniform strain tensor e is applied to a
crystal of volume r. Thermodynamic equilibrium is reached when
the Helmholtz free energy F = U - IS is extremal. From the elasticity
theory of point defects [32,33) the energy per iron atom, as refer­
ence to the unstrained, cubic lattice, comprises a self-energy term
and a carbon-strain interaction energy term: 

1 U(e) = 
2

VoCe : e - P: e. (1)

In this equation, V0 = ½a� is the volume per iron atom of unstrained
crystal, C is the stiffness tensor, e is the applied strain tensor, and P
is the average elastic dipole tensor of the octahedral defects, as
defined above. At mechanical equilibrium, imposing the strain e
necessitates that a stress cs = (1 /V0)dU /de be applied to the
boundaries of the crystal, i.e.

(2)

2.1.2. Case of jixed applied stress 

In practice, imposing a strain tensor to a solid is a difficult task. A
more common situation is to apply a stress tensor cs. In this case,
mechanical equilibrium is reached when the enthalpy H is
extremal. The enthalpy per iron atom has the form of a Legendre
transformation of the energy function U:

1 
H = 2VoCe : e - P : e - V0cs : e. (3)

The condition dH/de = 0 yields the strain at equilibrium

(4)

where S = c-
1 is the compliance tensor. As expected from formai

thermodynamics, Eq. (4) is equivalent to Eq. (2). It states that the
equilibrium strain results from the carbon-induced internai stress
P/Vo added to the applied stress cs. The enthalpy function then
writes

1 p p
H(cs) = -2V0(cs + Vo): S(cs + v/ (5)

To complete the thermodynamic description, the configura­
tional entropy of ordering in the dilute limit is introduced. In the
following, we will consider the case of a crystal variant submitted to
a stress tensor of tetragonal symmetry, aligned with the z axis of
the crystal. The elastochemical model allows predicting the degree
of long-range order of carbon as function of composition, temper­
ature and stress. The order parameter is defined as Tl = ( c3 -
c1 or 2)/c, the deviatoric stress is � = 0'33 - u11 and the pressure is 
p. Thermodynamic equilibrium can be computed by searching for
the order parameter that minimizes the Gibbs energy of ordering

_ _J 2 1 [ 2(1 - TJ)ln(l - TJ) ] �G(TJ) - -hll c-T] - 2V��CTJ + i8Tc +(l + 2T])ln(l + 21']) ,

with

(6)

(7)

3V� is the deviatoric V33 - V11 of the tensor of relaxation volume
v° , and hll is the strain-energy parameter. For a given order
parameter Tl, the corresponding strains are

(8)
The composition - stress diagram computed at room temper­

ature from Eqs. (6)-(7) and the data ofTable 1 is presented in Fig. 2.
Ferrite and martensite are respectively the low-order and high­

order instances of bct-iron. Coexistence of both phases occurs along
the �(c) curve (solid line in Fig. 2). The curve ends at the critical
point, beyond which spreads the domain of supercritica/ bct-iron.

The arcs indicate the stability domains of prolate ( axial ratio c/a > 1,
T] > 0) and oblate (c/a < 1, T] < 0) tetragonality. Cubicferrite (TJ = 0) is
stable only under hydrostatic pressure, i.e. at � = 0 (horizontal
segment in Fig. 2). Numerically, the criticaI point lies at cK = 0.0120
(0.27 wt%) and �K = 11.5 MPa. The ferrite - martensite transition
under zero stress occurs at c0 = 0.0125 (0.25 wt%). This value is in
the range of 0.20 wt% to 0.6 wt% reported in the literature
[10,34,35). 

2.2. Jump frequendes 

Let's consider a carbon atom on an octahedral site O; migrating
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Fig. 2. Composition - stress diagram computed at T = 293 K. The critical point has 
coordinates cK = 0.0120 and �K = 11.5 MPa (black point). 

towards a first-neighbor octahedral site Ok via the saddle-point
tetrahedral site Tj (i * j * k). During the jump, under fixed
strain, the crystal has to overcome an energy barrier Eij. According
to the rate theory, the jump frequency related to this particular
jump is r

ii 
= v0exp( - Eij/k8T). The attempt frequency v0 is

assumed strain-independent. Through Eij, the strain-dependence of
the site energies fÜ and fT is the origin of the strain effect on carbon
diffusivity and diffusion anisotropy. A similar reasoning explains
the stress effect, via the stress-dependent migration enthalpy. In
the following, we will distinguish the fixed-strain and fixed-stress
conditions. 

