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Abstract	30	

Several	 studies	 demonstrate	 that	 since	 emotions	 are	 spontaneously	 manifested	 through	 different	31	
measurable	quantities	(e.g.	vocal	and	facial	expressions),	this	makes	possible	a	sort	of	automatic	estimation	32	
of	emotion	from	objective	measurements.	However,	the	reliability	of	such	estimations	is	strongly	influenced	33	
by	the	availability	of	the	different	sensor	modalities	used	to	monitor	the	affective	status	of	a	subject,	and	34	
furthermore	 the	 extraction	 of	 objective	 parameters	 is	 sometime	 thwarted	 in	 a	 noisy	 and	 disturbed	35	
environment.	This	paper	introduces	a	personalized	emotion	estimation	based	on	a	heterogeneous	array	of	36	
physical	 sensors	 for	 the	measurement	of	 vocal,	 facial,	 and	physiological	 (electro-cardiogram	and	electro-37	
dermal)	activities.	As	a	proof	of	concept,	changes	in	the	levels	of	both	emotion	reactiveness	and	pleasantness	38	
are	 estimated	 under	 critical	 operative	 conditions.	 The	 estimator	model	 takes	 advantage	 from	 the	 time-39	
varying	selection	of	 the	most	relevant	non-spurious	sensors	 features	and	the	adaptation	of	 the	k-nearest	40	
neighbour	paradigm	to	the	continuous	identification	of	the	most	affine	model	templates.	The	model,	once	41	
trained,	demonstrated	 to	autonomously	embed	new	sensorial	 input	and	adapt	 to	unwanted/unpredicted	42	
sensor	noise	or	emotion	alteration.	 The	proposed	approach	has	been	 successfully	 tested	on	 the	RECOLA	43	
database,	a	multi-sensorial	corpus	of	spontaneous	emotional	interactions	in	French.	44	

Keywords:	Sensor	Array;	Adaptive	regression	strategy;	Emotion	recognition;	45	
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1. Introduction	47	

Several	 studies	 show	 that	 quantitative	 measurements	 of	 human	 expression	 can	 be	 used	 to	 estimate	48	
psychological	and	physical	conditions	in	humans	[1,2,3].	Artificial	empathic	systems	are	expected	to	be	of	49	
benefit	 in	 many	 diverse	 domains	 such	 a	 precision	 medicine,	 personalized	 care	 and	 therapy,	 customer	50	
satisfaction	studies,	or	web	profiling,	to	mention	a	few	[4-6].	According	to	a	commonly	accepted	model	[7],	51	
the	 complexity	 of	 emotions	may	 be	 simplified	 using	 two	 features	 describing	 the	 level	 of	 reactiveness	 to	52	
stimuli,	named	arousal,	and	the	level	of	attractiveness/averseness	of	an	emotion,	named	valence.		53	

A	subject	may	manifest	his/her	affective	condition	using	facial	mimic,	voice	alteration,	electro-cardiogram	54	
deviation	from	normal	status	and	electro-dermal	activities	modification	due	for	example	to	sweating.	The	55	
increasing	interest	in	modalities	that	complement	to	audio/visual	is	motivated	by	the	growing	availability	of	56	
wearable	devices	that	include	physiological	sensors,	such	as	electro-cardiogram	and	electro-dermal	activity,	57	
at	 an	 affordable	 cost.	 We	 indicate	 such	 plethora	 of	 verbal/nonverbal	 messages	 as	 a	 multi-sensorial	58	
representation	 of	 the	 emotion.	 Previous	 studies	 [8-11]	 indicate	 that	 there	 can	 be	 a	 strong	 correlation	59	
between	alterations	in	sensor	acquisition	and	in	the	level	of	arousal	and	valence	observed	over	small	time	60	
intervals	of	about	half	a	second.	If	correctly	estimated,	such	relevance	can	be	exploited	in	order	to	construct	61	
a	reliable	model	able	to	predict	the	affective	status	in	the	future.	The	most	important	implication	can	be	to	62	
optimize	the	therapeutic	plans,	advertising	strategies,	or	not	 less	 fascinating,	a	cybernetic	retelling	of	the	63	
home-sweet-home	paradigm.	With	respect	to	subject	independent	emotion	estimation,	customized	emotion	64	
prediction	adds	the	simplification	of	not	requiring	a	large	amount	of	labelled	data	for	training	the	model	and	65	
a	 greatest	 robustness	 to	 an	 affective	 content	 baseline.	 In	 fact,	 personalized	 estimation	 can	 be	 achieved	66	
without	 the	need	 to	normalize	 the	descriptors	but	 rather	exploiting	data	 variability	within	 the	 session	 in	67	
favour	of	increased	prediction	performance.	At	the	same	time,	it	may	suffer	from	reduced	information	about	68	
past	 affective	 content	 that	 can	 negatively	 impact	 on	 the	 capability	 to	 accurately	 anticipate	 the	 subject’s	69	
affective	status	and	consequently	design	prompt	actions.	Unfortunately,	the	complexity	of	the	scenario	to	70	
model,	 and	 the	diverse	 sources	of	 variability	 present,	make	 it	 very	difficult	 to	develop	a	 robust	 emotion	71	
prediction	system	even	in	case	of	customised	affective	estimation,	as	graphically	illustrated	in	Fig.	1,	where	72	
the	inter-relations	between	problems	and	sources	of	variability	are	outlined.	73	

