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9 ABSTRACT: Functionalization of a methylviologen with four methyl
10 ester substituents significantly facilitates the first two reduction steps. The
11 easily generated radical cation showed markedly improved air stability
12 compared to the parent methylviologen, making this derivative of interest
13 in organic electronic applications.

14 Among the strong, organic-based electron acceptors,
15 quaternized derivatives of 4,4′-bipyridine, also known as
16 viologens, are promising candidates for applications in organic
17 electronics,1 molecular machines,2 and as functional materials.3

18 Interest in this family of acceptors stems from their simple
19 preparation, stability, and three, distinctly colored, redox
20 states.4 Stable organic acceptors for which the first reduction
21 potential is near 0 V, or even positive, are highly desirable for
22 practical applications.2 Tuning the potential of viologen
23 derivatives is commonly achieved by changing the N-
24 substituent (either alkyl or aryl) or the counteranions.5,6

25 Another more effective strategy that significantly facilitates the
26 first reduction compared to that of methyl viologen (MV2+)
27 utilizes the introduction of main-group element7−11 or
28 carbon12 bridges between the pyridyl moieties of the viologen
29 framework. Few other reports describe the functionalization of
30 the viologen’s carbon skeleton with electron-withdrawing
31 groups as a method to alter its electronic properties.13

32 Herein, we describe two remarkable features of a viologen
33 (12+) bearing methyl ester groups at the 2,2′,6,6′ positions.
34 Not only do these four electron-withdrawing groups
35 significantly facilitate both reduction potentials but they also
36 stabilize the radical cation in organic solution, even in the
37 presence of oxygen. Although viologen radical cations can be
38 stabilized as dimers under argon at low temperature4 or in
39 host−guest systems,14 and air-stable viologen radical cations
40 encapsulated in catenanes have been reported by Stoddart,15

41 there are no other examples of simple viologen derivatives in a
42 stable radical-cation state.
43 The tetraester viologen 12+ was synthesized in three steps

s1 44 starting from chelidamic acid16,17 2 (Scheme 1), which was
45 transformed to the methyl ester of the chloropyridine

46derivative 3 by subsequent treatment with PhPOCl2 and
47MeOH.18 After optimization of the previously reported
48coupling conditions by Oda et al.,19 chloropyridine 3
49underwent clean homocoupling that afforded bipyridine 4 in
5088% yield. Quaternization of the nitrogen atoms of the
51bipyridine required harsh conditions, indicating the weak
52nucleophilic character of the pyridine nitrogen atoms.
53Treatment of 4 with methyl triflate (MeOTf) under microwave
54irradiation afforded viologen 12+ as its triflate salt in 39% yield.
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Scheme 1. Synthesis of the Tetraester Viologen 12+
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55 Single crystals of the dicationic species were obtained by
56 slow diffusion of Et2O in MeCN. In the solid-state structure20

f1 57 of 12+ (Figure 1), the bipyridinium rings are twisted with a 32°

58 dihedral angle that is closer to the 36° twist of 1,1′-
59 diphenylviologen21 than to the nearly coplanar structures
60 observed for most 1,1-dialkylviologen dications. The structure
61 of 12+ also shows the possible formation of intramolecular
62 hydrogen bonds between the ester groups and the N-methyl
63 substituents (2.1−2.5 Å) or the pyridine protons (∼2.4 Å)
64 (see Supporting Information).
65 The redox properties of 12+ were investigated by electro-
66 chemical methods. Cyclic voltammetry (CV) on a glassy
67 carbon electrode in CH3CN solutions with tetrabutylammo-
68 nium hexafluorophosphate (TBAPF6; 0.1 M) as supporting

f2 69 electrolyte showed three reversible reductions (Figure 2a). The
70 first two one-electron reductions at −0.27 and −0.50 V versus
71 Fc+/Fc are, respectively, attributed to the formation of the
72 radical cation 1·+ and the neutral 10. The third reduction
73 detected from the CV at −1.90 V versus Fc+/Fc is a two-
74 electron event that generates 12−. This reduction was almost
75 absent in rotating disk electrode experiments (Figure 2b),
76 suggesting that the neutral form (10) undergoes a relatively
77 slow chemical reaction once formed. It is also possible that the
78 generated 12− species is sparingly soluble in the 0.1 M TBAPF6
79 CH3CN medium. Controlled-potential coulometry at −0.37
80 and at −0.60 V versus Fc+/Fc resulted in the respective
81 exchange of 0.97 and 1.85 electrons per molecule of compound
82 1.
83 The first two reductions of 12+ are shifted by +560 and +740
84 mV, respectively, compared to those of MV2+ (Ered1,1/2 = −0.83
85 V and Ered2,1/2 = −1.24 V vs Fc+/Fc) under the same
86 experimental conditions. The significantly less cathodic values