2.2.1. Migration under fixed strain 

We define the interstitial site energy fÜ or T as the change in
crystal energy upon inserting a carbon atom in O or T position
under fixed strain: the site energy is the energetic part of the
chemical potential of carbon. The elastic energy changes upon
carbon addition because the total dipole tensor of the crystal is
modified by the amount P0 or T in the process. From Eq. ( 1) we have

E
° or T = f'6 or T _ pO or T : e. (9)

f8 or T is the site energy in the undeformed eu bic crystal. The term
-P0 or T : e is the interaction energy of the carbon atom with the
strain field. This energy is minimum when the scalar product
pO or T : e is maximum. The case of uniaxial strain field along z, with
i:: = (0, 0, i::o) is simple: (i) an O site verifies � > � (see Table 1 ), thus
traction (i::0 > 0) favors 02 sites, while compression (i::0 < 0) equally
favors Ox and Oy sites compared to 02• This is the origin of strain­
induced Zener ordering and inverse-Zener ordering (6,15]. (ii) On
the contrary, a T site has PJ <PI: traction favors Tx and Ty sites
compared to T2, and the opposite for compression. 

The migration energy Em is the difference in site energies ET -
E0

. From Eq. (9),

Em = E/I' - (PT - P0): e. (10)

E/I' = Ei - f8 is the migration energy in the undeformed crystal.
For a given jump, the dipole tensor of migration ap = pT - pO

govems the influence of strain on the migration energy for the
jump. P0 and pT have tetragonal symmetry but the combination

pT - pO breaks the original symmetries into orthorhombic sym­
metry; hence ap has three distinct components. They are at the
origin of the anisotropy of diffusion, as will be shown in Sec. 3. 

2.2.2. Migration under fixed stress 

In the case of fixed stress, we consider the migration enthalpy
Hm. The elastic effect on the migration enthalpy originates from
both the change in total dipole tensor and the change in crystal
strain during ajump. From Eq. (5), 

Hm = H/I' - s(pT - pO} ( (î +�)-½(PT - pO): ( t?
- eo).

(11)

Strains i::0 = SP0 / r and e
T = spT / r are the deformations of a

relaxed crystal of volume r induced by one carbon atom in
respectively O and T positions. lt is only significant for nanocrystals.
In the limit of large crystals, we will use the simplified form 

(12)

This formula involves the tensor of activation volume of the jump
av = S(PT - P0). In the case of pure ferrite under pressure p, P
vanishes, and the enthalpy of migration takes the usual form Hm =
H/r- pav, where av= vT 

- v0 is the activation volume. Since
S(a+P/Vo) is the strain tensor e, Eq. (12) and Eq. (10) have the
same form, and consequently Hg' = Eg'.

2.3. Diffusivities 

We restricted our study to tetragonal crystals. Even in these
case, the effect of the migration energies on the diffusivity is not
straightforward because three different types of jumps are
involved. To derive the analytic form of the diffusivities, we used an
approach similar to that described in the paper of David et al. (36],
which uses the multisite method developed by Landman et al. (24].
The diffusivities then write 

(13)

and

(14)

ax and a2 are the transverse and axial lattice parameters of the
quadratic unit cell. When the structure is cubic, ax = a2 = a,
r12 = r13 = r31 = r, and one recovers the classical formula
D = ra2 /6 (37]. In the numerical evaluations, we neglected the
variations in lattice parameters and set ax = a2 = a0 • The ratio D2/ 

Dx quantifies the anisotropy of diffusion: 

D, _ (az) 2rn 
Dx - ax r12 . 

(15)

Experimental data of tracer diffusion in stress-free ferrite were
used to fit the attempt frequency v0 and migration enthalpy HIJ1:
The isotropie diffusivity of carbon writes (37]

(16)



with

(17)

The coordinance is Z = 4 and jump length is À= a0/2.
Either experimental data or calculated data of tracer diffusion in

stress-free ferrite can be used to fit the values of Do and Hg1. Our
calculations were performed using the Vienna ab initio simulation
package (VASP) [38]. Self-consistent Kohn-Sham equations were
solved using the projector augmented wave (PAW) pseudo­
potentials [39]. The Perdew-Burke-Emzerhof (PBE [401) exchange
and correlation functional was used. The plane-wave energy eut-off
was set to 400 eV and r-centered Monkhorst-Pack meshes [41]
were used to sample the first Brillouin zone ( equivalent to
48 x 48 x 48 for the primitive cell). For site energy calculations, a
supercell approach (3 x 3 x 3 cubic cells, i.e. 54 Fe atoms) was used
with periodie boundary conditions to describe systems with and
without point defect. Atomic positions and lattice parameters
(shapes and volumes) were fully relaxed. Simulations were per­
formed with spin polarization to model the ferromagnetic state of
iron. Vibrational properties and inter-atomic force constants (IFCs)
were obtained as fini te differences of forces with respect to atomie
displacements fields. Due to an excessive numerical cost, IFCs were
only conducted on primitive 3 x 3 x 3 supercells, i.e. with 27 Fe
atoms. The phonopy package [42] was used to generate finite dis­
placements according to the symmetry of each structure. ln ail
cases discussed here, the full inter-atomie vibrational forces of the
supercells were computed, for stable and transition states. 