In	analogy	to	what	happens	in	very	complex	sensor	systems,	this	scenario	poses	many	problems	originally	74	
solved	 in	 different	 engineering	 fields.	Hence,	 in	 the	 following	 sections,	we	present	 and	discuss	 the	main	75	
sources	of	variability	that	should	be	accounted	for	in	multi-sensorial	emotion	prediction,	providing,	at	the	76	
same	time,	 the	original	contextualization	 in	sensor	networks	management.	As	outlined	 in	 [12],	no	sensor	77	
fusion	technique	is	superior	to	others	in	all	contexts,	but	there	can	be	an	optimal	configuration	for	a	specific	78	
application.	With	this	in	mind,	in	this	work,	we	intend	to	implement	the	C3	paradigm	of	multi-sensor	fusion	79	
theory	[13],	i.e.,	complementary,	competitive,	and	cooperative.	A	complementary	configuration	allows	the	80	
sensors	to	not	directly	depend	on	each	other,	but	to	be	combinable	in	order	to	give	a	more	complete	image	81	
of	the	phenomenon	under	observation.	Different	sensors	may	acquire	different	cues	of	the	same	affective	82	
condition.	 In	 a	 competitive	 architecture,	 each	 sensor	 delivers	 independent	 measurements	 of	 the	 same	83	
property.	Examples	of	competitive	sensors	are	redundant	configuration	and	fault	tolerance	that	allow	the	84	
possibility	to	capture	the	same	general	affective	condition	using	a	different	modality	(e.g.,	negative	valence,	85	
positive	arousal,	etc.).	A	cooperative	sensor	network	uses	the	information	provided	by	each	sensor	modality	86	
to	increase	the	degree	of	knowledge	of	a	given	property,	overcoming	individual	inaccuracy	and	uncertainties.	87	
To	 demonstrate	 the	 effectiveness	 of	 the	 cooperative	 fusion	 approach,	 we	will	 compare	 performance	 of	88	
individual	sensor	modalities	in	emotion	recognition	with	those	obtained	by	a	multi-sensor	configuration.		89	



