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Highlights

• We present a complete formulation for thermo–electro–elastoplastic behavior that is developed in a consistent manner by using
conservation principles along with the definition of a free-energy potential.

• FE implementation in the most general 3D framework, by using 8-node hexahedral finite element for constructing semi-
discretization, along with the global phase of time discretization by the Newmark scheme.

• This development provides the sound basis for practical applications, such as the pulsed Peltier Cells.

Abstract

A consistent thermodynamic-based theoretical framework and three-dimensional finite element formulation is presented,
capable of coupling elastic, thermal and electric fields. The complete set of governing equations is obtained from conservation
principles for electric charge, energy and momentum. The second principle of thermodynamics is taken into account to introduce
the irreversible phenomena, such as plastic dissipation or Joule heating. The constitutive relations are derived consistently from the
Helmholtz free-energy potential for each corresponding dual variable in terms of the defined set of state variables. We consider the
case of linear isotropic hardening model for plasticity, and provide the consistent form of the tangent thermo–electro–elastoplastic
modulus through dual variable computations. The latter plays the crucial role in ensuring fast convergence properties of the finite
element computations with the proposed coupled plasticity model. The implementation is carried out in a research version of
the well-known computer code FEAP. Several numerical simulations are presented in order to illustrate the proposed model and
formulation capabilities for providing an enhanced formulation of an important practical application in terms of Peltier cells.
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Notations

u Displacements (3 × 1)
V Electric potential (Voltage)
ϕ Magnetic scalar potential
T Temperature
δu Virtual displacements (3 × 1)
δV Virtual electric potential (Voltage)
δT Virtual temperature
ε Strain tensor (6 × 1)
S Entropy
s Entropy per unit volume
D Electric displacement (3 × 1)
B Magnetic induction (3 × 1)
σ Stress tensor (6 × 1)
E Electric field (3 × 1)
H Magnetic field (3 × 1)
P Polarization (3 × 1)
M Magnetization (3 × 1)
j Electric flux (3 × 1)
q Thermal flux (3 × 1)
t̄c Prescribed traction (3 × 1)
B̄ Prescribed magnetic induction
j̄ Prescribed electric flux
q̄ Prescribed thermal flux
v Electric charge velocity (3 × 1)
p Linear momentum (3 × 1)
b Volumetric force (3 × 1)
E Total internal energy
P Power supplied to a system
Q Heat introduced to a system
Π Potential internal energy
K Kinetic internal energy
e Scalar internal energy density potential
n Unit normal vector (3 × 1)
r Heat source
ψ Free energy potential
C Elasticity tensor (6 × 6)
β Thermal stress tensor (6 × 1)
α Seebeck coefficient
γ Electric conductivity
κ Thermal conductivity
Π Peltier coefficient
ϵ Permittivity
µ Permeability
ρm Mass density
cp Specific heat per volume unit
ρ

f
q Free electric charge density
γ̇ p Plastic multiplier
σy Yield stress
ζ Isotropic hardening variable
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q Stress-like conjugate to hardening variable
K Isotropic hardening modulus
D Dissipation
φ Yield function
ω Coefficient of plastic influence
ν Derivative of φ with respect to σ (6 × 1)
I Identity tensor (3 × 3)
1 Trace operator tensor (3 × 3)
γ, β Newmark scheme parameters
∆t Time step
E Young modulus
αT Thermal expansion coefficient
λ,µ Lamé’s parameters
S Effective tangent stiffness matrix (ndf × ndf)
L Linearized optimality equation matrix 12 × 12
C̄, Ĉ Thermo–electro–elastoplastic modulus matrix 10 × 10
K Elastoplastic tangent stiffness matrix (ndf × ndf)
D Damping matrix (ndf × ndf)
M Mass matrix (ndf × ndf)
Na Shape function
Ba Strain–displacement derivatives of shape function matrix(3 × 1)
Bs

a Symmetric part of the derivatives of shape function matrix (6 × 3)
aU

a Nodal displacement (3 × 1)
aV

a Nodal electric potential
aT

a Nodal temperature
wU

a Virtual nodal displacement (3 × 1)
wV

a Virtual nodal electric potential
wT

a Virtual nodal temperature
RU

a Residual for displacement (3 × 1)
RV

a Residual for electric potential
RT

a Residual for temperature
Ω Domain
Γ Domain boundary

Sub-, Supra-indices

e Elastic
p Plastic
0 Reference or vacuum
C Cauchy
M Maxwell
L Lorentz
J Joule
c Conduction
m Mechanic
e Electric
h Magnetic
t Thermal
tr Trial value
n Time step
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(i) Iteration
t Top or “hot” side
b Bottom or “cold” side
a, b Counters

Operators

v × w Vectorial product of v and w (3 × 1)
v ⊗ w Tensorial product of v and w (3 × 3)
A · B Dot product of A and B
∇φ Gradient of φ (3 × 1)
∇ · v Divergence of v
∇ × v Curl of v (3 × 1)
△̇ First time derivative of △

△̈ Second time derivative of △

tr (A) Trace of A
dev (A) Deviatoric part of A

1. Introduction

This work seeks to provide a novel development of plasticity coupled with thermal and electric fields for
semiconductor materials. The development is made fully consistent with thermodynamics point of view [1]. More
precisely, the set of state variables is defined in terms of extensive variables [2] jointly defining the state of material.
This is formally done in terms of the internal energy density, as the potential defined (at each point) indicating the
current state of the material. The objective is twofold. First, this paper accounts for the complete set of state variables
characterizing thermo–electro-mechanic coupling, which can all leave their imprint on a particular state of the given
material. Second, this coupling is taken into inelastic domain defined in terms of plasticity theory that accounts for
mechanical, thermal and electric fields in defining the corresponding plasticity criterion. The latter is set in terms of
intensive variables, dual to the chosen state (extensive) variables. The corresponding evolution equations for plastic
part of state variables are obtained from maximum dissipation principle. This theoretical formulation is accompanied
by the discrete approximation, based upon 3D Finite Elements with thermo–electro-mechanic degrees of freedom,
along with simultaneous solution procedure of the weak form for all governing equations.

The proposed approach provides a number of novelties with respect to previous developments. In particular, a
vast majority of state-of-the-art developments remain limited to elastic response from early (e.g. [3] and [4]) or more
recent works (e.g. [5]), and large portion will mostly focus upon electromagnetics (e.g. [6–9] and [10]). Several another
consider the plasticity model for ferroelectrics (e.g. [11–14]), but without considering the numerical implementation,
nor general multi-field coupling. In terms of completeness of presented developments for thermomechanics and
electromagnetic coupling, the recent ones that come closest to this work are homogenization scheme in [15] and
hypo-elastic approach in [16–18], but they remain limited to elastic behavior.

