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Q1Pairing-up viologen cations and dications:
a microscopic investigation of van der
Waals interactions

Christophe Gourlaouen, *a Sergi Vela,a Sylvie Choua,b Mathilde Berville,c

Jennifer A. Wytko, c Jean Weiss c and Vincent Robert *a

The microscopic origin of van der Waals- and magnetic-interactions in 4,40 methyl viologen cation-

based units (MV+� and MV2+) was inspected using wave function (variational DDCI and perturbative MP2,

CASPT2) and density functional theory (DFT) calculations. The analysis deepens the comprehension of

the magnetic behavior of experimental bis-viologen cyclophanes ([CYC]2(+�)), in which the MV+� units

are connected through alkyl linkers of different lengths. The formation of the so-called long-multicenter

bonds in such radical dimers, responsible for the quenching of the magnetic response, was analyzed in

[MV2]2(+�). Dynamical correlation effects, accessible from second-order perturbation corrections, were

decisive in observing a bonding regime characterized by an equilibrium distance of 3.3 Å and a 45 kJ

mol�1 dissociation energy. At larger intermolecular distances, our calculations on [MV2]2(+�) indicate that

the singlet and triplet states are energetically competing (i.e. weak exchange interactions, JAB). Despite

the absence of any clear bonding regime at the MP2 level, the puzzling association of two di-cations

into [MV2]4+ is anticipated at 3.3 Å using weakly screened point charges (e = 1.5) to account for the

Coulomb interactions between the solvated subunits. The main conclusion is that both dispersion

interactions and environment effects are required to overcome the Coulomb repulsion associated with

doubly-charged species. All these data provide some complementary insights into the nature and

amplitude of interactions between cation and dication units, and their relevance in various experimental

manifestations.

Introduction

Organic-based radicals have attracted much attention due to
their ubiquitous character, being capable to act as spin
holders,1 switchable materials2,3 and binding ligands,4 not to
mention their ability to form three dimensional networks.5

From their flexible electronic structure, unusual properties
including conductivity, magnetism, spin crossover or charge
ordering have been observed and stimulated intensive work.6–11

Furthermore, changes in the spin states can be controlled by
manipulating the unpaired electrons, taking advantage of their
intrinsic degree of freedom.12

Bistability in organic radical species is largely dominated by
their tendency to dimerize, quenching the desired property of

interest while forming a diamagnetic ground state.13,14 In some
cases, the (apparently) non-dimerized paramagnetic phase has
also been found to be the result of a fast dimerization thus
giving the impression that they are, indeed, not dimerized.15

Such dimerization is also active in some charged (mono-
oxidized or reduced) species, where the repulsive Coulomb
contribution is overcome by interactions that have been attrib-
uted to overlaps between the p-SOMOs (singly-occupied mole-
cular orbitals) centred on each radical cation.16 This type of
interaction presents spectroscopic similarities to covalent
bonds but differs in their nature, strength, and equilibrium
distance.17–20 In this context, paraquat cations (e.g. 1,10-
dimethyl-4,40-bipyridinium) within the viologen family, are
particularly attractive platforms as the formation of so-called
p-bonds is likely to reversibly generate dimeric units under
redox stimulus.21 The bipyridinium radical-cations are held
together in sandwich-like arrangements displaying much
shorter distances (ca. 3.0 Å) than the standard p–p stacking
distance (3.6 Å). More recently, synthetic strategies have been
developed to vary the number of alkyl linkers between viologen
units (cyclophane structures [CYC]2(+�) leading to compounds 1,
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2 and 3, see Fig. 1), and to ultimately modulate the host–guest
properties.21 In the cyclophane units, the cation radicals are
linked by two alkyl chains with either five, six or seven carbon
atoms (see Fig. 1).