The	success	of	such	an	architecture	 lies	 in	the	hybrid	fusion	of	characteristics	that,	 if	properly	accounted,	90	
ensure	 robustness,	 reliability,	 and	 effectiveness	 to	 the	 solution.	 In	 emotion	 prediction,	 complementary	91	
requires	that	different	aspects	of	the	same	affective	condition	are	measured,	and	this	is	achieved	through	92	
the	 different	 sensor	 modalities.	 Competitiveness	 asks	 for	 the	 independence	 of	 the	 different	 sensor	93	
acquisitions,	 obtained	 by	 different	 hardware,	 physical	 principles,	 as	 well	 as	 acquisition	 settings.	 Finally,	94	
cooperativeness	allows	the	information	acquired	from	different	sensors	to	be	synergistically	aggregated	to	95	
construct	 a	 unified	model	 of	 prediction,	 as	will	 be	 demonstrated	 by	 a	 dynamic	 adaptive	 procedure.	 The	96	
novelty	of	our	approach	lies	in	the	strategy	used	to	implement	the	C3	paradigm,	and	in	how	it	is	applied	to	97	
personalized	emotion	prediction.	First	of	all,	each	modality	of	the	affective	manifestation	is	acquired	through	98	
a	dedicated	sensor	device,	later	indicated	as	AUDIO,	VIDEO,	ECG,	and	EDA.		The	four	sensors	acquire	a	one-99	
dimensional	audio	speech	signal,	the	video	sequence	of	the	upper	body	of	the	subject,	the	ECG	signal,	and	100	
the	EDA	signal.	Sensor	spurious	data	(blue	subtree	node	in	Fig.	1)	may	occasionally	or	permanently	occur	due	101	
to	 ill	 positioning	 of	 the	 sensors,	 subject	 movement,	 power	 blackout,	 or	 transmission	 interruption,	 for	102	
example.	Such	situations	may	cause	a	modality	unavailable	or	unreliable,	and	 if	 this	 issue	 is	not	properly	103	
accounted	for,	 it	may	dramatically	alter	the	prediction	effectiveness	 [14-16].	Second,	when	all	 the	sensor	104	
modalities	are	correctly	acquired	and	all	sensors	work	properly,	some	specific	descriptors	extracted	from	a	105	
single	modality	may	result	unreliable	or	missing	(green	subtree	node	in	Fig.	1).	This	may	be	due	to	unexpected	106	
values	of	the	subject’s	physiological	state,	or	to	the	spectral	content	of	the	speech,	or	to	particular	conditions	107	
of	video	acquisition	that	cause	incorrect	working	of	the	face	landmarking	procedure	and	produce	spurious	108	
feature	 values.	 Such	 a	 situation,	 sometimes	 addressed	 using	 sensor	 redundancy	 [17,18]	 or	 algorithmic	109	
corrections	[19],	such	as	cooperative	integration	strategies	[15],	may	alter	the	goodness	of	prediction	and	110	
bring	the	module	to	produce	out-of-range	predictions.	111	

When	multiple	sensors	are	embedded	into	a	unique	device	with	the	aim	to	estimate	the	affective	status	of	112	
the	subject,	the	descriptors	extracted	can	be	highly	heterogeneous	either	in	distribution	over	the	training	113	
population	or	 in	 the	 range	and	average	values	 (headed	by	 the	pink	 subtree	node	 in	Fig.1).	 Sensor	 fusion	114	
techniques	then	allow	to	embed	in	a	unique	sensorial	system	all	the	information	related	to	the	subjective	115	
externalization	of	emotions	using	cooperative	strategies	able	to	combine	descriptors	with	different	range	116	
and	relevance	levels	[1,20].		117	

One	of	the	most	crucial	aspect	is	whether	or	not	leaving	the	possibility	to	the	model	to	integrate	the	new	118	
data	along	with	the	corresponding	prediction	in	the	training	knowledge-base	for	re-calibration	of	the	entire	119	
sensor	networks	(yellow	subtree	node	in	Fig.1).	Abandoning	the	old	paradigm	of	a	static	configuration,	even	120	
if	it	may	assure	a	low	computation	effort,	is	a	delicate	aspect	to	consider.	Reliability	of	the	novel	acquired	121	
predictions	should	be	accurately	accounted	 for	 to	avoid	 the	risk	of	confounding	the	retrained	model	and	122	
producing	erroneous	future	predictions	and	instability	of	the	dynamically	configured	system	[8].	123	

In	order	to	account	for	all	of	the	outlined	problems,	 in	this	work,	we	propose	a	novel	dynamic	prediction	124	
approach.	First,	the	configuration	allows	to	face	descriptors’	unreliability,	and	data	missing	occurring	in	new	125	
tested	instances.	Correlation	based	feature	selection	methodologies	are	applied	to	all	the	descriptors	in	the	126	
training	thus	equating	the	relevance	of	each	modality	by	the	objective	correlation	metric	and	selecting	the	127	
optimal	 descriptors	 to	 build	 the	 model.	 At	 each	 prediction,	 a	 new	model	 is	 re-trained	 by	 selecting	 the	128	
templates	from	the	training	set	that	are	in	the	nearest	neighbourhood	of	the	data	in	test.	Finally,	the	new	129	
data	along	with	the	respective	output	predictions	are	included	in	the	training	set	when	the	output	level	is	130	
comparable	with	those	already	acquired	to	avoid	a	training	confounding	effect.	131	