However, there is a fundamentally new point of view in this work, where the sound thermodynamics framework is
brought to bear upon the general coupled problem of this kind. More precisely, our proposal starts from the internal
or free-energy potential rather than directly postulating the constitutive equations. In other words, we provide the
hyper-elasto-plastic response, rather than hypo-elastic response given in [17].

The outline of the paper is as follows. In Section 2, the sound thermodynamics-based theoretical formulation for
coupled thermomechanical and electromagnetic problems is presented, along with the complete list of all pertinent
principles. In Section 3, we further generalize such a development to the case of plasticity, by appealing to the principle
of maximum dissipation to obtain the corresponding evolution equations with respect to the chosen plasticity criterion
for generalized J2-plasticity accounting for thermal, electric and magnetic fields. The details of FE implementation,
where the magnetic field has been removed for targeted applications, are presented in Section 4 for 3D case using
the discrete approximation constructed with isoparametric finite elements of Peltier cells. The Newmark-type implicit
time-integration scheme used for solving the FE discretization is presented in Section 5 as well as the iterative solution
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for the local variables and the computation of the consistent elastoplastic modulus. Several numerical simulations are
presented in Section 6, and the concluding remarks are given in Section 7.

2. Formulation

2.1. Kinematic equations

Four fields are considered in formulating the thermomechanics and electromagnetics coupling: displacement
u, temperature T , electric potential V and magnetic scalar potential ϕ. The state variables are obtained as the
corresponding gradients of these fields. The set of resulting kinematic equations can be written as:

ε =
1
2


∇ ⊗ u + (∇ ⊗ u)T


E = −∇V
H = −∇ϕ

(1)

where ε is the strain tensor, E is the electric field, H is the magnetic field, while ∇ = [∂/∂x ∂/∂y ∂/∂z]T is
a convenient notation for nabla operator of partial derivatives. With the hypothesis of small displacement gradient
theory, we are limited here to strains defined in terms of the symmetric part of displacement gradient, hence the
operator ∇

s can be used to define the strain tensor, which can also be written in Voigt notation as:

ε = ∇
su; ∇

s
=



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x



. (2)

2.2. Conservation principles

2.2.1. Conservation of free electric charge
Electric charge is the physical property of matter that causes it to experience a force when placed with an

electromagnetic field. There are two types of electric charges related to their nature: free, which is associated with
the movements of electrons in a conductor material, and bound, which is related to the orientation of dipoles in a
dielectric.

The conservation of free charge can be written in agreement with the conservation equation:

ρ̇
f

q + ∇ ·

ρ

f
q v


= 0 (3)

where ρ f
q is the free electric charge density, v is the velocity of the charges. By identifying the electric flux as j = ρ

f
q v,

the free-charge conservation equation can be rewritten as:

ρ̇
f

q + ∇ · j = 0. (4)

Furthermore, by considering the case with zero rate of electric charge density, ρ̇ f
q = 0, the first conservation equation

reduces simply to:

∇ · j = 0. (5)
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The last result is usually referred to as the Gauss Law for Electrostatics, stating that all the charges that come into the
system will also have to leave. It is interesting to note that Maxwell’s equations in differential form (e.g. [6]):

∇ × E = −Ḃ
∇ × H = j + Ḋ
∇ · D = ρ

f
q

∇ · B = 0

(6)

where D is the electric displacement and B is the magnetic induction, can be used to confirm the result in (5). To that
end, it is enough to apply the divergence operator to the second of Maxwell’s equations and combine it with the time
derivative of the third one.

We note in passing an analogous result for the magnetic field stating the non-existence of magnetic monopoles can
be deducted from the fourth of (6) leading to Gauss Law for Magnetism.

2.2.2. Conservation of momentum
The classical approach to conservation of momentum (e.g. [1]) is now generalized accounting for the external

electromagnetic Lorentz force. First, by enforcing the angular momentum conservation we obtain the symmetry of
stress tensor (e.g. [1]). Second, by postulating linear momentum conservation principle for a sub-domain, and going
to the limit of this sub-domain shrinking to a point, we obtain the local form of such a conservation equation:

ρm ü
ṗm

= σ C ∇ + b + bL (7)

where ρm is the mass density, σ C is the Cauchy stress tensor, pm is the mechanical linear momentum, b are the volume
forces and bL is the Lorentz force, which can be written as:

bL := ρ
f

q E + j × B. (8)

This force can be transformed using the second of Maxwell’s equations (6) to eliminate j. Similarly, in order to
eliminate ρ f

q , we can use the third equation in (6) along with the isotropic constitutive relations D = ϵE and B = µH,
with ϵ as the permittivity, µ as the permeability. An alternate way of expressing these relations (as suggested in [6])
by introducing the polarization P and the magnetization M:

D = ϵ0E + P
B = µ0 (H + M)

(9)

where the subindex 0 refers to vacuum properties. This consideration is taken due to plasticity, introducing plastic
electric displacement. Thus, (8) can be recast as follows:

ρ
f

q E + j × B = E (∇ · D)− B × (∇ × H)− Ḋ × B. (10)

The last term can be rewritten by exploiting the auxiliary result pertaining to the product rule:

∂

∂t
(D × B) = Ḋ × B + D × Ḃ (11)

and further using the first of Eqs. (6) in the last term, leading to:

ρ
f

q E + j × B = E (∇ · D)− B × (∇ × H)−
∂

∂t
(D × B)− D × (∇ × E) . (12)

Adding to the right side of the previous expression the null term H (∇ · B) and reordering, we finally obtain:

ρ
f

q E + j × B = −
∂

∂t
(D × B)  

I

+ E (∇ · D)− D × (∇ × E)+ H (∇ · B)− B × (∇ × H)  
II

. (13)
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Table 1
List of the state variables and their corresponding dual variables
for coupled thermoelasticity and electromagnetism.

Fields Mechanic Thermal Electric Magnetic

State var. ε s D B
Dual var. σ T E H

The term I is the electromagnetic momentum peh and the term II can be expressed in the form σ M
∇, where σ M is

the Maxwell stress tensor:

σ M
= ϵE ⊗ E + µH ⊗ H −

I
2
(ϵE · E + µH · H) (14)

with I denoting unit second order tensor. In (13) above, the electromagnetic momentum can be neglected due to the
different order of magnitude between the time constants of the mechanic and the electromagnetic fields; we thus obtain
an alternative form of momentum balance equation in (7), which can be written as:

ρm ü = σ ∇ + b (15)

where σ = σ C + σ M is the total stress tensor, regrouping the Cauchy and the Maxwell terms.

2.2.3. Conservation of energy

The global form of the first principle of thermodynamics can be stated in domain Ω :

∂

∂t
E = Pm + Peh + Q (16)

where E is the total energy, Pm is the mechanical power, Peh is the electromagnetic power and Q is the total heat
supplied to the system. The total energy can further be split into the potential Π and kinetic K energy:

E = Π + K =


Ω

e (ε, s,D,B) dΩ +
1
2


Ω
ρm u̇ · u̇ dΩ (17)

where e is the scalar potential of the internal energy density that depends on the state variables. The list of state
variables in the absence of plasticity is as defined in Table 1, along with their corresponding dual variables (with s is
the entropy per unit volume).