The jump frequency r = v0exp(-Hg1 jk8T) was computed from
the transition rate theory [43], by using

(18) 

where .z rs and .z1 are the partition functions for the transition
state (tetrahedral site) and the initial state (octahedral site)
respectively . .Z is related to the vibration frequencies Wqv of the
system:

ln.Z = -�ln [ 2sinh ( - ;�:;)] (19)

The calculated value of v0 from Eqs. (18) and (19) is a slowly varying
function of temperature. Fitting the calculated diffusivity in the
range of 235-1000 K yields Hg1 = 0.888 eV and
Do= 3.51 x 10-1 m2 /s. These values are in the range of the previous
theoretical calculations and coïncide with the low-temperature
experimental data [44]. 

In order to predict to a good accuracy the effect of stresses on
diffusivity in the widest range of temperature, we preferred to rely
on the fit of the experimental data collected by da Silva et al. [45]:
Hg1 =0.872 eV and Do=2 x 10-6 m2/s. Identification to Eq. (17)
yields v0 = 149 THz. These values are identieal to the ones used by
Gendt et al. [46] and Hin et al. [47,48] in their KMC simulations.
According to these data, carbon atoms jump at room-temperature
(293 K) in pure cubie ferrite at the frequency r = 0.15 Hz, corre­
sponding to the diffusivity D = 2.03 x 10-21 m2/s. 

2.4. Kinetic Monte Carlo simulations 

Kinetie Monte Carlo simulations were performed on the rigid
lattice of the octahedral sites. This cubic lattice is the reference
frame for the linear elasticity calculations. Periodie boundary con­
ditions were applied to the simulation box. The average residence-

time algorithm was used to provide the correct time-scale [49].
Calculations in dilute ferrite were carried out in a box of
8 x 8 x 8 cells containing one carbon atom, performing 106 suc­
cessive jumps, corresponding to a root-mean-square (RMS)
displacement of around 1450 A. For calculations in supersaturated
iron, a total of -1600 carbon atoms were inserted, and the box size
was adjusted in relation to the carbon content. To compute de
diffusion coefficients, each carbon atom was allowed an average of
45 jumps, corresponding to a RMS displacement of -9 A. The RMS
displacement was averaged over ail carbon atoms in the simulation
box. With these settings, the relative convergence on the diffusiv­
ities was better than 1%. 

The diffusivities Dx, Dy, D2 are related to the displacements Rx, Ry 

and R2 along x, y and z directions, via Einstein's equation: 

(20)

The total diffusivity is

(21)

The successive carbon jumps being uncorrelated, R� is calculated as
the sum of the squares of jump lengths L (âX)2 over the simulation
time. Idem for R� and R�.

3. Tracer diffusion in dilute bct-iron

At infinite dilution, the deformation induced by the carbon
atoms is vanishing. The total stress reduces to the applied stress,
which can be controlled via an applied strain. We considered spe­
cific cases of applied strain: uniaxial, biaxial and isotropie traction
and compression. The results of the KMC simulations are compared
to the model of elastodiffusion, and discussed. 

3.1. Results of Monte Carlo simulations 

Fig. 3 shows the positions occupied by one carbon atom during a
run of 300 jumps at room temperature. Three cases are presented:
(a) The absence of strain insured isotropie diffusion. (b) 5% axial
expansion along z induced diffusion anisotropy, ail displacements
occurring in a transverse x-y plane. (c) 5% axial contraction along z
induced diffusion channeling along the z axis. 

Table 2 summarizes the calculated diffusivities for various strain
tensors. The applied strain produced acceleration or slow-down,
isotropie, transverse, or axial diffusion depending on the compo­
nents of the strain tensor. 

KMC simulations agree with the analytieal mode! within a
relative accuracy better than 1%, confirming the coherency of our
approach. This allows using the mathematical formulae [Eqs. (13)
and (14)] to interpret the numerieal results and trends in the
diffusion behavior. 