The	remainder	of	this	article	is	organized	as	follows.	In	Section	2,	we	will	describe	the	dataset	used	for	the	132	
experiments	and	provide	a	sketch	of	the	descriptors	extracted.	Then,	in	Section	3,	we	will	describe	the	diverse	133	
modules	composing	the	system	and	illustrate	the	way	they	cooperate.	Next,	in	Section	4,	we	will	detail	out	134	
the	experiments	run,	and	in	Section	5,	we	will	provide	some	hints	for	discussion.	Finally,	in	Section	6,	we	will	135	
draw	conclusions.	136	

2. Physical	multimodal	sensors	and	data	recording	137	

In	 order	 to	 provide	 experimental	 results	 on	 the	 novel	 method	 proposed	 for	 the	 personalized	 emotion	138	
estimation	using	multi-sensorial	acquisition,	we	consider	as	benchmarking	database	the	RECOLA	(REmote		139	
COLlaborative	 	 and	 	 Affective	 	 interaction)	 corpus	 [20],	 a	 recently	 developed	 multimodal	 corpus	 of	140	
spontaneous		interactions		in		French.	It	has	been	used	as	benchmarking	dataset	for	the	multimodal	affect	141	
recognition	 sub-challenge	 in	 the	 last	 two	 editions	 of	 the	 Audio/Visual	 Emotion	 recognition	 Challenge	142	
(AVEC’15,	AVEC’16)	 [9,	10].	 The	RECOLA	corpus,	 freely	available	at	https://diuf.unifr.ch/diva/recola/,	was	143	
recorded	to	study	socio-affective	behaviours	from	multimodal	data	in	the	context	of	remote	collaborative	144	
work,	 for	 the	 development	 	 of	 	 computer-mediated	 communication	 tools.	 Spontaneous	 and	 naturalistic	145	
interactions	were	collected	during	the	course	of	a	collaborative	task	that	was	performed	remotely	in	dyads	146	
through	 video	 conference.	 Physical	 multimodal	 sensor	 acquisition,	 i.e.,	 audio	 (AUDIO),	 video	 (VIDEO),	147	
electro-cardiogram	(ECG)	and	electro-dermal	activity	(EDA),	were	simultaneously	recorded	from	27	French-148	
speaking	 subjects.	 Audio	 data	 were	 captured	 by	 unidirectional	 headset	 microphones	 (AKG	 C520L)	 and	149	
recorded	using	the	Audacity	software	at	44.1	kHz	with	16	bits.	An	external	sound	card	(Lexicon	Omega)	was	150	
used	to	split	the	audio	data	in	order	to	be	simultaneously	processed	by	Skype	and	Audacity.	As	this	solution	151	
was	not	applicable	to	the	video	sensors	without	compromising	the	frame	rate,	two	HD	webcams	(Logitech	152	
C270)	were	used	for	each	participant.	The	first	webcam	only	captured	the	video	data	to	be	used	for	the	Skype	153	
video-conference,	 whereas	 the	 second	 webcam	 was	 used	 to	 record	 both	 audio,	 from	 the	 built-in	154	
omnidirectional	microphone,	and	video	with	the	software	provided	by	the	manufacturer;	audio	was	recorded	155	
at	 48	 kHz,	 16	 bits,	 and	 brightness	 auto	 adjustments	 were	 turned	 off	 for	 video	 recording.	 Regarding	156	
physiological	data,	the	Biopac	MP36	unit	and	the	Biopac	Student	Lab	software	were	used	to	record	both	EDA	157	
and	ECG	signals	with	a	sampling	frequency	of	1	kHz.	158	
Even	 though	 all	 subjects	 speak	 French	 fluently,	 they	 have	 different	 nationalities	 (i.e.,	 French,	 Italian	 or	159	
German,	 cf.	 below),	 which	 thus	 provides	 some	 diversity	 in	 the	 encoding	 of	 affect	 especially	 in	 emotion	160	
externalization	 through	 speech	 and	 facial	mimic.	Out	 of	 the	 27	 speakers,	 only	 18	 gave	 their	 consent	 for	161	
publication	and	sharing	their	data.	In	order	to	train	and	validate	a	prediction	model,	time-continuous	ratings	162	
(40	ms	binned	frames)	of	emotional	arousal	and	valence	were	also	acquired	by	six	gender	balanced	(three	163	
women	 and	 three	 men)	 French-speaking	 assistants.	 Since	 participants	 showed	 emotions	 mostly	 at	 the	164	
beginning	of	their	interaction,	the	annotations	were	collected	during	the	first	five	minutes	of	all	recordings.	165	
In	order	to	collect	a	unified	gold	standard	from	the	six	annotations	available	for	each	speaker,	a	normalization	166	
technique	based	on	the	Evaluator	Weighted	Estimator	 introduced	in	[22],	that	demonstrated	a	significant	167	
improvement	(p	<	0.001	for	correlation	coefficient	using	Student	t-test)	in	the	inter-rater	reliability	for	both	168	
arousal	and	valence,	was	applied.	For	the	task	of	demonstrating	the	effectiveness	of	personalized	emotion	169	
estimation	in	real-life	condition,	and	according	to	previous	studies	[23,	31],	we	reduced	the	sampling	rate	of	170	
the	signal	acquired	to	400	ms,	leading	to	sequences	with	a	duration	of	750	samples.		171	

