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A mathematical modeling, the Finsler geometry (FG) technique, is applied to study the rubber
elasticity. Existing experimental data of stress-strain (SS) diagrams, which are highly non-linear,
are numerically reproduced. Moreover, the strain induced crystallization (SIC), typical of some
rubbers like Natural Rubber (NR), which is known to play an important role in the mechanical
property of rubbers, is partly implemented in the model. Indeed, experimentally observed
hysteresis of SS curve can be reproduced if the parameter a of non-polar (or polar) interaction
energy is increased for the unloading or shrinkage process in the Monte Carlo (MC) simulations,
and at the same time we find that the order parameter M of the directional degrees of freedom σ
of polymer show a hysteresis behavior which is compatible with that of the crystallization ratio.
In addition, rupture phenomena, which are accompanied by a necking phenomenon observed
in the plastic deformation region, can also be reproduced. Thus we find that the interaction
implemented in the FG model via the Finsler metric is suitable in describing the mechanical
property of rubbers.
Keywords: Rubber elasticity, Natural rubber, Stress-strain diagram, Strain induced
crystallization, Necking of rubber, Finsler geometry

1. Introduction
The main specific feature of Natural Rubber is that it crystallizes when stretched above an
elongation of about 3 (see Figs.1(a),(b)) [1, 2, 3, 4]. This makes it extremely resilient against
tearing as near the rupture tip, local strain induces crystallization which in turn slows down
the tear propagation. As it is an almost unique behavior for rubber, NR is widely used
to manufacture truck tires, representing a huge industrial market. Figure 1(c) schematically
illustrates such behavior.

In the FG modeling for studying the mechanical property of materials, we modify the
geometric structure inside the material simply by replacing the Euclidean metric with Finsler

http://creativecommons.org/licenses/by/3.0
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(a)        (b)      (c) 1 3 5 7012
λ

τ unloading[MPa] loading 1 3 5 7024xc unloading[%] loading
λ

NetworkpointOriented amorphous Un-oriented amorphousUn-deformedStateCrystallite Deformed  StateRef.[2] Ref.[2] Ref.[4]
Figure 1. (a) The stress τ vs. elongation ratio λ(= L/L0), (b) the crystalline fraction vs.
λ for loading and unloading processes (from [2]), and (c) illustrations of polymer structure in
deformed and undeformed states (from [4]).

metric. As a result of this geometry modification, the interaction is effectively introduced
between the directional and positional degrees of freedom of polymers [5]. Therefore, this
technique is new and completely different from the ordinary modeling techniques. The FG
modeling technique was already successfully applied to several interesting phenomena: the so-
called soft elasticity observed in the liquid crystal elastomers as a response to external mechanical
forces, the elongations under the temperature change [6] and by electric field [7], and shape
deformation of LCE piece under light irradiation [8]. It was also shown that the J-shaped SS
curve of biological materials such as animal skin and muscle is calculated by 2D and 3D FG
models [9, 10]. Moreover, the origin of the line tension energy, which plays an important role
in the model of two-component membranes, is explained by a 2D FG model [11]. These results
enable us to consider that FG model can also be applied to rubber elasticity.

2. Models
2.1. 3D Model
The continuous Hamiltonian for 3D model is given by

S1 =

∫ √
gd3xgab

∂r

∂xa
· ∂r
∂xa

, S2 =

∫ √
gd3x

(
gab

∂r

∂xa
· ∂r
∂xa

)2

(1)

where r(∈ R3) is a function of the parameters xa(a = 1, 2, 3) as the position of 3D material, g
is the determinant of 3× 3 matrix gab, and gab is its inverse. S1 is the so-called Gaussian bond
potential, while S2 is a simple extension of S1 and quadratic with respect to ∂r/∂xa.