The p-dimerization of these species was analyzed by means
of electrochemistry, vis/NIR spectroscopy and spectro-
electrochemistry. In the meantime, the electronic structures
were tentatively inferred by EPR spectra. A well-resolved EPR
signal could only be observed for 2 in fluid solution revealing
the presence of a biradical with a strong antiferromagnetic
interaction (ca. �734 cm�1).22 Unfortunately, it was not possi-
ble to measure a clear EPR signal for compounds 1 and 3. Quite
interestingly, the crystal structure of 2 was obtained for the
tetra-cation [CYC]4+,23 a regime where doubly-charged organic
subunits are held together. Density functional theory (DFT)
calculations were then performed on isolated cyclophanes in a
model of water, stressing a marked propensity towards
antiferromagnetism.22 More recently it has been suggested that
large dispersion forces dominate the bonding regime in violo-
gen cation-radical p-dimer (so-called pimer).24 The analysis was
carried out from DFT calculations including dispersion correc-
tions and concluded on the competition between covalent and
dispersion attractions with Coulomb repulsions.

The heart of the current investigation is whether the strong
antiferromagnetism and packing are a consequence of the
screened charges in [CYC]2(+�) and [CYC]4+ units or must be
attributed to dispersion interactions. Therefore, we felt that a
microscopic analysis would be instructive to rationalize both
the p-dimerization and the magnetic properties of this family of
cations and radical cations. Starting from experimental X-ray
data on [CYC]2(+�) (see Fig. 1), viologen radical-based com-
pounds were examined using DFT and wave function calcula-
tions. We first concentrated on the [MV2]2(+�) radical model,
with the aim of understanding the origin of the interaction at
van der Waals distances. Based on the structure of the wave
function, the relative importance of the so-called ionic and
neutral forms is discussed in comparison to the C2H6 molecule,
taken as a prototype of a ‘‘two electrons in two MOs’’ covalently-
bonded molecule. Then, a similar inspection was carried out on
the tetracationic form [MV2]4+. The puzzling binding of two
doubly-charged MV2+ units, as observed in the crystal structure
of 2, deserves particular attention in order to understand its
nature. Finally, the magnetic properties of [MV2]2(+�) were
examined based on calculations of magnetic exchange

couplings on the optimized dimer geometries. Due to the
flexible nature of the alkyl linkers in the cyclophanes, different
conformations were expected to be present in solution. These
inspections allow us to understand how the relative positions of
the MV+� units modulate the nature and amplitude of the
magnetic interactions.

In this framework, our intention is to examine the dimeriza-
tion process holding both viologen units at rather short dis-
tances in comparison with standard p–p stacking distances.

Technical background

For [MV2]2(+�) dication species, results were first obtained from
complete active space self-consistent field (CASSCF) calculations
including two electrons in two molecular orbitals (MOs), namely
CAS[2,2]. All these calculations were performed using the MolCAS
7.2 package.25 The atoms were described with extended basis sets
of ANO-RCC types, [4s3p2d1f] for C and N atoms, and [2s1p] for the
H ones.26 Based on the CAS[2,2]SCF singlet ground state wave
function, complementary second-order perturbation calculations
(CASPT2) were performed. Total energies were evaluated at the
CAS[2,2]PT2 level with respect to rz, the distance between two
viologen units, and the structure of the wave function was analyzed.
Such a framework allows one to build the wave function and to
extract the information relative to the important dynamical correla-
tion effects. The active space was extended to CAS[6,6] with no
quantitative change in the calculated CASPT2 binding energies (42
kJ mol�1 for CAS[6,6]PT2 and 45 kJ mol�1 for CAS[2,2]PT2).
Calculations were restricted to MP2 type (Möller–Plesset) for the
closed-shell tetra-cation [MV2]4+ analogues.

Second, the nature of the radical interaction was examined
through a configuration interaction (CI) restricted to single
excitations (CAS[2,2]SCF + S). These CI calculations were car-
ried out with the CASDI code27 to retrieve the leading charge
redistribution beyond the mean field CASSCF picture. For
comparison with a prototype of covalent bond, we performed
CAS[2,2]SCF + S calculations for the C2H6 ethane molecule at
equilibrium and stretched carbon–carbon distances (1.54 and
3.0 Å) using a [3s2p1d] and [2s1p] basis sets for carbon and
hydrogen atoms, respectively. At 3.0 Å, the active space consists
in the bonding and antibonding s-type MOs based on the CH3