3.2. Interpretation of the diffusion behavior 

3.2.1. Migration energies 

The tetragonal distortion of the bec cell breaks the octahedral
sites into two sets of non-equivalent sites: Ox = Oy and 02• The same
occurs for the tetrahedral sites. As a result, the strain-induced
migration energy E

ij = Eg1 - (Pr; - r0•) : e can take three distinct
values: E12 = E21, E13 = E23 , and E31 = E32 (see Fig. 1a). To split up the
effect of the applied strain into isotropie and deviatorie terms, we
introduce the volume expansion tre = l:l. V /Vo and the deviatorie
strain E = e33 - e11. The migration energies then write 



z 

X 
�y 

(a) 

•• 

(b) (c) 

• 
0 •••••
0 ••••
••

Fig. 3. 300 successive carbon positions during diffusion at 293 K. (a) isotropie diffusion, e = (0, 0, 0), (b) x-y transverse anisotropy, e = (0, 0, 0.05), and (c) z-channeling, e = (0, 
0, -0.05). 

Table2 

Effect of an applied strain (e11, e22, e33) on the diffusivities Dx, Dy, Dz and D (in m2/s) at 
room temperature (T = 293 K). 

•11 •22 &33 Dx = Dy Dz D 

0 0 0 2.03 X 10-21 2.03 X 10-21 2.03 X 10-21 

0.01 0.01 0.01 9.07 X 10-22 9.07 X 10-22 9.07 X 10-22 

-0.01 -0.01 -0.01 4.53 X 10-21 4.53 X 10-21 4.53 X 10-21 

0 0 0.01 2.26 X 10-21 5.41 X 10-23 1.53 X 10-21 

0 0 -0.01 4.39 X 10-22 1.85 X 10-20 6.44 X 10-21 

0.01 0.01 0 1.97 X 10-22 8.26 X 10-21 2.88 X 10-21 

-0.01 -0.01 0 5.06 X 10-21 1.21 X 10-22 3.41 X 10-21 

E12 = Elf -½[ !lP tre + ( - PJ + PI + P� - J1) E ] 

E13 = Elf -½ [ !lP tre + ( 2PJ - 2PI + J1 - P�) E ] 

E31 = Elf -½ [llP tre + ( - PJ + PI - 2P� + 2P�) E] 

DJDx 

0.024 
42. 
42. 
0.024 

(22) 

with !lP = tr(Pr - P0). The effect of the volume expansion is 
identical for ail three activation energies. Anisotropy arises from the 
deviatoric part the strain tensor, via linear combinations of� - Pr
and PJ - PI, which represent the tetragonal anisotropy of the O and 
T interstitial sites. Three particular cases of strain symmetry are of 
interest: 

1) Isotropie dilatation/contraction.
In this case, E = O. The three migration energies are equal to

0.9 1 

0.8 

0.0 

-0.1 

-0.2 

ësotropic = E
o
m - .!. llP tre 3 (23) 

and diffusion is isotropie. With the data ofTable 1, !lP = - 2.03 eV, 
i.e. isotropie dilatation favors more the octahedral sites than the
tetrahedral sites. Hence, lattice dilatation reduces the diffusivity,
while lattice contraction increases it, as can be checked in Table 2.

2) Uniaxial strain.
With the strain tensor e = (0, 0, e0) the three migration en­

ergies are written numerically (in eV):

Ef�iaxial = 0.872 - 4.80eo 
Ef�iaxial = 0.872 + 4.63eo 
E3riaxial = 0.872 + 2.20eo 

(24) 

Fig. 4 exemplifies the corresponding energy paths of migra­
tion in a case of axial expansion (e0 > 0). 03 sites are energeti­
cally favored sites for carbon compared to 01 and 02, while T 3 

are energetically disfavored compared to T1 and T2 . Conse­
quently, the 01-+ T 2-+ 03 and 02-+ T 1 -+ 03 transverse jumps 
have the lowest migration energy: expansion in direction z fa­
vors atomic jumps in the x-y plane. Meanwhile, the axial jumps 
01 -+T3-+02 and 02-+T3-+01 are the most disfavored. Hence, 
axial expansion produces transverse in-plane diffusion. On the 
opposite, axial contraction favors the axial jumps and produces 
axial diffusion, i.e. channeling of the carbon atoms along the 
contracted axis. This behavior is confirmed by the KMC results 
(see Table 2). 