Here we describe the outline of the 3D FG model. Two-dimensional cylinder with finite
thickness, discretized by tetrahedrons, are used to define the discrete Hamiltonian (Fig. 2(a)).
On the tetrahedron with vertices 1234 (Fig. 2(b)), the discrete metric gab is given by [5, 6]

gab =

 1/v212 0 0
0 1/v213 0
0 0 1/v214

 . (2)

In this discrete metric, the Finsler length vij is defined by

vij =

{
|tij · σi|+ v0 (model 1)√

1− |tij · σi|2 + v0 (model 2)
, tij = ~̀

ij/`ij , ~̀ij = rj − ri (3)
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(a)        (b) ℓ�� �� ℓ�� ℓ�� ℓ�� ℓ�� �1 4 2 3
Figure 2. (a) A cylinder composed of tetrahedra for 3D model, (b) a tetrahedron with vertices
1234, and the variable σ1 with its tangential component along the edge 12.

where σi corresponds to the polymer direction at the vertex i, and v0(= 0.001) in vij is the
cutoff.

Replacing the integral with the finite sum
∫ √

gd3x→
∑

∆ v
−1
12 v

−1
13 v

−1
14 and the differentials

with the differences ∂1r→ r2−r1, ∂2r→ r3−r1, ∂3r→ r4−r1 in Eq.(1), and including the other
symmetric terms obtained by the replacements 1→2, 2→3, 3→4, 4→1, we have the discrete
S1 and S2. In this discretization, four symmetric terms are summed over with the factor 1/4.
Including several additional terms, we have the Hamiltonian [10]:

S(r, σ) = aS0(σ) + bS1(r, σ) + cS2(r, σ) + κS3(r) + U3D(r) + UB,

S0(σ) =
1

2

∑
ij

(
1− 3(σi · σj)2

)
,

S1 =
∑
ij

Γij`
2
ij , Γij =

1

N̄

∑
tet

γij(tet), `2ij = (ri − rj)
2,

S2(σ) =
∑
ij

Γ
(1)
ij `

4
ij +

∑
ij,kl

Γ
(2)
ij,kl`

2
ij`

2
kl, S3(r) =

∑
i

[1− cos(φi − π/3)] , (4)

U3D(r) =
∑
tet

U3D(tet), U3D(tet) =

{
0 (Vol(tet) > 0)
∞ (otherwise)

,

UB =
∑

i∈boundary
UB(ri), UB(ri) =

{
∞ (|zi −H| > δB or |zi| > δB)
0 (otherwise)

.

The first term aS0 is the Lebwohl-Lasher potential for LC molecules with the interaction
coefficient a. The second and third terms S1 and S2 are discrete versions of the terms in Eq.
(1). In the coefficient Γij of the second term bS1, the symbol N̄ is given by

N̄ = (1/NB)
∑
ij

nij , (5)

where nij is the total number of tetrahedra sharing the bond ij and NB(=
∑

ij 1) is the total
number of bonds. The coefficients γij(=γji) in Γij are defined as

γ12 =
1

4

(
v12

v13v14
+

v21
v23v24

)
, γ13 =

1

4

(
v13

v12v14
+

v31
v32v34

)
, γ14 =

1

4

(
v14

v12v13
+

v41
v42v43

)
,

γ23 =
1

4

(
v23

v21v24
+

v32
v31v34

)
, γ24 =

1

4

(
v24

v21v23
+

v42
v41v43

)
, γ34 =

1

4

(
v34

v31v32
+

v43
v41v42

)
, (6)
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where vij are defined on the tetrahedron in Fig. 2(b) and
∑

tet denotes the sum over tetrahedra,
each of which shares the bond ij.