The mechanical power source inserted into the material within particular domain Ω can be written:

Pm :=


Ω

b · u̇ dΩ +


Γ

tn · u̇ dΓ =


Ω

b · u̇ dΩ +


Ω

∇ · (σ u̇) dΩ (18)

where the power source from the boundary traction vector, defined with respect to unit normal vector n by the Cauchy
principle tn = σ n, has been transformed into corresponding volume integral by use of the divergence theorem.
Similarly, the boundary term for electromagnetic power source (see [6]) is transformed into corresponding volume
integral defined as:

Peh := −


Γ
(E × H) · n dΓ = −


Ω

∇ · (E × H) dΩ . (19)

We note in passing that the negative sign is in agreement with the above expression representation of total power
exiting the volume Ω bounded by the surface Γ . Similar interpretation for negative sign holds for the heat power
source that stems from the outgoing heat flux q, along with the heat source r , which can be stated as:

Q :=


Ω

r dΩ −


Γ

q · n dΓ =


Ω

r dΩ −


Ω

∇ · q dΩ . (20)
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In the limit case of domain Ω shrinking to a point, we obtain from (16) the local form of the first principle that can
be written as:

ė (ε, s,D,B)+ ρm ü · u̇ = b · u̇ + ∇ · (σ u̇)+ r − ∇ · q − ∇ · (E × H) . (21)

By using furthermore the kinematic equations in (1) and the equation of motion in (15), along with the following
identity ∇ · (σ u̇) = (σ ∇) · u̇ + σ · (∇ ⊗ u̇), we can obtain the reduced form of energy conservation principle:

ė (ε, s,D,B) = σ · ε̇ + r − ∇ · q − ∇ · (E × H) . (22)

The final ingredients pertain to provide definition of electric and heat fluxes through the generalized form of Ohm’s
and Fourier’s laws, as suggested in [10] and [17]:

j = γ E − γ α ∇T ;

q = −κ ∇T + Π j
(23)

where γ is the electric conductivity, α is the Seebeck coefficient, κ is the thermal conductivity and Π = T α is the
Peltier coefficient.

3. Plasticity under thermo–electro-mechanics coupling

We seek to develop here the general form of associative plasticity for a coupled problem of this kind. Such a
development will first require the use of the second principle of thermodynamics in order to define the corresponding
dissipation. For a particular domain Ω , the second principle imposes that the rate of increase of entropy S =


Ω s dΩ

should never be smaller than the amount of heat divided by the absolute temperature, which we can write as:

Ṡ ≥
Q
T
. (24)

In the limit case of shrinking this domain to a point, we can obtain the local form of the second principle. In
the simplest case of rigid conductor (corresponding to the neglection of all other fields but temperature) the second
principle provides the proper definition of dissipation by heat conduction [1], which is always positive as long as the
Fourier law applies:

−
1
T

q · ∇T  
Dc

:= T ṡ − (r − ∇ · q) ≥ 0. (25)

Here, we are targeting much more general case of loading program with corresponding contributions from all
fields. The second principle, combined with the result of the first principle in (22), can now be used to define the local
dissipation that always remain non-negative:

D := T ṡ − ė (ε, s,D,B)+ σ · ε̇ − ∇ · (E × H) ≥ 0 (26)

where we dropped the dissipation by conduction. Furthermore, by scalar multiplying the two first Maxwell’s equations
in (6) with H and E respectively, and by exploiting the following identity:

∇ · (E × H) = H · (∇ × E)− E · (∇ × H) (27)

the local dissipation can be recast in an equivalent format:

D = T ṡ − ė + σ · ε̇ + j · E + E · Ḋ + H · Ḃ ≥ 0. (28)

We next turn to the case when plasticity is activated. In the framework of linear kinematics defined in (1), it is
generally accepted to use the additive decomposition of the state variables into elastic and plastic parts:

ε = εe
+ ε p

;

s = se
+ s p

;

D = De
+ Dp

;

B = Be
+ Bp.

(29)
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The internal energy potential is now defined in terms of the elastic part of the state variables εe, se,De,Be. For
describing eventual hardening phenomena, which makes the model more predictive than perfect plasticity [1], we also
need to add a new state variable that can monitor the progress of plasticity threshold, here chosen in terms of isotropic
hardening variable ζ . Furthermore, we introduce the free energy potential ψ by means of the Legendre transformation
(e.g. [1]), which allows to exchange the roles between the state variables and their duals, se,De,Be versus T,E,H:

ψ

εe, ζ, T,E,H


= e


εe, ζ, se,De,Be

− T se
− E · De

− H · Be. (30)

The time derivative of the last expression leads to:

ė =
∂ψ

∂εe · ε̇e
+
∂ψ

∂ζ
−q

ζ̇ +
∂ψ

∂T
Ṫ +

∂ψ

∂E
· Ė +

∂ψ

∂H
· Ḣ + Ṫ se

+ T ṡe
+ E · Ḋe

+ Ė · De
+ H · Ḃe + Ḣ · Be (31)

where q is stress-like variable thermodynamically conjugate to ζ , which controls the evolution of plasticity threshold.
With this result on hand, the dissipation in (28) can be expressed as:

0 ≤ D =


σ −

∂ψ

∂εe


· ε̇e

−


se

+
∂ψ

∂T


Ṫ −


De

+
∂ψ

∂E


· Ė −


Be

+
∂ψ

∂H


· Ḣ

+ q ζ̇ + σ · ε̇ p
+ T ṡ p

+ E · Ḋp
+ H · Ḃp

+ j · E. (32)

The last term is often referred to as Joule’s dissipation, which can be written as:

D J = j · E. (33)

By considering the elastic process, where (possibly non-zero values of) internal variables remain frozen enforcing
that ε̇ p

= 0, ζ̇ = 0, ṡ p
= 0, Ḋp

= 0, Ḃp
= 0, and putting aside the Joule’s dissipation, we can conclude that the

local plastic dissipation remains equal to zero. The dissipation inequality will become an equality providing the set of
constitutive equations to be defined in agreement with the chosen free energy potential. Here, we choose a quadratic
form of that potential, which can be written as follows:

ψ

εe, ζ, T,E,H


= ψm + ψp + ψt + ψe + ψh + ψmt + ψme + ψmh;

ψm =
1
2
εe

· Cεe
; ψh = −

1
2

H · µH;

ψp =
1
2
ζK ζ ; ψmt = −β · (T − T0) ε

e
;

ψt = ρm cp


(T − T0)− T ln

T

T0


; ψme = ϵ


(E ⊗ E) · εe

−
1
2
(E · E) tr


εe

;

ψe = −
1
2

E · ϵE; ψmh = µ


(H ⊗ H) · εe

−
1
2
(H · H) tr


εe

(34)

where C is the elasticity tensor, K is the isotropic hardening modulus, cp is the specific heat and β = CαT I is
the thermal stress tensor with αT as the expansion coefficient. The constitutive equations can then be obtained from
derivatives of such a potential, and written in tensor notation:

σ :=
∂ψ

∂εe = C

ε − ε p

− β (T − T0)+ ϵE ⊗ E + µH ⊗ H −
I
2
(ϵ E · E + µ H · H)

De
:= −

∂ψ

∂E
= ϵ


1 + tr


εeE − εeE


Be

:= −
∂ψ

∂H
= µ


1 + tr


εeH − εeH


q := −

∂ψ

∂ζ
= −K ζ

se
:= −

∂ψ

∂T
= ρm cp ln


T

T0


+ β ·


ε − ε p .