Fig. 4. Energy paths of carbon migration. Site energies and migration energy Eij for a carbon jump from an octahedral site (O;) to an octahedral site (Ok) via a tetrahedral site (Tj)­
Left: cubic cell e = (0, 0, 0), right: tetragonal cell e = (0, 0, 0.01 ). Axial expansion lowers E12 and favors x-y in-plane atomic jumps. 



3) Biaxial strain.
With the strain tensor e = (i:0, i:0, 0), the three migration

energies write (in eV)

E��axial = 0.872 + 6.83eo
E��axial = 0.872 - 2.60eo
E�\axial = 0.872 - 0.17eo

(25) 

According to these values, biaxial expansion (i: 0 > 0) produces 
z-channeling, white biaxial contraction ( i:0 < 0) produces x-y in­
plane diffusion (see Table 2). ln terms of anisotropy, the situa­
tion is analogous to the uniaxial case since the anisotropy of
diffusion is a function of the deviatoric E of the strain only, and
E{eo, e0, 0) = E(O, 0, -e0) = - e0: contraction along z is
equivalent to expansion along x and y directions.

3.2.2. Diffusivities

In the case of tetragonal deformation, Eq. (15) gives the 
anisotropy ratio 

(26) 

We will restrict our analysis to the case of uniaxial expansion/ 
contraction. With the uniaxial strain e = (0, 0, i:0), the deviatoric 
strain is E = i:0. The anisotropy ratio [Eq. (26)] depends on the 
properties of the tetrahedral sites via the difference PI - Pl = 
9.43 eV. As this value is positive, we have D2 < Dx when i:o > 0 and 
D2 > Dx when i:o < O. In addition, the ratio D2/Dx is inversed when 
the strain changes sign. This behavior confirms our previous anal­
ysis of the jump frequencies. The effect of temperature on the 
anisotropy ratio also reverses when the strain changes sign. When 
the temperature increases the anisotropy tends asymptotically to 1. 
These conclusions are in qualitative agreement with the altemate 
approach ofîrinkle [50]. 

Contrary to the migration energies E;j, the diffusivities D; are not 
symmetric about e0 = 0, as the slopes change around a positive 
strain {Fig. 5). The diffusivities are neither monotonous functions: 
at room temperature, Dx peaks at about e0 = 0.005. The axial and 
transverse diffusivities follow different slopes: e.g. Dx loses of factor 
of 25 over 5% of axial expansion, whereas D2 gains 4 orders of 
magnitude over 5% of axial contraction. 

For large strain or low temperature, one among the three types 
of atomic jumps dictates the diffusional behavior: 

10-1" .,..-----------,-----------, 
... _ ... _ 

-- ... ... 
.. ... 

_ ... 
--

__ ... 

-0.04 

--

-­...... 

-:�,r:::::::::::-----�D�,�=�D�y 
... -

-0.02 0.00 0.02 

Axial strain e0 (-] 

0.04 

Fig. 5. Effect of an axial strain e = (0, 0, e0) on diffusivities at T = 293 K. Axial expansion 
promotes transverse diffusion, whereas contraction promotes axial diffusion chan­
neling. Cubic ferrite is at abscissa e0 = O. 

1) In the case ofuniaxial expansion, r 12 is the major frequency, due
to its smallest migration energy [Eq. (24)]. Transverse diffusion
occurs in the x-y plane since D2«Dx, D

y 
[Eqs. (13) and (14)]. The

total diffusivity simplifies into D:::� (a�/2)r31 . Diffusion pro­
ceeds by successive carbon jumps in a x-y plane along the chain
01 or 2 ---> 03 ---> 01 or 2 ---> 03 ... ( see Fig. 3 ). The rate-limiting step
in the chain is the jump out of the trapping site 03, towards x or
y direction. The activation energy for diffusion is E31 = 0.872 +
2.20e0• 

2) In the case of uniaxial contraction, r 13 is the major frequency
and r31 » r12. Channeling occurs along the z axis (D2 »Dx,D

y
).

The diffusivity is D:::¼(aU2)r13. Diffusion proceeds by succes­
sive jumps in a z axis along the chain 01 ---> 02 ---> 01 ... avoiding
the disfavored sites of type 3 (see Fig. 3). The activation energy
for diffusion is E13 = 0.872 + 4.63i:0. 

Comparing cases 1 and 2, the effect of axial contraction on the
activation energy for diffusion is twice larger than the effect of axial 
expansion. Arrhenius laws for the two cases are depicted in Fig. 6. 
Under compressive strain, the diffusivity is higher, and decreases 
Jess steeply with temperature decrease than under tractional strain. 