In the third term cS2, the coefficients Γ
(1)
ij and Γ

(2)
ij,kl on the tetrahedron in Fig. 2(b) are given

by

Γ
(1)
12 =

1

6

(
v312

v13v14
+

v321
v23v24

)
, Γ

(1)
13 =

1

6

(
v313

v12v14
+

v331
v32v34

)
,

Γ
(1)
14 =

1

6

(
v314

v12v13
+

v341
v42v43

)
, Γ

(1)
23 =

1

6

(
v323

v21v24
+

v332
v31v34

)
, (7)

Γ
(1)
24 =

1

6

(
v324

v21v23
+

v342
v41v43

)
, Γ

(1)
34 =

1

6

(
v334

v31v32
+

v343
v41v42

)

and

Γ
(2)
12,13 =

1

3

v12v13
v14

, Γ
(2)
12,14 =

1

3

v12v14
v13

, Γ
(2)
13,14 =

1

3

v13v14
v12

,

Γ
(2)
21,23 =

1

3

v21v23
v24

, Γ
(2)
23,24 =

1

3

v23v24
v21

, Γ
(2)
21,24 =

1

3

v21v24
v23

,

Γ
(2)
31,32 =

1

3

v31v32
v34

, Γ
(2)
31,34 =

1

3

v31v34
v32

, Γ
(2)
32,34 =

1

3

v32v34
v31

, (8)

Γ
(2)
41,42 =

1

3

v41v42
v43

, Γ
(2)
41,43 =

1

3

v41v43
v42

, Γ
(2)
42,43 =

1

3

v42v43
v41

.

We should note that Γ
(1)
ij =Γ

(1)
ji and Γ

(2)
ij,kl =Γ

(2)
kl,ij for all possible combinations of ij and kl.

The symbol φi in the fourth term κS3 is an internal angle of triangle, and this term κS3
is the deformation energy of tetrahedron with the constant κ, which represents deformation
strength against bending, shear and tensile deformation excluding simple expansion/shrinkage.
This term plays a role of maintaining the shape of 3D body. The fifth term U3D protects the
tetrahedron volume from being negative.

The potential UB allows the boundary vertices to move vertically in the height direction
within a small range ±δB, which is fixed to the mean bond length. This constraint does not
influence the results in the limit of N→∞ because δB/H is negligible in this limit

δB
H

(
=

mean bond length

height of cylinder

)
→ 0 (N →∞), (9)

because the mean bond length is independent of N , while H is proportional to N . The reason
why this constraint UB is assumed to be avoiding a strong and non-physical force, which is
suspected to appear when σi aligns with the height direction on the boundary for δB = 0.

2.2. 2D Model
The continuous energies assumed in 2D model are

S1 =

∫ √
gd2xgab

∂r

∂xa
· ∂r
∂xa

, S2 =

∫ √
gd2x

(
gab

∂r

∂xa
· ∂r
∂xa

)2

,

S3 =
1

2

∫ √
gd2xgab

∂n

∂xa
· ∂n
∂xa

. (10)

The first two terms S1 and S2 are identical with those of Eq. (1) except the integration
∫ √

gddx,
where d= 3 (d= 2) for 3D (2D) model. The third term S3 is the continuous bending energy of
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�⃗�(a)        (b)                                  (c)  
Figure 3. (a), (b) The tangential plane at the vertex i, its normal vector Ni, and the variable
σi, for 2D model, (c) normal vectors ni(i= 0, 1, 2, 3) of the triangle 123 and three neighboring
triangles.

the cylindrical surface, and n is a unit normal vector of the surface. This term S3 correspond to
the deformation energy S3 of 3D model in Eq. (4), although S3 for 2D model has only resistance
against bending deformation.

The discrete Hamiltonian of the 2D model is given by a linear combination of four different
terms such that [10]

S(σ, r) = aS0 + bS1 + cS2 + κS3 + UB, (γ = 1),

S0(σ) = − (3/2)
∑
ij

(
σ
||
i · σ

||
j

)2
,

S1 =
∑
ij

γij`
2
ij , S2(σ) =

∑
ij

Γ
(1)
ij `

4
ij +

∑
ij,kl

Γ
(2)
ij,kl`

2
ij`

2
kl, (11)

S3 =
∑
∆

[κ12 (1− n0 · n3) + κ23 (1− n0 · n1) + κ31 (1− n0 · n2)] .