�

SOMOs. This set of MOs was then used as a starting set to
converge the CAS[2,2] solution at a 1.54 Å carbon–carbon
distance. From the presence of a center of inversion, the active
MOs are the in-phase (u) and out-of-phase (g) linear combina-
tions of the SOMOs localized on each individual unit. It is well-
known that the CAS[2,2]SCF + S singlet wave function mostly
reads C = l|g%g| � m|u %u| where g and u are the canonical
bonding and antibonding MOs (see Fig. 2a and b). A unitary
transformation allows one to rewrite C in the local atomic basis
set to evaluate the ratio between the so-called ionic and neutral
form as r = (l � m)/(l + m).28 The diradical character is featured
by a reduction of r, and can be considered as a measure of
covalency to be compared with the so-called p-dimerization
mechanism.
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Fig. 1 Cyclophane structure ([CYC]2(+� )) consisting of two viologen cation
radical units linked together through alkyl chains of variable size. Com-
pounds 1, 2 and 3 correspond to n = 1, 2 and 3, respectively.
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Third, in the presence of two unpaired electrons in a dimer
of viologen cation radicals, low-lying singlet (total spin S = 0)
and triplet (S = 1) states are expected to compete. The energy
difference defines the so-called magnetic exchange coupling
constant 2JAB = ES� ET ruling the Heisenberg spin-Hamiltonian
H = �2JABS1S2, where S1 and S2 are the 3D-spin operators acting
on each subunit, and are associated with spin values 1

2. Two
numerical approaches were used to evaluate the exchange
coupling constants. Difference dedicated configuration inter-
action (DDCI) calculations were carried out using the CASDI
code.27 Such methodology has proven to provide not only very
accurate estimates of magnetic exchange coupling constants
but also microscopic interpretations.29,30 The atomic basis sets
were safely reduced down to [3s2p1d] for carbon and nitrogen
atoms, and [2s] for hydrogen ones based on similar inspections
carried out on verdazyl organic radicals.31 Throughout the
DDCI calculations, the triplet CAS[2,2] MOs were used. We
checked that any modification of the set of MOs leads to
negligible changes in the singlet–triplet energy difference. To
reduce the computational cost, the two alkyl chains of the
cyclophane units were substituted by four methyl groups (yield-
ing pairs of cation viologen units, referred to as [MV2]2(+�) and
[MV2]4+, respectively). We confirmed that this simplification
has a limited impact on the calculated energy differences.
Quantitatively, the triplet–singlet energy difference at the DDCI
level are 4697 and 4794 cm�1 for the full and simplified
diradicals at 2.9 Å distance, respectively (i.e. less than 3%
relative difference). This negligible modification is coherent
with the fact that such alkyl chains are poor mediators of
magnetic interaction in diradicals [CYC]2(+�).

Taking advantage of the relative low-cost of the DFT calcula-
tions, different degrees of freedom (interplanar distance, slip-
pages and rotations) were considered to derive magneto-
structural analysis. The broken-symmetry (BS) approach32,33

provides the energies of a fictitious open-shell state and a
high-spin state. Different strategies were proposed to evaluate
the exchange-coupling constant from these values.34 The rela-
tive singlet–triplet energy differences between DDCI and DFT
calculations are less than 5%. All calculations were performed

using the B3LYP functional (restricted or unrestricted), and the
atoms were described by TZVP basis sets as implemented in
Gaussian 0935 in gas phase.

Results and discussion

Wave function theory based calculations were performed (i) to
analyze the bonding mechanism, (ii) to trace the stability of di-
cation [CYC]2(+�) and tetra-cation [CYC]4+ cyclophane units, and
(iii) to provide exchange coupling constant values in the dir-
adical [CYC]2(+�).