As a partial conclusion, we showed that lattice strain affects the 
magnitude of carbon diffusivity, which can be largely increased or 
decreased. Axial strain induces axial channeling or transverse 
diffusion, depending on its sign. This behavior can be rationalized 
via the strain-induced changes in migration energies coupled to the 
formulae of the anisotropie diffusivities. These findings will serve as 
a basis for understanding the effect of stress in supersaturated bct­
iron, as will be shown in the next section. 

4. Diffusion in supersaturated bct-iron

In a supersaturated crystal, carbon atoms contribute to the total
strain of the crystal, in addition to the externat stress. Then, from 
Sec. 3, we expect that carbon content and the degree of long-range 
carbon ordering affect the diffusivities. Considering the case of 
fixed-stress transformations, the diffusivities were computed as 
follows: for a given composition, temperature and stress tensor, the 
equilibrium degree of order was computed via minimization of the 
Gibbs energy of ordering (Eq. (6)). Each degree of ordering corre­
sponds to an average dipole tensor, from which the migration en­
thalpies (Eq. (12)) and the resulting diffusivities (Eqs. {13) and (14)) 
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Fig. 6. Arrhenius plot of diffusivities for axial strains e = (0, 0, ±0.05). The activation 
energies depend on the direction of diffusion and on the strain level. The black line is 
the reference cubic ferrite. 



were derived. 

Fig. 7 illustrates the influence of carbon content on diffusion in 

the reference case of a stress-free crystal at room temperature: 

1) Below the transition composition of c0 = 0.0125, the order

parameter remains null in ferrite (Fig. 7a). The lattice strain

increases linearly with composition on account of the relaxation

volume of carbon. Correlatively, the migration enthalpy in­

creases and the diffusivity in ferrite slowly decreases with car­

bon content.

2) At the transition, the order parameter jumps from 0 to 0.5 as

cubic ferrite transforms into tetragonal martensite. Due to the

change of crystal symmetry, ail variables split into new values,

and the diffusivities undergo sharp discontinuities.

3) Above the transition composition, the order parameter grows

continuously towards 1. Crystal volume and tetragonality in­

crease continuously. Ali diffusivities decrease with increasing

carbon content, but transverse diffusivity remains dominant.

These results show that room-temperature carbon diffusivity in 
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Fig. 7. (a) Order parameter. (b) lattice strains, (c) migration enthalpies and (d) corre­
sponding diffusivities of carbon, as function of carbon content in stress-free bcc-iron 
(c< c0 ) and bct-iron (C> c0 ) at room temperature (293 K). 

stress-free martensite is highly anisotropie and is dominated by 

diffusion perpendicular to the axis of tetragonality. 

Fig. 8 summarizes the behavior of the diffusivity D at room 

temperature as function of composition in the case of an axial stress 

a= (0, 0, cr0). The agreement between KMC simulations (points) 

and elastodiffusion mode) (lines) is better than one percent in most 

cases. The absence of KMC results at c = 0.013 and 0.015 for 

cr0 = -100 MPa is due instabilities of the tetragonal crystal under 

compressive stress. This tapie will be discussed in a future 

publication. 

Tension in the axial direction stabilizes Zener ordering (Fig. Ba). 

On the contrary, axial compression stabilizes inverse-Zener 

ordering when c is smaller than the coexistence value. At the 

composition of coexistence, the discontinuity in order parameter 

produces a discontinuity in diffusivity: an upward jump when 

cro > 0, and a drop when cro < O. As mentioned in Sec. 2, when cro is 

larger than the room-temperature critical stress of 11.5 MPa, the 

order parameter varies continuously with carbon content. In this 

case, a change of si ope in the diffusivity occurs in the vicinity of the 

transition region, i.e. around Tl = 0.25. Far from the transition re­

gion, the slopes are dominated by one of the migration enthalpies, 

as discussed in Sec. 3, and lnD tends to a linear function of carbon 

content. 

Far from the transition region, the diffusivities are arrhenian in 

ferrite and in martensite, but with different, stress-dependent, 

activation energies (Fig. 9). For each stress level lower than the 

critical stress, a discontinuity is observed at the temperature of 

transition. Axial diffusivity is found more sensitive to temperature 

change than transverse diffusivity. 

5. Discussion

We found that the diffusivities of carbon atoms in bec- and bct­

iron are sensitive to the mechanical loading of the crystal. In the 

case of tetragonal loading, axial and transverse diffusivity may 
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differ by several orders of magnitude, exhibiting a largely aniso­
tropie behavior. Anisotropy is intrinsic to stress-free martensite 
since martensite is itself a tetragonally deformed crystal. 