The variable σ
||
i in S0 is defined by

σ
||
i = σi − (σi ·Ni)Ni, (12)

which is a component of σi parallel to the tangential plane at the vertex i (Figs. 3(a),(b)). This
tangential plane is determined by its unit normal vector Ni, which is defined such that

Ni =

∑
j(i)Aj(i)nj(i)∣∣∣∑j(i)Aj(i)nj(i)

∣∣∣ , (13)

where Aj(i) and nj(i) denote the area and the unit normal vector of the triangle j(i) sharing the
vertex i, respectively (Figs. 3(a),(b)).

The coefficients γij(= γji) in S1 and Γ
(1)
ij (= Γ

(1)
ji ), Γ

(2)
ij,kl(= Γ

(2)
kl,ij) in S2 of 2D model are

different from those of 3D model, and these are defined by

γ12 =
1

6

(
v12
v13

+
v21
v23

)
, γ23 =

1

6

(
v23
v21

+
v32
v31

)
, γ31 =

1

6

(
v31
v32

+
v13
v12

)
,

Γ
(1)
12 =

1

6

(
v312
v13

+
v321
v23

)
, Γ

(1)
23 =

1

6

(
v323
v21

+
v332
v31

)
, Γ

(1)
31 =

1

6

(
v331
v32

+
v313
v12

)
, (14)

Γ
(2)
12,13 =

1

3
v12v13, Γ

(2)
21,23 =

1

3
v21v23, Γ

(2)
31,32 =

1

3
v31v32
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0 2 4 6024
ε

τ(a) :Exp:κ=1:κ=2:κ=4model 1[MPa] a=2b=1, c=1nonpolar3D 0 1 2 3050100
ε

τ(b) :Exp :a=3:a=1:a=0.8model 1[kPa] b=0.2c=1
κ=1nonpolar2D

Figure 4. The stress τ vs. strain ε(=λ−1) for (a) Exp data for EPDM/LDH (Layered double
hydroxides (LDHs) based elastomer nanocomposite) [12] and the simulation data of 3D model,
(b) Exp data for untreated cotton fiber composite [13] and the simulation data of 2D model.

on the triangle 123 (Fig. 3(c)), where the vertex position is given by ri, (i= 1, 2, 3), and vij is
defined by the same expression as that in Eq.(3). The coefficients κij(= κji) of S3 are given by

κ12 =
1

6

(
v13
v12

+
v23
v21

)
, κ23 =

1

6

(
v21
v23

+
v31
v32

)
, κ31 =

1

6

(
v32
v31

+
v12
v13

)
. (15)

on the triangle 123. The potential UB is the same as for 3D model, and hence the definition of
UB is not written in Eq. (11). The discrete unit normal vectors n0 and ni(i=1, 2, 3) are defined
on the triangle 123 and its neighboring triangles shown in Fig. 3(c).

3. Calculation of tensile stress
The nominal surface tension (or frame tension) is given by

τ =
2〈S1〉 − 3N + 4N1

2Ap
, Ap = πD0H, (16)

where D0 is the diameter of the boundary and N1 is the total number of boundary vertices. We
should note that A0 = πD2

0, where the initial height is given by H =D0 [10]. This formula is
obtained by the so-called scale invariance of the partition function.

To compare the frame tension τ with the experimentally observed stress, we have to change
the unit of τ [1/kBT ] by using the lattice spacing a[1/m]. We have

τsim =
kBT

a3
τ =

(
4× 10−21

a3

)
τ [N/m2], (17)

where the value of a can be varied to modify the simulation data τ , and the modified τsim can
be compared to the experimentally observed stress τexp [10]. The only constraint for a is that a
should be larger than Van der Waals distance, this is always satisfied in our calculations.

4. Monte Carlo results and discussions
Figure 4(a) shows an experimental stress-strain diagram (×) [12] and the MC data (other
symbols) of 3D model with the variation of κ, and Fig. 4(b) shows the Exp data [13] and
the MC data of 2D model. We find that one of the simulation data is in good agreement with
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0 2 4 60123
ε

τ(a) :a=0:a=2model 2[MPa] b=1c=1
κ=1nonpolar3D 0 2 4 600.40.8

ε

M(b) :a=0:a=2model 2b=1c=1
κ=1nonpolar3D

Figure 5. (a) The SIC simulation data τ vs. ε of 3D model, and (b) the corresponding order
parameter M vs. ε. The symbol ↗ (↙) indicates loading (unloading) process in experiments,
though the simulation at each point is performed independently of those at other points.

the Exp data in both Figs. 4(a) and 4(b). Here we use symbol τ for the stress, because the
commonly used symbol σ is already used for the direction of polymers.