87of these potentials are attributed to the presence of the four
88electron-withdrawing ester groups. When the same ester
89groups are appended to an aryl ring at the quaternized
90nitrogen atoms of a viologen, the electronic effects are less
91pronounced6 than in 12+. Hence, conjugation effects also play a
92role in tuning the redox properties, as supported by the small
93contribution of the ester group in the density functional theory
94(DFT)-generated singly occupied molecular orbital (SOMO)
95 f3(Figure 3 and Supporting Information).

96The colorless divalent viologen 12+ mainly absorbs at 278
97 f4nm (Figure 4, blue spectrum). Upon one-electron reduction,
98this absorbance decreases in intensity, while new absorption
99bands grow at 334, 417, 769, and 852 nm (shoulder) for the
100green radical cation 1·+ (Figure 4, green spectrum and
101Supporting Information). The absence of absorption bands
102in the near-infrared (NIR) indicates that π-dimers do not
103form4 in solution at 1 × 10−3 M and suggests that the radical
104cation is stabilized only by the four electron-withdrawing ester
105groups. We attribute the broadness of the absorption centered
106at 769 nm to the coexistence of several possible conformations
107of the ester groups, as seen in DFT calculations, or to
108vibrational states.22 The second reduction generates a red,
109neutral viologen species 10 that absorbs at 492 nm (Figure 4,
110red spectrum). Aside from indicating the absence of π-dimer
111formation, an interesting feature of the UV−vis−NIR
112monitoring of the three species 12+, 1·+, and 10 is their
113individually addressable character and readability at specific
114wavelengths. Reversible changes of the absorptions at 278, 417,

Figure 1. Side views of the viologen 12+ in the solid state. Triflate
anions and solvent molecules have been omitted for clarity.

Figure 2. CV (a) and rotating disk electrode voltammetry (b) of 12+ and MV2+ in CH3CN + 0.1 M TBAPF6: working electrode = glassy carbon,
pseudoreference = Pt, counter electrode = Pt, internal reference = Fc. (a) v = 0.1 V/s; (b) v = 0.02 V/s, rotation: 1000 rpm.

Figure 3. ADF view drawing of the Kohn−Sham SOMO of the
radical cation 1·+.
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115 492, and 769 nm over several reduction−oxidation cycles
116 confirmed the reversibility of the redox interconversion
117 features of the three redox states (see Supporting Information).
118 Electron paramagnetic resonance (EPR) studies confirmed
119 the paramagnetic, radical character of 1·+. The reaction of 12+

120 with 1 equiv of ascorbic acid yielded a well-resolved EPR
f5 121 spectrum (Figure 5) centered at g = 2.0032 corresponding to

122 two sets of four and six equivalent protons (A1(
1H) = 0.11 mT,

123 A2(
1H) = 0.43 mT), respectively, and one set with two

124 equivalent nitrogen atoms (A1(
14N) = 0.45 mT). The same

125 spectrum was obtained by electrolysis. The colorless solution
126 turned green upon one-electron reduction to generate the
127 radical cation 1·+. After the second reduction, the solution
128 turned red, and the intensity of the EPR spectrum decreased
129 gradually to give the silent neutral species 10.
130 The air stability of the radical cation 1·+ over time was also

f6 131 investigated by EPR (Figure 6). After the radical cation was
132 generated by coulometry in MeCN, samples of the solution of
133 1·+ were transferred to EPR tubes purged with argon or open
134 to air. The argon sample was stable for more than 40 h. Even
135 after three months, the intensity of the EPR spectrum of the
136 same solution remained constant. For samples under air, the

137intensity of the EPR signal of 1·+ remained relatively stable
138over 40 h in two cases. In the third case (Figure 6, 1·+ open air
1393), the intensity of the EPR signal increased initially over the
140first 5 h and then decreased by ∼25% after 40 h. We assign the
141initial increase to the presence of some diamagnetic dimeric
142species (1·+)2 that dissociate into paramagnetic 1·+ monomers
143within the first few hours. The presence of oxygen in the
144samples exposed to air was confirmed by a broad EPR signal
145(see Supporting Information). Under the same experimental
146conditions, the MV·+ reference compound was considerably
147less stable under argon, as demonstrated by the rapid decay23