Nature of the interaction between two MV+� units

Despite the well-accepted terminology ‘‘pimer’’, the interaction
has been viewed as resulting, at least in part, from s-overlap
between p systems.16 To clarify the nature of the interaction
between the viologen cation radicals MV+�, the variations of
CAS[2,2]SCF and CAS[2,2]PT2 total energies were followed with
respect to the intra-planar distance (rz), maintaining a perfect
stacking between the viologen units. As expected, the active
MOs are the in-phase (u) and out-of-phase (g) linear combina-
tions of the SOMOs localized on each individual unit (see
Fig. 2a and b). Fig. 2c displays the calculated energy of the
ground state singlet performed at various levels (CAS[2,2]SCF
and CAS[2,2]PT2). To compare the energy variations, the rz = 10
Å values was set to zero as a common reference. Despite the
presence of two unpaired electrons, the interaction cannot be
understood from a ‘‘two electrons in two MOs’’ picture, that
might be qualitatively acceptable for neutral radicals.36 The
absence of any binding regime at the CASSCF level suggests
that the interaction does not fall in the traditional covalent
bond scenario. The one-electron picture constructed on the
SOMOs overlap is not appropriate to qualitatively account for
the weak bond formation. As soon as second-order perturba-
tion corrections are included, the interactions between units
considerably change. A marked minimum is observed for rz =
3.3 Å (see Fig. 2), associated with a binding interaction of 45 kJ
mol�1. In the present case, the bonding character is reached
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Fig. 2 Triplet canonical CAS[2,2]SCF MOs (a) bonding, g symmetry, and (b) antibonding, u symmetry of [MV2]2(+� ). (c) CAS[2,2]SCF and CAS[2,2]PT2
[MV2]2(+� ) energies (kJ mol�1) with respect to the interplanar distance rz (Å). The energy reference is taken at rz = 10 Å, arbitrarily.
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with dynamical correlation effects, similarly to what is well-
known between closed-shell systems such as benzene rings (i.e.
dispersion-like interactions). At this stage, one should mention
that shorter equilibrium distances (ca. 3.0 Å) have been reported
experimentally.16 Solvent molecules in solution as well as
counter-anions in the solid state are likely to screen the Coulomb
repulsions, allowing closer inter-molecular contacts.

To gain further insight into the nature of this interaction,
the ratio between the ionic and neutral amplitudes (see com-
putational details) was calculated from the CAS[2,2]SCF + S
wave function at the equilibrium distance rz = 3.3 Å. The r value
was then compared to the values calculated for the reference
C2H6 molecule at equilibrium (1.54 Å) and stretched (3.0 Å)
carbon–carbon distances. The wave function provides the s/s*
electronic distribution resulting from the CH3

� SOMOs overlap.
From the wave function analysis, this quantity amounts to 0.27
in [MV2]2(+�). This is significantly smaller than the values of 0.84
and 0.32 found in C2H6 at equilibrium and stretched carbon–
carbon distances, respectively. From this inspection, the con-
tribution of the ionic forms is reduced by a factor of three in the
[MV2]2(+�) cation as compared to the value in C2H6 at equili-
brium distance, and still smaller than the one in the disso-
ciated regime. This observation is consistent with the prime
role played by the electronic correlation effects. This highlights
the radical character with vanishingly-small electron delocali-
zation in the interaction between the two MV+� units.

Binding of two MV2+ units?

We then moved to the tetracationic derivatives [MV2]4+ which
was reported in the crystal structure of 2.21 Multiply-charged
species are not so scarce in solid state chemistry. In such
species, the chemical bonding in an ionic solid is dominated
by electrostatic interactions. Even at the electrostatic level, the
Coulomb interactions between units are screened thanks to the
environment.37,38 In addition, the intrinsic polarizabilities of
the building blocks are likely to give rise to stabilizing interac-
tions. From previous investigations, and in the light of our
current results on the [MV2]2(+�) cation, the dispersion forces
significantly overcome the Coulomb repulsion since a 45 kJ
mol�1 binding interaction is calculated in vacuum (see pre-
vious section). How strong are dispersion interactions in this
class of compounds, where highly charged species have been
observed? It was rather tempting to assess the ability of such
contributions to generate a tetra-cation from two closed-shell
MV2+ units in the absence of any counter ion. Thus, second-
order Möller–Plesset calculations (MP2) were carried out by
varying the interplanar distance rz. In sharp contrast with the
parent [MV2]2(+�), no binding regime is observed for [MV2]4+: the
Coulomb repulsion exceeds the dispersion interactions in the
examined rz distance window in vacuum. Nevertheless, no
matter the phase (condensed: liquid or solid), solvent mole-
cules as well as counter ions act as mediators of the p-
dimerization. We can evaluate their participation through the
introduction of a dielectric constant e. The electrostatic inter-
actions are effectively reduced as a consequence of the charge
screening. Therefore, the Coulomb repulsion was first