The SS curves are in general measured in time-dependent extension/shrinkage experiments,
and the SIC is reflected in the curves as hysteresis as shown in Fig. 1(a) [1, 2]. The SS curve
for the shrinkage process is always below the curve of the first extension process. During SIC
process, the internal structure of rubber partly changes as a phase transition between the random
to crystalline phases, and hence the hysteresis can be observed in this region. In this sense, the
SIC is understood as an equilibrium phenomenon. Therefore, the SIC can be understood in the
framework of statistical mechanics.

However, the problem is that the experiments are always performed within a time much
shorter than the time expected from the relaxation time. We should emphasize that the
hysteresis in SS curves during extension/shrinkage experiments is unable to obtain by any MC
simulations with the parameters identical for loading and unloading processes. This is the reason
why we change parameters for the MC simulations loading and unloading processes. In those
simulations, we simply assume two different equilibrium states characterized by the difference
in parameters for the two processes.

Here, we should remind that this crystallization ratio is physically close to the order parameter
M=(3/2)

(
〈σ2z〉−1/3

)
(nonpolar) though the concrete relation is unknown at present, and that

M can be controlled by the coefficient a for S0 in the FG model. From these considerations,
we fix a in the extension and shrinkage processes such that a = 0 (ext) and a = 2 (shr), for
example. Thus, we see a ”hysteresis” of τ in Fig. 5(b) and M in Fig. 5(c). We should note
that these are not ”hysteresis” but are equilibrium simulation data obtained with different a’s.
The arrows simply indicate that the data correspond to experimental ”hysteresis” data (though
experimental data are not plotted).

In addition, we show that a rupture phenomenon (RP) observed for sufficiently large ε can
be simulated in the FG modeling. This phenomenon is characterized by a sudden drop of the
stress τ , and it is well-known that a necking phenomenon appears just before the break into
two parts. In Fig.6(a), experimental data (×) [14] with simulation data (other symbols) are
plotted, and the simulation data τ for a=0 discontinuously change at large strain region. This
change of τ is considered as an RP, although τ remains non-zero after the ”break”, which is not
a real break but always ”connected” in the model. The oder parameter M also discontinuously
changes. ”Necking phenomenon” can be seen in the snapshot in Fig.6(c).
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(a)        (b)      (c) 0 1 2 30510
ε

τ :Exp:a=0.4:a=0.22Dmodel 2[MPa] a=0a=1nonpolar 0 1 2 300.40.8
ε

M a=0a=0.4b=0, c=1
κ=1.5

Figure 6. (a) τ vs. ε(= λ−1) of Exp data for dry Nafion-H+ membrane at 150 ◦ [14] and
simulation data of 2D model, (b) M vs. ε of the simulation data under a= 0 and a= 0.4, (c)
a snapshot corresponding to the point encircled (©) in (b), where τ and M discontinuously
change.

5. Concluding remarks
In this paper we calculate only nominal stresses, however it is also interesting to calculate true
stresses. Moreover, the internal variable σ can represent not only the direction of polymer but
also electric dipole moment, where in the latter case the interaction between the variables σ
should be polar. The simulation results corresponding to these conditions will be reported in
the future.

Finally, we should like to write speculative comments. Our goal is not simply to find a model
that explains rubber elasticity but to find an energy functional that accounts for the complete
loading-unloading cycle of rubber, on physical-chemical basis. From this modeling basis, using
mathematical tools, a constitutive function will be implemented in Finite Element software to
perform 3D simulations predicting behavior under various conditions (strain rate, temperature,
etc.).
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