(35)
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By assuming that such constitutive equations also remain valid in an inelastic process, the dissipation can now be
defined as the sum of plastic and Joule terms. Furthermore, the plastic dissipation can be split into mechanic, thermal
and electromagnetic terms defined explicitly as:

D = D p
+ D J ;

D p
= q ζ̇ + σ · ε̇ p  

D p
m

+ T ṡ p
D p

t

+ E · Ḋp
+ H · Ḃp  
D p

eh

. (36)

With these results on hand, we can rewrite (28) in terms of generalizing the heat equation for inelastic case which
can be written as:

T ṡ = r − ∇ · q + D ⇒ T ṡe
= r − ∇ · q + D

p
m + D

p
eh + D J (37)

where the results (29) and (36) are used. Furthermore, by using the constitutive equation for se in (35), we can write
explicitly:

T ṡe
:= ρm cp Ṫ + T β ·


ε̇ − ε̇ p . (38)

By introducing (38) into (37) and using (35), the generalized heat equation can finally be restated as:

ρm cp Ṫ = r − ∇ · q − T β · (ε̇ − ε̇ p)+ D J + D
p
m + D

p
eh. (39)

In summary, the strong form of the equations to be solved regroups the results written in (5), (6), (15) and (39),
here restated in tensor notation:

ρm ü = ∇ · σ + b
∇ · j = 0

∇ · B = 0
ρmcp Ṫ = r − ∇ · q − T β ·


ε̇ − ε̇ p

+ D J + D
p
m + D

p
eh.

(40)

3.1. Evolution equations for internal variables

We will further consider the case where magnetic field does not have influence in the applications studied in this
paper, so that it can be dropped from subsequent developments considering it remains equal to zero. This includes a
number of practical applications, such as Peltier cells, where we need to account for plasticity phenomena in metallic
materials. We here use generalized form of von Mises criterion that builds upon the proposal in [12] for perfect
plasticity, which allows to determine if the material is in elastic or plastic regime based upon its stress state and
electric field values. The first generalization of such criterion concerns the possibility to include the thermal field,
leading to:

φ(σ , q, T,E) :=
3
2

∥ dev(σ ) ∥2

σ 2
y (T )

+
∥E∥

2

E2
0

− 1 = 0 (41)

where dev(A) = A −
1
3 [tr(A)] is the deviatoric part of the tensor A, ∥A∥ =


tr

AT A


is the Euclidean norm of A,

σy(T ) is the temperature dependent yield stress and E0 a reference value.
The same criterion can be recast in a more standard format (e.g. [1]) by making the yield stress dependent upon

thermal and electric field variations, which also allows to account for potential hardening effect in terms of isotropic
hardening. Such a generalized von Mises criterion can be written as:

φ (σ , q, T,E) = ∥dev(σ )∥ −


2
3


σy (T,E)− q (T,E)


= 0 ; q = −K (T,E) ζ (42)

where the yield stress and the isotropic hardening modulus are now assumed dependent upon thermal and electric
fields, according to the following dependency:

σy (T,E) = σy0 [1 − ωt(T − T0)] [1 − ωe(∥E∥ − E0)]
K (T,E) = K0 [1 − ωt(T − T0)] [1 − ωe(∥E∥ − E0)]

(43)
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where ωt and ωe are some coefficients to define the influence of the temperature and the electric fields respectively in
σy and K .

By using the principle of maximum dissipation [1], we will pick among all plastically admissible values of dual
variables (which satisfy φ(σ , q, T,E) = 0) the one which will maximize the plastic dissipation. We can further recast
such a constrained optimization problem in terms of min–max problem of unconstrained minimization where the
plastic admissibility constraint is enforced by using the method of Lagrange multipliers leading to plastic Lagrangian:

max
φ(σ ,q,T,E)=0

D p (σ , q, T,E) ⇔ min
∀(σ ,q,T,E)

max
γ̇ p>0

L p σ , q, T,E, γ̇ p (44)

where the Lagrange multiplier is equal to the plastic multiplier γ̇ p. The plastic Lagrangian will incorporate the yield
criterion constraint φ = 0, which can be written as:

L p σ , q, T,E, γ̇ p
:= −D p (σ , q, T,E)+ γ̇ p φ (σ , q, T,E) . (45)

The solution to such constrained minimization problem can be obtained by using the Kuhn–Tucker optimality
conditions, which allows to write:

0 :=
∂L p

∂σ
= γ̇ p ∂φ

∂σ
− ε̇ p

;

0 :=
∂L p

∂q
= γ̇ p ∂φ

∂q
− ζ̇ ;

0 :=
∂L p

∂T
= γ̇ p ∂φ

∂T
− ṡ p

;

0 :=
∂L p

∂E
= γ̇ p ∂φ

∂E
− Ḋp

;

γ̇ p
≥ 0; φ ≤ 0; γ̇ p φ = 0.

(46)

Using the first two previous equations, D
p
m can further be simplified:

D
p
m = γ̇ p

φ=0   σ · ν
∥dev(σ )∥

−


2
3


σy − q

 +γ̇ p


2
3
σy = γ̇ p


2
3
σy (47)

where ν := ∂φ/∂σ = dev(σ )/∥dev(σ )∥.