corrected to account for these effects through the following
term: (�4/rz) (1 � 1/e), and e was varied starting from an e = 1
value (i.e., vacuum). Formally, this quantity corresponds to the
change in the electrostatic repulsion between two 2+ charges
upon going from vacuum to a dielectric medium characterized
by e. As soon as a rather weak e = 1.5 value is reached, the MP2
potential energy curve suddenly exhibits a clear minimum for rz

= 3.5 Å (Fig. 3, curve MP2 + e). The resulting binding energy is of
the order of 40 kJ mol�1, which is a rather large value consider-
ing the nature of the system. At this stage, one may first
question the amplitude of the binding energy compared to
the value found for the dication [MV2]2(+�). Evidently, the
interplanar distance being very similar, the screened Coulomb
correction is four times larger than it is in the dication. Thus,
one may then argue that this correction may mask the con-
tributions of the dispersion-like interactions. However, we
checked that the potential energy curve remains dissociative
at the Hartree–Fock level even if these contributions are
included (Fig. 3, HF + e curve). Despite the questionable validity
of such a description at rather short distances, the impact of
the electrostatic continuum was also estimated by screening
the correlation contributions, a second order effect. The energy
differences between the MP2 and HF values were renormalized
by 1/e2 (see Fig. 3, HF + e + D curve). Such procedure under-
estimates the correlation effects since both inter- and intra-
subunit contributions are screened. Still, a bonded geometry is
observed for rz = 3.9 Å (and a non-negligible binding energy of
ca. 6 kJ mol�1). Finally, our views were complemented using HF
calculations in the presence of a PCM, followed by a perturba-
tive treatment. The PCM polarizes the MOs and account for the
MOs distortion induced by the solvent. Such procedure allows
one to grasp part of the dispersion-induced charge rearrange-
ments, the importance of which has already been stressed.39 In
water, a binding regime is observed, which confirms that both
screening and dispersion are required to hold the 2+ units
together. In other words, the viologen polarization remains
decisive to establish a bonding regime, which cannot be
reached using a mean-field description.

Magneto-structural analysis

Starting from the DFT optimized geometry of [MV2]2(+�), char-
acterized by an inter-molecular distance rz of 3.6 Å and a co-
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Fig. 3 Dissociation curves of [MV2]4+ at HF and MP2 level of theory and
influence of a dielectric constant (e) on the electrostatic interactions
considering two 2+ point charges and on the correlation contributions
(D). For each curve, the reference energy is set to zero for rz = 5 Å.
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facial arrangement (rx = 0), the JAB values were calculated for two
translations, the interplanar distance (rz) and the longitudinal
slippage (rx), and two rotations, a around the stacking (z axis)
and b around the x axis (see Fig. 4). Other variables were found to
be less relevant. We did not intend to provide a full potential
energy surface of the low-lying singlet and triplet states, but
rather to evaluate the relative changes in the exchange-coupling
constant in the vicinity of the equilibrium geometry. As expected,
the JAB intensity increases exponentially from ca. �90 to 0 cm�1

as the rz value is varied from 3.5 to 6 Å (see Fig. 4a). Such
behaviour was analysed in similar compounds and can be
attributed to the exponential variation of the SOMOs overlap
and hopping integrals.31,40 At this stage, let us mention that the
available crystal structures for compounds 1 and 3 exhibit
interplanar distances which are larger than 4.8 Å. Thus, one
would expect quasi-degenerate singlet and triplet, as reflected by
a negligibly small JAB value. The non-linear response of JAB with
respect to rz indicates that thermal oscillations would result in a
significantly different mean value for JAB due to dynamic effects,
making it more antiferromagnetic than the value obtained using
a static picture.41 In compound 2, such phenomena would
support the EPR measurements of a JAB value of �734 cm�1.22

In contrast, the JAB variations along the longitudinal slippage
exhibit a double minimum curve (see Fig. 4b). The first one is
observed for rx = 0 Å, with a JAB value reaching ca. �700 cm�1.