148of the EPR signal within a few hours (Figure 6). In the
149presence of air, MV·+ was very unstable, and no EPR signal was
150observed. Together, these data confirmed the high stability of
1511·+.
152Despite the stability of the radical cation, we were unable to
153grow single crystals of sufficient quality for X-ray diffraction.
154Thus, optimizations of the geometries of 12+ and 1·+ were
155performed without any symmetry restriction. For the dication
15612+, the twist between the pyridinium rings was reproduced
157(33° vs 32°), and the accord between experimental and
158calculated geometry remained quite satisfactory. A large
159highest occupied molecular orbital−lowest unoccupied molec-
160ular orbital (HOMO−LUMO) energy gap was calculated
161(4.60 eV) for 12+, but the LUMO was stabilized by 0.7 eV
162compared to MV2+. These calculations corroborate with the
163electrochemical data.
164When the dication 12+ is reduced to 1·+, the optimized
165geometrical parameters provide a more planar structure with a
166value of dihedral angle of 15°. This twist is higher than the 6°
167and 11° observed in the two independent molecules of the X-
168ray structure of MV·+.24 Comparison of these data suggests less
169electronic delocalization in 1·+ than in MV·+. The calculated
170

1H and 14N isotropic constants (see Supporting Information)
171are in close agreement with the experimental values. As shown
172by the SOMO illustrated in Figure 3, the unpaired electron is
173essentially localized on the pyridine rings, on both N-methyl
174groups, and only slightly on the tetraester substituents. This
175observation supports the stabilizing effect of the four electron-
176withdrawing ester groups on the radical cation.
177In conclusion, the tetraester derivative of methylviologen is a
178strong electron acceptor that converts easily and reversibly into
179its radical cation species. Because of the electron-attracting
180effect of the ester groups, the radical species is stable for
181months under argon and for hours in the presence of oxygen.

Figure 4. UV−Vis−NIR monitoring of the reduction of 12+. (inset)
Corresponding CV at scan rate of 0.01 V s−1. Solution (c = 1 × 10−3

M) of 12+ in CH3CN + 0.1 M TBAPF6 recorded with an optically
transparent thin-layer (0.2 mm) electrochemical cell equipped with an
Au mini-grid WE and CaF2 optical windows, reference AgCl/Ag.

Figure 5. X-band EPR spectrum of 1·+ (a) in CH3CN at 10−3 M at
room temperature; (b) simulated spectrum.

Figure 6. Double integrated EPR spectrum of 1·+ and MV·+ in
CH3CN at 1 × 10−3 M at room temperature under Ar and open to air.
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182 These features are of great interest from the perspective of air-
183 operating electrochromic devices and molecular switches.
184 Isolation and investigations of 1·+ as a solid material are in
185 progress.
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219 RPE CNRS 3443.

220 ■ REFERENCES
(1)221 (a) Stolar, M.; Baumgartner, T. Organic n-type materials for

222 charge transport and charge storage applications. Phys. Chem. Chem.
223 Phys. 2013, 15, 9007. (b) Eftaiha, A. F.; Sun, J.-P.; Hill, I. G.; Welch,
224 G. C. Recent advances of non-fullerene, small molecular acceptors for
225 solution processed bulk heterojunction solar cells. J. Mater. Chem. A
226 2014, 2, 1201.

(2)227 Wang, Y.; Frasconi, M.; Stoddart, F. J. Introducing Stable
228 Radicals into Molecular Machines. ACS Cent. Sci. 2017, 3, 927.

(3)229 Striepe, L.; Baumgartner, T. Viologens and Their Application as
230 Functional Materials. Chem. - Eur. J. 2017, 23, 16924.

(4)231 Kosower, E. M.; Cotter, J. L. Stable Free Radicals. II. The
232 Reduction of 1-Methyl-4-cyanopyridinium Ion to Methylviologen
233 Cation Radical. J. Am. Chem. Soc. 1964, 86, 5524.

(5)234 (a) Hünig, S.; Schenk, W. Über zweistufige Redoxsysteme,
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