4. Finite element implementation

In this section we present the details of the discrete approximation constructed by the finite element method, as a
particular case of the Galerkin method. The starting point is provided by the weak form of the conservation equations
in (40), which can be stated in tensor notation as follows:

−


Ω

∇
sδu · σ + δu · (ρm ü − b) dΩ +


Γ
δu · t̄c dΓ = 0;

Ω
∇δV · j dΩ −


Γ
δV j̄ dΓ = 0;

Ω
∇δT · q − δT


ρm cp Ṫ − r + T β ·


ε̇ − ε̇ p

− j · E − γ̇ p


2
3
σy − E · Ḋp

− H · Ḃp


dΩ

−


Γ
δT q̄ dΓ = 0

(48)

where δ• denotes a virtual field or variation. It can be noticed that the conservation equation for the magnetic field has
been dropped as already stated above. We can readily obtain the discrete approximations for all the fields, along with
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their space and time derivatives by appealing to separation of variables:

u ≈ Nb aU
b ; V ≈ Nb aV

b ; T ≈ Nb aT
b ;

δu ≈ Na wU
a ; δV ≈ Na wV

a ; δT ≈ Na wT
a ;

∇
su ≈ Bs

b aU
b ; ∇V ≈ Bb aV

b ; ∇T ≈ Bb aT
b ;

∇
sδu ≈ Bs

a wU
a ; ∇δV ≈ Ba wV

a ; ∇δT ≈ Ba wT
a ;

ü ≈ Nb äU
b ; ∇

s u̇ ≈ Bs
b ȧU

b ; Ṫ ≈ Nb ȧT
b

(49)

where a represent the nodal values of different fields (yet called degrees of freedom), whereas w represent the
nodal values of their variations. In last expression, Na denotes the standard isoparametric shape function for node
a (e.g., [1]), with their gradients gathered in matrix form as:

Ba = ∇Na;

Bs
a = ∇

s Na .
(50)

By introducing the corresponding finite element approximations into the weak form of the conservation equations,
and switching from tensors to matrices by means of the Voigt notation, we can finally obtain:



−


Ω


Bs

a wU
a

T
σ +


Na wU

a

T 
ρm Nb äU

b − b


dΩ +


Γ


Na wU

a

T
t̄c dΓ = 0;

Ω


Ba wV

a

T
j dΩ −


Γ

Na wV
a j̄ dΓ = 0;

Ω


Ba wT

a

T
q − Na wT

a


ρm cp Nb ȧT

b − r + Nb aT
b βT


Bs

b ȧU
b − ε̇ p


+

j + ḊpT Bb aV

b

+

ḂpT Bb a

ϕ
b − γ̇ p


2
3
σy


dΩ −


Γ

Na wT
a q̄ dΓ = 0

(51)

where the plastic variable values are those calculated in Section 5.2, and where we introduce the discrete
approximations of dual variables and fluxes:

σ = C
(6×6)


Bs

b(6×3)
aU

b(3×1)
− ε p


− β


Nb aT

b − T0


+ ϵ0 B⊗

b


aV

b

2
−

1
2


ϵ0


Bb aV

b

T
Bb aV

b


;

j = −γ Bb aV
b − γ α Bb aT

b ;

q = −κ Bb aT
b + Nb aT

b α j

(52)

featuring 1 = (1, 1, 1, 0, 0, 0)T and the subscript ⊗ as the tensor multiplication into Voigt notation; in this case
B⊗

b = Bb ⊗ Bb:

B⊗

b =


Nb,1 Nb,1
Nb,2 Nb,2
Nb,3 Nb,3
Nb,1 Nb,2
Nb,2 Nb,3
Nb,1 Nb,3

 (53)

with Nb,i is the derivative of the shape function in the direction i .



62 P. Moreno-Navarro et al. / Comput. Methods Appl. Mech. Engrg. 315 (2017) 50–72

By considering that the nodal values of virtual field (∀w) can be picked arbitrarily, it is possible to obtain from (51)
the final set of non-linear residual equations that need to be solved:

RU
a = −


Ω

Bs
a

T
σ + Na


ρm Nb äU

b − b


dΩ +


Γ

Na t̄c dΓ ;

RV
a =


Ω

BT
a j dΩ −


Γ

Na j̄ dΓ ;

RT
a =


Ω

BT
a q − Na


ρm cp Nb ȧT

b − r + Nb aT
b βT


Bs

b ȧU
b − ε̇ p


+

j + ḊpT Bb aV

b

− γ̇ p


2
3
σy


dΩ −


Γ

Na q̄ dΓ .

(54)

5. Time discretization

5.1. Global solution step by Newmark scheme

The Newmark scheme is used for the time discretization of the global solution step. This scheme requires two
parameters γ and β that will determine the numerical damping and order of the scheme (e.g. [1]):

ab,n+1 = ab,n + ∆t ȧb,n + ∆t2


1
2

− β


äb,n + β äb,n+1


;

ȧb,n+1 = ȧb,n + ∆t

(1 − γ ) äb,n + γ äb,n+1

 (55)

where we denoted the time step as ∆t = tn+1 − tn . These equations, often referred to as Newmark equations, are
accompanied by the residual equations enforcing the zero value at time step n + 1, which can be explicitly written as:

RU,(i)
a,n+1 = −


Ω

Bs
a

T
σ
(i)
n+1 + Na


ρm Nb ˆ̈a

U,(i)
b,n+1 − bn+1


dΩ +


Γ

Na t̄cn+1 dΓ ;

RV,(i)
a,n+1 =


Ω

BT
a j(i)n+1 dΩ −


Γ

Na j̄n+1 dΓ ;

RT,(i)
a,n+1 =


Ω

BT
a q(i)n+1 − Na


ρm cp Nb ˆ̇a

T,(i)
b,n+1 − rn+1

+ Nb a
T,(i)
b,n+1 βT


Bs

b
ˆ̇a

U,(i)
b,n+1 − ε̇

p,(i)
n+1


+


j(i)n+1 + Ḋp

n+1

T
Bb a

V,(i)
b,n+1 − γ̇

p
n+1


2
3
σy


dΩ −


Γ

Na q̄n+1 dΓ

(56)

where the corresponding values for velocities ˆ̇a
(i)
n+1 and accelerations ˆ̈a

(i)
n+1 are obtained by recasting the result (55)

resulting with:

ˆ̇a
(i)
b,n+1 = ȧb,n + ∆t


(1 − γ ) äb,n + γ ä

(i)
b,n+1


;

ˆ̈a
(i)
b,n+1 =

a
(i)
b,n+1 − ab,n − ∆t ȧb,n

β∆t2 +


1 −

1
2β


äb,n

(57)

and the plastic variables can be discretized by the backward Euler scheme:

ε̇
p
n+1 =

ε
p
n+1 − ε

p
n

∆t
;

Ḋp
n+1 =

Dp
n+1 − Dp

n

∆t
;

γ̇
p

n+1 =
γ

p
n+1

∆t
.