For this ‘‘on-top’’ geometry, the SOMOs overlap is optimal
through facing pairs of pyridinium rings. Since the super-
exchange mechanism grows with the square of the overlap the
resulting AFM contribution is then maximized. When rx deviates
from zero, the super-exchange mechanism is disrupted and JAB

increases until rx reaches 4 Å. For this value, the overlap between
units is restricted to a single pair of pyridinium rings (see Fig. 4b,
right inset) and, thus, the resulting JAB value should be roughly a
quarter of the initial one. In this case, it is �250 cm�1.

Let us now examine the effects of rotations on the exchange
coupling constant. Along the z axis (a parameter in Fig. 4e), the
curve exhibits two wells for a = 01 and a = 901 associated with JAB

values of �1400 to �800 cm�1, respectively (see Fig. 4c), and a
maximum for a = 401. As previously mentioned, these variations
reflect the modulation of the overlap between the SOMOs. Due
to the intrinsically delocalized nature of the latter (see Fig. 2a),
a = 901 corresponds to a local minimum for the exchange
coupling constant. Upon variation of b (see Fig. 4d), JAB follows
an exponential law, being directly controlled by the super-
exchange decay along this distortion.42,43 To conclude, the
nature of the coupling between MV+� units mostly falls in the
antiferromagnetic regime, with rather large amplitude varia-
tions over the explored coordinates. It is only for rx = 2 Å and rx

= 6 Å slippage values that the singlet and triplet states become
quasi-degenerate.
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Fig. 4 Evolution of JAB values upon a change in the interplanar distance (rz, a), the longitudinal slippage (rx, b), and a rotation along the stacking (a, c) and
longitudinal (b, d) axes, defined in (e) computed in DFT level of theory. The interplanar distance is set at 3.6 Å for b, c and d, which is the equilibrium
distance in these conditions.
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Conclusions

In the present work, we shed some light on the electronic
structure of [CYC]2(+�) architectures using quantum chemistry
calculations. Leaving out the alkyl linkers, we first showed the
persistence of the radical nature of the MV+� units even when
van der Waals interactions occur. This was done by computing
and analyzing the CASSCF and CASPT2 dissociation curves. In
particular, we stressed the negligible weight of the charge
transfer electronic configurations (i.e. ionic forms) even at
short distances, suggesting that the radical character of each
[MV2]2(+�) unit was preserved. Thus, the interaction in [CYC]2(+�)

architectures cannot be restricted to a one-electron picture of
overlapping SOMOs. In solvent conditions where additional
screening effects should be included, aggregation is observed at
shorter distances as reflected by strong antiferromagnetic
interactions. This led us to examine the tetracationic derivative
[MV2]4+. The appearance of a binding regime results from the
competition between dispersion interactions and moderately
screened Coulomb repulsions. The introduction of an e = 1.5
constant value to account for the presence of solvent molecules
and/or anions significantly stabilizes a pair of MV2+ cations.
This observation supports that the combination of dispersion
interactions and of screening are mandatory to allow the
binding between the doubly-charged species.

From a magnetic point of view, the alkyl linkers are not
relevant when computing the JAB values (DDCI calculations),
justifying the transferability of the results obtained for
[MV2]2(+�) to the target [CYC]2(+�) architectures. Other deforma-
tions from the perfect stacking reduce the strength of JAB, with
a dominating antiferromagnetic behavior. From available X-ray
data, one can conclude that isolated dimers cannot create
strong magnetic interactions. Even if the larger alkyl linkers
provide the cyclophane more flexibility, the geometries that can
be potentially adopted by these compounds are associated with
weak magnetic interactions. Therefore, the only consistent
explanation for the presence of strong antiferromagnetic cou-
plings is that distances smaller than the calculated equilibrium
distance of 3.3 Å can be reached between two different
[CYC]2(+�) units. Despite the positive charges in both units,
solvent molecules can be mediators of the p-dimerization, as
extensively reported experimentally13,14 and rationalized
computationally.44,45 In this class of compounds, screening
and dispersion effects act hand-in-hand to generate unusual
regimes.
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