Eligibility	 criteria.	Personalized	 emotion	 estimation	 requires	 an	 initial	 phase	 of	 acquisition	with	 provided	172	
annotations	in	both	the	arousal	and	valence	dimensions,	then	followed	by	a	session	of	prediction.	To	do	this,	173	
at	most	an	initial	30%	of	the	sequence	should	be	used	for	training	the	model	and	the	remaining	70%	part	for	174	
testing.	In	light	of	this,	we	eliminated	conversations	in	which	emotions	abruptly	changed	after	about	the	first	175	



third	of	the	sequence.	Such	sequences	would	cause	the	inability	to	achieve	reliable	performance	in	testing,	176	
since	 the	 model	 would	 have	 been	 tested	 on	 affective	 contents	 far	 different	 from	 the	 ones	 in	 training,	177	
occurring	in	an	unrealizable	task	of	predicting	the	unknowable	instead	of	the	unknown.	At	the	same	time,	178	
we	selected	subjects	balancing	for	gender.	The	present	method	will	be	then	verified	on	the	conversations	of	179	
10	speakers	whose	metadata	are	reported	in	Table	1.	Out	of	the	speakers,	seven	ones	are	French,	two	ones	180	
are	Italian	and	only	one	is	German.	The	average	age	is	21.4	years	(σ	=	2.5	years).	Five	speakers	are	female	181	
and	five	ones	are	male.	In	addition,	the	fifth	and	sixth	columns	in	Table	1	list	the	average	and	the	standard	182	
deviation	values	of	arousal	and	valence	for	each	speaker.	Data	Descriptors.	Each	of	the	four	(AUDIO,	VIDEO,	183	
ECG,	and	EDA)	provided	a	signal	that	was	further	processed	using	well-founded	feature	extractors:	for	the	184	
acoustic	 features,	we	used	 the	well	 standardised	and	broadly	used	ComParE	 set	of	 low-level-descriptors,	185	
which	 includes	65	acoustic	descriptors	with	 their	 first	order	derivate	 (130	acoustic	descriptors)	extracted	186	
through	the	openSMILE	(Release	2.0)	[24]	open	source	software.	For	the	facial	action	features,	49	landmarks	187	
of	the	face	are	returned	using	the	Supervised	Descent	Method	(SDM)	[25]	applied	to	each	frame.	According	188	
to	 the	 Facial	 Action	 Coding	 System	 (FACS)	 [26],	 human	 facial	movements	may	 be	 taxonomized	 by	 their	189	
appearance	on	the	face.	Firstly,	developed	by	the	Swedish	anatomist	Carl-Herman	Hjortsjö,	this	standard	was	190	
later	adopted	by	P.	Ekman	and	W.V.	 Friesen,	and	published	 in	1978	 [26].	Movements	of	 individual	 facial	191	
muscles	are	encoded	by	FACS	from	slightly	different	instant	changes	in	facial	appearance.	Based	on	the	Action	192	
Units	 (AUs)	 of	 the	 subject,	which	 quantify	 the	 activity	 of	 groups	 of	 facial	muscles	 according	 to	 the	 FACS	193	
lexicon,	it	is	common	to	systematically	categorize	the	facial	expression	of	emotions,	and	it	has	proven	useful	194	
to	psychologists	and	to	animators.	The	AUs	of	the	subject	were	detected	starting	from	high	level	processing	195	
applied	to	the	49	face	 landmarks	 [27,28].	Post	processing	performed	on	the	AUs	 led	to	a	set	of	40	visual	196	
descriptors:	numerical	details	can	be	found	 in	 [29].	Regarding	electro-cardiogram	descriptors,	28	spectral	197	
features	are	extracted	from	the	ECG	signal	along	with	their	first	order	derivatives	additionally	computed	on	198	