(58)
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Thus, the time stepping scheme of this kind will finally render the set of nonlinear algebraic equations. To solve
such a nonlinear problem, we use Newton’s iterative method where at each iteration (i + 1) we perform the consistent
linearization of residual leading to:

R(i+1)
a,n+1 = 0 ⇒ R(i)

a,n+1 +
∂Ra,n+1

∂ab,n+1

(i) ∆a
(i)
b,n+1 = 0 ; R(i)

a,n+1 =


RU ,RV ,RT

T,(i)

a,n+1
(59)

where ∆ab are iterative contributions to nodal values of temperature, electric field, along with displacements,
velocities and accelerations. At each iterative sweep, we can then perform the corresponding state variable updates
according to:

a
(i+1)
b,n+1 = a

(i)
b,n+1 + ∆a

(i)
b,n+1. (60)

In the first iteration within each time step we will take the starting guess equal to the converged value at the previous
step:

a
(0)
b,n+1 = ab,n . (61)

The mechanics part of the residual vector at particular iteration can be further compressed, reducing it to the form
presented explicitly in (56). Namely, the first term in (59) can be reduced to so-called effective tangent stiffness for
mechanical part, which is directly used to compute the iterative contributions to displacement increments:

SU,(i)
ab = −

∂RU
a

∂ab


(i)

−
∂RU

a

∂ȧb

∂ȧb

∂ab


(i)

−
∂RU

a

∂äb

∂äb

∂ab


(i)

(62)

where time-step subscript n + 1 was dropped to simplify notation. By exploiting the relations between the nodal
displacements and its first and second derivatives provided by the Newmark scheme, we can provide the closed
form final linearized problem to be solved. More precisely, in view of the Newmark result for constructing discrete
approximations for nodal velocities and accelerations in (55), we can write:

∂äb

∂ab
=

1

β∆t2 ;
∂ȧb

∂ab
=
∂ȧb

∂äb

∂äb

∂ab
=

γ

β∆t
. (63)

Thus, the final form of the tangent operator for mechanics part can now be written as:

SU,(i)
ab = K(i)

ab +
γ

β∆t
D(i)

ab +
1

β∆t2 M(i)
ab (64)

where Kab = −
∂Ra
∂ab

is the elastoplastic tangent stiffness matrix, Dab = −
∂Ra
∂ȧb

is the damping matrix and

Mab = −
∂Ra
∂äb

is the mass matrix.
Given the solution for displacement increment at iteration (i), we proceed to compute the displacement updates

a
(i+1)
n+1 by using the result in (60).

5.2. Local iterative solution for plasticity with isotropic hardening

This local computation has to be performed for every Gauss point in agreement with the corresponding result a
(i)
n+1

obtained in the global phase. For proposed generalization of von Mises plasticity, we first define the yield function for
coupled problem of this kind:

φn+1


a
(i)
n+1

= ∥dev(σ n+1)∥ −


2
3


σy (Tn+1,En+1)− qn+1


. (65)
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The elastic trial step is computed first, with the zero value of plastic multiplier γ p,tr
n+1 = 0. This result with:

ε
p,tr
n+1 = ε p

n
;

ζ tr
n+1 = ζn;

s p,tr
n+1 = s p

n
;

Dp,tr
n+1 = Dp

n
.

(66)

These results are exploited in computation of the corresponding trial values of stress and hardening stress-like
variable:

σ tr
n+1 = C


εn+1 − ε p

n


− β (Tn+1 − T0)+ ϵE⊗

n+1 −
1
2

En+1 · En+1;

q tr
n+1 = qn = −K ζn .

(67)

To ensure that the elastic step is acceptable, the trial value of yield function must remain negative or zero

0 ≥ φtr
n+1 =

dev

σ tr

n+1

−


2
3


σy(Tn+1,En+1)− q tr

n+1


. (68)

If such a condition is not verified, the step is plastic. The latter implies that all the internal variables must be
recomputed by integrating the evolution equations in (46):

ε
p
n+1 = ε p

n
+ γ

p
n+1 νn+1;

ζn+1 = ζn +


2
3
γ

p
n+1;

s p
n+1 = s p

n
+ γ

p
n+1


2
3
ωt

σy0 + K0 ζn+1


;

Dp
n+1 = Dp

n
+ γ

p
n+1

E
∥E∥


2
3
ωe

σy0 + K0 ζn+1


.

(69)

The plastically admissible value of stresses can be computed as:

σ n+1 = σ tr
n+1 − γ

p
n+1 C νn+1

qn+1 = −K ζn+1.
(70)

We note that the final value of plastic multiplier γ p
n+1 can be obtained from φn+1 = 0, by taking into account that:

νn+1 = νtr
n+1;

∥dev (σ n+1)∥ =
dev


σ tr

n+1

− 2µ γ p
n+1

(71)

where µ is the shear modulus. We finally obtain:

γ
p

n+1 =
φtr

n+1

2µ+
2K
3

. (72)

5.3. Consistent tangent thermo–electro–elastoplastic modulus

The computation of the consistent tangent thermo–electro–elastoplastic modulus is carried by generalizing the
scheme first proposed for classical plasticity in [19]. At converged values of local computation, we take a new iterative
sweep brought by an increment of total strain. The corresponding linearized form of local problem is obtained in terms
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of dual variables:

L(k)
n+1


∆σ n+1
∆Tn+1
∆En+1

∆γ p
n+1

∆qn+1

 =



−εe
n+1 + εe

n
+ ∆ε

(i)
n+1 − γ

p
n+1

∂φ

∂σ n+1

−se
n+1 + se

n
+ ∆s(i)n+1 − γ

p
n+1

∂φ

∂Tn+1

−De
n+1 + De

n
+ ∆D(i)n+1 − γ

p
n+1

∂φ

∂En+1

φn+1

ζn+1 − ζn − γ
p

n+1
∂φ

∂qn+1


(73)

where the tangent matrix is, for the most general case:

L(k)n+1 =




∂2ψ

∂εe ∂εe

−1

+ γ p ∂2φ

∂σ ∂σ
γ p ∂2φ

∂σ ∂T
γ p ∂2φ

∂σ ∂E
∂φ

∂σ
0

γ p ∂2φ

∂T ∂σ
γ p ∂

2φ

∂T 2
−
∂2ψ

∂T 2
γ p ∂2φ

∂T ∂E
∂φ

∂T
0

γ p ∂2φ

∂E ∂σ
γ p ∂2φ

∂E ∂T
γ p ∂2φ

∂E ∂E
−

∂2ψ

∂E ∂E
∂φ

∂E
0

∂φ

∂σ

T ∂φ

∂T


∂φ

∂E

T
0

∂φ

∂q

0T 0 0T ∂φ

∂q
γ p ∂

2φ

∂q2
−


∂2ψ

∂q2

−1



. (74)

The subsequent iterative values can then be obtained with simple additive updates:

σ
(k+1)
n+1 = σ (k)n + ∆σ n+1

T (k+1)
n+1 = T (k)n + ∆Tn+1

E(k+1)
n+1 = E(k)n + ∆En+1

γ
p,(k+1)

n+1 = γ
p,(k)

n + ∆γ p
n+1

q(k+1)
n+1 = q(k)n + ∆qn+1.