Our analytical results are supported by comparison with KMC 
simulations in bath deformed ferrite and martensite. The numerical 
results are limited to the accuracy of the material parameters in use, 
and especially those derived from DFT calculations. The uncertainty 
on the stiffness constants and the dipole tensor components can 
reasonably be estimated to about 20% in the range of composition 
and temperature under interest. Under these conditions, our con­
clusions remain largely valid. 

Few literature studies have been dedicated to carbon diffusivity 
in supersaturated iron. Sorne are limited to fully ordered martensite 
[22.27]; others incorporate the effect of partial ordering [50]. 
Diffusion anisotropy, slowing-down by Zener ordering and effect of 
pressure can be compared quantitatively. 

1) From Eq. (8), in stress-free fully ordered martensite ( Tl = 1,
a= 0), the strain components write numerically as fonction of
composition c

e11 = e22 = 0.0364 c 
e33 = 0.840 C. (27) 

These values are in good agreement with the experimental 
review of Chen et al. [51 ], as reported in Ref. [26]. From Eq. (11 ), 
the corresponding variations in migration enthalpies Hii - Hg1 
are 

Mf12 = -3.81c 
t:..Hn = +3.77c 
t.H31 = + 1.82c 

(28) 

with Hg1 = 0.872 eV. On their side, by molecular dynamics with 
EAM potential coupled to kinetic Monte Carlo, Lawrence et al. [27] 
found 

t.H1 2 = -1.87xc 
t:..Hn = -1.17xc 
t.H31 = + 1.13xc 

(29) 

with Hg1 = 0.815 eV and Xe = c/(1 + c). Eqs. (28) and (29) agree 
that the migration enthalpy H12 is the lowest of the three, i.e. the 
jumps from disfavored to favored sites are the most probable in 
stress-free martensite. However, the values differ in magnitude. 
Eqs. (29) also state that axial migration enthalpy is favored 
(t:..Hn < 0). As a consequence, the data of Lawrence et al. predict 
diffusion channeling along the axis of tetragonality. Our findings 
are at variance. Indeed, from Eq. (26) the anisotropy ratio in fully­
ordered martensite writes 

D2 _ (a2
)

2 

[ 
7.57 c] 

-- - exp ---
Dx Gx ksT · 

(30) 

The positive activation energy of the ratio (7.57 c in eV) im­
plies strong transverse diffusion in stress-free martensite: at 
room temperature, the ratio equals 0.113 for c = 0.0125. It rea­
ches 5.4 x 10-17 for c = 0.125, i.e. no axial diffusion is to be ex­
pected in the compound Fe16C2. 

2) Hillert [22] was the first to suggest that carbon-induced tetra­
gonality would slow down carbon diffusion in martensite. He
argued that carbon diffusivity is controlled by the jump fre­
quency out of the favored octahedral sites, i.e. r31 with our
notations. Our analysis confirms this intmt10n, since
D::::i (a�/2)r31 in case of positive tetragonality (see Sec. 3).
Using the data of Zener [3], Hillert approximated the change in
activation energy to EHz = 3.11 eV per unit carbon fraction. From
our model, we find EHz = 1.82 eV with our materials data [Eq.
(28)], and 1.13 eV with the data of Lawrence et al. [Eq. (29)). The
value of Hillert suffers from a rough approximation of the acti­
vation energy formulation, due to the Jack of appropriate data
about the tetrahedral sites. Lawrence's value is smaller than ours
because the lattice tetragonality is underestimated by their EAM
potential. Accurate experimental investigation of the carbon
diffusivity in supersaturated iron is still missing. However, in­
direct determination was recently made available: using a ki­
netic model of spinodal decomposition of virgin Fe-Ni-C
martensite, EHz was fitted to 4 eV [18]. This value is relatively
close to the activation enthalpy of the present work t:..H13/c
= 3.77 eV, suggesting that diffusion in the axial direction is the
limiting mechanism for spinodal decomposition. This is in
accordance with the recent theoretical investigation of Yan et al.
[15), who exhibited decomposition of martensite into a modu­
lated structure of wave vector [O O fol parallel to the applied
strain, hence necessitating diffusion in the axial direction.



3) The effect of pressure on the diffusivities is dictated by the value
of fl.P = tr(PT - P0 ) [Eq. (23)), or equivalently by the activation

volume fl.V = (511 + 2512 )fl.P. The sign of fl.P is sensitive to the
exact value of the components of the di pole tensors pT and pO .
Our DFf calculations and those of Souissi et al. (31] yield fl.P < 0,
whereas the EAM potential (27) yields fl.P > 0 (Table 3). Hence,
our results predict an increase in diffusivity with increased
pressure (or decreased volume), whereas Lawrence data (27)
predict the opposite. Given the experimental uncertainties, the
scarce measurements of the activation volume at low temper­
ature do not allow concluding on this point (see Table 3) (19,20).

An indirect effect of the activation volume can be computed via 

the linear thermal expansion coefficient a(n: when substituted in 

Eq. (23), the thermal strain gth = J a(T)dT yields the expansion­

induced variation in migration energy. This, in principle, produces 
a deviation from the Arrhenius law. Using the data of[52), we find a 
decrease in diffusivity by a factor of 0.75 at the ferrite - austenite 
transition temperature (T = 1185 K). Contrary to Lawrence, we 
conclude that this effect is too small to explain the deviations from 
arrhenian behavior that one may see in the data compiled by da 
Silva et al. (45) or Weller (53). 

Our results show that the magnitude of carbon diffusivity in 
ferrite and martensite is sensitive to the magnitude and orientation 
of the stress or strain. The effects can be large when the strain is of 
the order of a few percent. Such levels of lattice strain can be 
reached in supersaturated martensite or in heavily deformed 
ferrite. ln these situations, the anisotropy of diffusion will favor 
anisotropie microstructure formation. For example, the first stages 

of spinodal decomposition of virgin martensite are possibly driven 
by the anisotropy of diffusion. If so, carbide lamellae will form 
perpendicular to the axis of fast diffusion. Altematively, if the 
morphology is driven by elastic energy more than by diffusion, the 
kinetics of decomposition will be largely affected by sluggish 
diffusion in some crystallographic directions, depending on the 
local magnitude and direction of the strains. Similarly, the anisot­
ropy of diffusion is likely to play a role in the kinetics of coarsening 
of cementite lamellae in highly deformed cold-drawn perlite (54). 

To go further, by controlling the direction and magnitude of the 
strain and/or stress field, the morphology of carbide lamellae 
formed in supersaturated martensite may be driven: uniaxial 
compression is expected to favor lamellae perpendicular to the (fast 
diffusing) axial direction, whereas uniaxial traction would favor 
lamellae in zone axis with the axial direction, in analogy to the 
strain-induced rafting phenomenon in Ni-based superalloys (55). 
Contrai of such mechanisms opens the way to strain or stress 
"engineering" of martensite in the future. 

6. Conclusions

We developed a mode! for the diffusivity of carbon atoms in bct­
iron, including ferrite and martensite phases in a coherent 
approach. The mode! is based on the anisotropie linear elasticity 

Table3 

Isotropie part of the di pole tensor of migration M', and volume of migration a V. 

Comparison with data extracted from the Iiterature. 

This work (DFr) 

Souissi (DFf) (25,31) 

Lawrence (EAM) (27] 
Bosman (exp.) (19] 

Bass (exp.) (20] 

àP(eV) 

-2.03 
-2.66 
4.97 

a Calculated from àP and the elastic constants. 

àV(A3) 

-0.58 
-0.75a 

1.49• 

-0.07±0.07 
0.0±0.2 

theory of point defects, the dilute approximation of regular solu­
tions and the multisite mode! of random walk. It allows predicting 
the effects of composition, temperature and mechanical loading on 
the anisotropy of carbon diffusion in bct-iron. 

We showed that tracer diffusion of carbon in ferrite is sensitive 
to the mechanical loading: axial expansion/tension favors trans­
verse diffusion, whereas axial contraction/compression favors axial 
diffusion. The channeling effect in the axial direction can be very 
strong for strains of a few percent, commonly encountered in 
martensite. 

Diffusion in stress-free martensite depends not only on carbon 
content but also on the degree of Zener ordering. Carbon diffusion 
is highly anisotropie and is dominated by migration perpendicular 
to the axis of tetragonality. The diffusivity is significantly reduced in 
highly supersaturated martensite. 

Diffusion in stressed martensite is generally accelerated by axial 
compression and slowed down by axial tension. lt exhibits a com­
plex behavior as function of composition and temperature in the 
vicinity of the martensite - ferrite transition, and a discontinuity at 
the transition. 

These results suggest that the kinetics of carbon ordering in 
stressed bct-iron microstructures is very sensitive to the local state 
of strain/stress of the crystals. Also, the microstructure of 
martensite is expected to be affected by stresses applied during 
thermal ageing. Such phenomena could be exploited for "stress 
engineering" of ferrous martensitic alloys. 
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