(75)

With the converged values of internal variables in the local computation phase, we can write the result in (73) as:

Ln+1


∆σ n+1
∆Tn+1
∆En+1

γ
p

n+1
qn+1 − qn

 =


∆ε

(i+1)
n+1

∆s(i+1)
n+1

∆D(i)n+1

0
0

 . (76)

Further, by using the static condensation method (e.g. [1]) we can reduce the size of this system:


Laa − Lab L−1

bb Lba

∆σ

∆T
∆E


n+1

=

∆ε

∆s
∆D

(i+1)

n+1

(77)
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where:

Laa(10×10) :=




∂2ψ

∂εe ∂εe

−1

+ γ p ∂2φ

∂σ ∂σ
γ p ∂2φ

∂σ ∂T
γ p ∂2φ

∂σ ∂E

γ p ∂2φ

∂T ∂σ
γ p ∂

2φ

∂T 2 −
∂2ψ

∂T 2 γ p ∂2φ

∂T ∂E

γ p ∂2φ

∂E ∂σ
γ p ∂2φ

∂E ∂T
γ p ∂2φ

∂E ∂E
−

∂2ψ

∂E ∂E

 ;

Lab(10×2) :=


∂φ

∂σ
0

∂φ

∂T
0

∂φ

∂E
0

 ; Lbb(2×2) :=

 0
∂φ

∂q
∂φ

∂q
γ p ∂

2φ

∂q2 −


∂2ψ

∂q2

−1

 ; Lba(2×10) := LT
ab.

(78)

Due to the zero column and row of Lab and Lba respectively, the only relevant term of L−1
bb for the multiplication

in (77) is the first one:

L̂ := −L−1
bb (1, 1) =

b

a2 (79)

where:

a := Lbb(1, 2) = Lbb(2, 1) =
∂φ

∂q
; b := Lbb(2, 2) = γ p ∂

2φ

∂q2 −


∂2ψ

∂q2

−1

(80)

so that this multiplication is simplified to:

− Lab L−1
bb Lba = L̂ ξ ξT (81)

where ξ is a vector containing the first column of Lab. By substituting (81) into (77), after some further simplifications,
we obtain:


Laa + L̂ ξ ξT


  

Ĉ

∆σ

∆T
∆E


n+1

=

∆ε

∆s
∆D

(i+1)

n+1

(82)

featuring Ĉ as a consistent tangent thermo–electro–elastoplastic modulus for the given variables. By exchanging the
roles between variables σ and ε, we can obtain the final form of tangent modulus for the global phase C̄; namely, with
the split of Ĉ:

Ĉ =


Ĉaa(6×6) Ĉab(6×7)

Ĉba(7×6) Ĉbb(7×7)


(83)

we can easily construct C̄ which can be written as:

C̄ =

 Ĉ−1
aa(6×6)


−Ĉ−1

aa Ĉab


(6×4)

ĈbaĈ−1
aa


(4×6)


Ĉbb − ĈbaĈ−1

aa Ĉab


(4×4)

 ⇒ C̄

∆ε

∆T
∆E


n+1

=

∆σ

∆s
∆D


n+1

. (84)

6. Numerical examples

In this section, the results of numerical simulations are presented for plasticity problem with thermo–electro-
mechanic coupling of this kind, including the practical applications in terms of Peltier cells. All computations are
performed by a research version of the well-known computer code FEAP [20].
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Table 2
Properties of the material used in validation example.

Property Units Value

Young modulus E GPa 200
Mass density ρm kg/m3 7.8 × 103

Specific heat cp J/kg K 1.2 × 106

Seebeck coefficient α V/K 2 × 10−4

Thermal expansion coef. αT 1/K 1.5 × 10−5

Thermal conductivity κ W/K m 0.15
Electric conductivity γ A/V m 106

Fig. 1. Scheme of the geometry considered and the pulse applied to the left end.

6.1. Electro–thermo-mechanical coupling for transient loading

In this first example we consider a transient problem where different coupling effects are easier to validate, thus
providing the sort of benchmark result. Namely, we compute an electro–thermo-mechanical coupling in 3D domain
in the form of a bar, with one dimension significantly bigger than the other two. The boundary conditions are chosen
in agreement with propagation along the bar with a displacement time variation imposed at the left end while the right
end of the bar is free; we also impose adiabatic boundary for the thermal and isolated contour for the electromagnetic
field (see Fig. 1). The chosen material properties are shown in Table 2. The choice of Newmark scheme parameters
γ = 1.5 and β = 1 results with the highest numerical dissipation (see [21]).

The bar is set in motion by a displacement pulse imposed on the left end (see Fig. 1) that propagates through the
bar, with its period being much lower than the one corresponding to inertia of the bar. This displacement produces
the corresponding local change in the time derivative of the strain, which further generates the structural heating
defined in (39) and leads to a temperature change. These temperature changes also lead to change in the electric field,
which is affected through the constitutive behavior of the material (23) assuming j = 0 due to the isolated boundary
conditions.

In Fig. 2 we present the computed response for the displacement in the bar longitudinal direction, the electric
voltage and the temperature for the point in the middle of the bar x = l/2 through the transient sequence. The time
scale used is the step size ∆t = 5 × 10−8 s.

Regarding the evolution of the mechanical field, this problem can be seen as a wave propagation. When the wave
arrives to the right end, the reflected wave keeps the same sign as the wave that originally came, and when it arrives to
the left side the sign changes due to the restricted movement. This problem is considered in elastic regime so there is
no plastic dissipation. Nonetheless, the maximum displacement is gradually reduced due to dissipation by conduction,
which is produced for non-homogenize temperature distribution along the bar. Moreover, the wave length is increased
in the course of this wave propagation.

The evolution of other two fields is directly affected by the evolution of displacement field. The temperature
in particular is proportional to the time derivative of the strain or strain rate, which changes the sign within the
displacement pulse. Moreover, when the wave passes by the middle point, the strain will be positive or negative,
which depends upon the direction of the wave and the sign of the displacement. As it can be seen in Fig. 2, a wave
passing from left to right in the ascending part generates at first a positive strain rate, but once passed the maximum
displacement, the same wave produces negative strain rate. The voltage evolution is directly affected by the evolution
of the temperature, but with the sign changed as stated in (23).
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Fig. 2. Computed displacement, voltage and temperature in the bar middle point x = l/2.

Table 3
Material properties for every material used in the Peltier Cell.

Property Units Alumina Copper Tin–Lead Bi2Te3

Hardening modulus K GPa 5 5 5 1
Yield stress σy MPa 15,400 100 180 55
Mass density ρ kg/m3 3570 8960 7310 7530
Specific heat cp J/kg K 837 385 226 544
Expansion coefficient αT 1/ ◦C 5.00 × 10−6 1.70 × 10−5 2.70 × 10−5 1.68 × 10−5

First Lamé parameter λ N/m2 1.63 × 1011 7.16 × 1010 3.25 × 1010 6.71 × 1010

Shear stress µ N/m2 1.51 × 1011 4.39 × 1010 1.68 × 1010 1.68 × 1010

Thermal conductivity κ W/K m 35.3 386 48 κ(T )
Electric conductivity γ A/V m 0 5.81 × 107 4.72 × 106 γ (T )
Seebeck coefficient α V/K 0 0 0 α(T )

6.2. Peltier cells with stress evolution under plasticity constraint

In this numerical example, we simulate the behavior of half a thermocouple of a pulsed Peltier cell, representing
a cooler based on the Peltier effect under the action of an electric flux. This cell consists of four different materials:
thermoelectric material (here chosen Bi2Te3), copper, alumina and a tin–lead solder.

A complete simulation for elastic regime can be found in [18]. The material properties for this problem are
presented in Table 3. Moreover, some of these properties for the Bi2Te3 are chosen as temperature dependent:

α(T ) = 1.988 × 10−4
+ 3.353 × 10−7 T + 7.52 × 10−10 T 2

κ(T ) = 1.663 − 3.58 × 10−3 T + 3.195 × 10−5 T 2

γ (T ) = 1.096 × 105
− 5.59 × 102 T + 2.498 T 2.

(85)

Finally, the alumina is considered to remain elastic material (setting very high value for yield stress) because the
plasticity begins well after the ultimate stress is reached. The same values for the Newmark parameters are chosen as
in the last example.
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Fig. 3. Left, mesh used in this numerical example, each material represented in a different color: Bi2Te3 in red, copper in blue, solder in green
and alumina in yellow. Right, boundary conditions imposed in this problem. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Maximum von Mises stress for solder (red), copper (black) and Bi2Te3 (blue) when an electric square pulse of gain P = 3.5 and duration
∆tp = 5 s is applied at t = 125 s. Full line, computed result with elastoplastic response; dashed line, computed results for elastic response. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The finite element mesh constructed with the hexahedral 8-node finite elements used for computing the solution
to this problem is shown in Fig. 3. Different materials are presented in different colors. The boundary conditions
are shown in Fig. 3 right. We fix the displacements in directions x and z at the respective end faces, along with the
symmetry condition in the plane y = 0. The temperature is prescribed at the top face T̄t = 50 ◦C (called hot side)
along with a zero heat flux imposed at the bottom (cold side) where the temperature Tb is left free. The electric flux is
introduced at the bottom left end of the copper while ground voltage is assumed at the top right end copper.

The applied loading is presented in Fig. 4 top. First, an electric flux jss = Iop/A is introduced, where Iop is an
optimal electric current that maximizes the temperature difference T̄t − Tb in steady-state (more details in [18]) with
A as the transversal area of the copper. This electric flux value is kept fixed until evolution for all the degrees of
freedom has been stabilized, and a steady-state has been reached. After this moment, the flux is incremented P times,
where P = j/jss is the pulse gain, which implies automatically that Tb decreases until a minimum is reached, but with
an overheating penalty reached right afterwards. The steady-state temperature is reached eventually after reimposing
P = 1 if no other pulse is introduced.

Fig. 4 provides the representation of the maximum von Mises stress values calculated in Gauss points for each
material in both elastic and plastic regimes. In the steady-state, the maximum stresses are similar since the yield
stress has not been reached yet. However, with the increase of electric flux, the stress increments seen in [18] due to
accumulation of Joule heating, are no longer the same.
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Fig. 5. Von Mises stress [MPa] contour in deformed configuration for elastic (left) and plastic regimes (right). All materials but the alumina.
Detailed zoom at the bottom side of the Peltier cell.

Fig. 6. Top: electric flux pulse gain introduced in the problem. Bottom: temperature at the cold side for elastic (red, full) and plastic regime (blue,
dashed). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

When the pulse is introduced reaching the yield stress σy , the subsequent stress-rate increase is reduced, due
to the corresponding increase in plastic strains. These changes result in a noted decrease of the maximum stresses
computed with activated plasticity constraint compared to the elastic case, specially in the copper and in the
thermoelectric material. Once the steady-state gain is restated, the asymptotic stresses are reduced as a result of the
plastic deformation in the copper and the solder. Moreover, due to the stresses redistribution, enforced by plasticity
constraint, the stresses are increased in the Bi2Te3. Thus, a new study of the introduction of another pulse after the
application of the first is needed.

In Fig. 5 the nodal von Mises projection distribution is shown at the end of the pulse t = 130 s, when the maximum
stresses take place, along with a detailed zoom of the cold side, the most stressed part of the structure. The alumina
has been omitted in order to show more clearly the differences with respect to the plastic materials.

In both cases the maximum is located at the bottom since this side has a bigger difference with respect to the
reference temperature than the hot side. The maximum values are rather similar in both regimes. This is due to the
influence of alumina that remains elastic, which stabilizes the corresponding stress distribution inside with no marked
changes.

The first noticeable difference is that the stress distribution of the lower values is quite different. This can be
appreciated specially for the copper, where the part on the bottom left has quite reduced values of stress, and in the
Bi2Te3 where they have increased in average in a homogenization process. This further explains what was already
observed in Fig. 4, as in general in the copper the stresses in steady-state will be reduced and the opposite for the
thermoelectric material.

It is interesting to note (as shown in Fig. 6 bottom) that the temperature evolution is not very affected by the
presence of plasticity unlike the stress distribution. The latter is due to rather small contribution of the plastic
dissipation towards total power sources, especially compared against the Joule dissipative term or Peltier cooling.
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Thus, it would appear that if the main goal in this problem concerned the temperature evolution, the plasticity would
not have decisive role for computing the sufficiently good results.

7. Conclusions

A number of novelties for solving the coupled thermo–electro-mechanic problems for conductor materials are
presented in this work. In particular, a complete formulation for thermo–electro–elastoplastic behavior has been
developed in a consistent manner by using conservation principles along with the definition of a free-energy potential
leading to corresponding constitutive relations. This formulation has been implemented in the most general 3D
framework, by using 8-node hexahedral finite element for constructing semi-discretization, along with the global
phase of time discretization by the Newmark scheme and local computation of the internal variables for plasticity.
Finally, the thermo–electro–elastoplastic tangent modulus has been obtained assuming that every possible interaction
is not negligible.

This development provides the sound basis to analyze practical examples, which either did not include an electric
coupling to the thermomechanical formulation or have not implemented a plastic model in a thermo–electro-elastic
framework. Moreover, the proposed formulation provides the starting point for further developments in plasticity that
would include non-negligible magnetic field contribution.

The first validation numerical example has proven that all the couplings considered in this paper for the resulting
element provide logica implemented, leading to the result that was expected, when the plastic behavior is not activated.
In the second example, major differences between the elastic and plastic types of behavior have been found. In
particular, the distribution of the stresses changes as the plasticity reduces the maximum value of von Mises by
overcharging other parts of the domain, so the materials are more compensated. The increase of the plastic variables
in the pulsed part affects the stress distribution in the steady-state, by reducing the maximum von Mises in the copper
and the alumina and increasing it in the Bi2Te3 so a more complete study on the application of another pulses after
irreversible changes take place is needed, and possibly a fatigue work to study the lifetime of the pulsed Peltier Cells.
Also, the plastic dissipation in this example is not very significant when only the electric and the thermal fields are
considered as the temperature in the cold side remains practically the same.
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