all	 features	 except	 for	 two	 (heart	 rate	 and	 heart	 rate	 variability)	 providing	 54	 features	 in	 total;	 finally,	199	
concerning	the	EDA	signal	that	reflects	a	rapid,	transient	response	called	skin	conductance	response	(SCR),	200	
and	a	slower,	basal	drift	called	skin	conductance	level	(SCL)	[21,30,31],	30	features	are	computed	along	with	201	
the	first	order	derivative	for	all,	providing	60	features	in	total.	The	four	modalities	collected	led	to	a	total	of	202	
284	descriptors	for	each	subject.	Beyond	the	largely	proven	relevance	of	audio/visual	descriptors	for	emotion	203	
estimation,	also	physiological	signals	have	demonstrated	to	correlate	with	emotion	[32,33]	–	in	particular	to	204	
arousal,	 despite	 not	 being	 directly	 perceptible	 as	 the	 way	 audio-visual	 data	 are	 to	 humans.	 Despite	205	
controversies	that	arose	about	the	relation	between	peripheral	physiology	and	emotions	[34,35],	autonomic	206	
measures	have	the	strong	advantage	to	be	easily	and	continuously	monitored	using	wearable	sensors	[36-207	
38].	To	verify	such	controversial	relevance	in	our	context,	Fig.	2	illustrates	the	average	absolute	values	of	the	208	
Pearson’s	Correlation	Coefficient	(CC)	computed	over	each	modality	with	respect	to	the	arousal	(left)	and	209	
valence	(right)	dimensions	for	the	10	speakers.	Noteworthy	is	the	fact	that	there	is	a	large	variability	over	the	210	
10	subjects	of	how	each	modality	 impacts	on	 the	expected	output,	 thus	giving	sense	 to	 the	personalized	211	
strategy	and	to	the	need	of	implementing	a	dynamic	selection	of	the	descriptors	in	the	prediction.	Moreover,	212	
it	 can	be	noted	 that	 if	 the	AUDIO	modality	 is	dominantly	 correlated	with	 the	arousal	dimension	 (see	 for	213	
example	 speakers	 P28	 and	P56),	 in	 case	of	 valence	 all	 the	 four	modalities	 balance	 their	 importance	 and	214	
support	the	need	for	a	multimodal	strategy.			215	

	216	

3. Dynamic	Feature	selection	and	regression	strategy	217	



In	this	section,	we	will	describe	the	innovative	architecture	presented	for	the	task	of	multi-sensorial	emotion	218	
recognition.	The	proposed	sensor	network	consists	of	the	five	distinct	cooperating	modules	represented	in	219	
Fig.	3	each	dealing	with	a	specific	predictive	property.	Interactions	of	the	modules	are	also	indicated.	220	

1. The	Missing	Measure	Protection	(MMP)	module	aims	to	protect	against	missing	or	unreliable	feature	221	
values	that	can	occur	in	one	of	the	sensors.	As	a	frequent	condition,	a	subset	of	features	acquired	by	222	
a	single	sensor	may	be	missing	due	to	the	diverse	situations	depicted	by	the	scheme	in	Fig.	1.	When	223	
this	 situation	occurs,	 the	 system	dynamically	 switches	off	 features	 that	 are	missing	or	 unreliable	224	
during	 model	 construction	 and	 prediction.	 More	 specifically,	 the	 MMP	 module	 checks	 whether	225	
features	acquired	by	a	single	sensor	modality	are	out	of	 range	with	respect	 to	the	corresponding	226	
training	reference	values	or	totally	missing.	By	indicating	with	𝑥" 	the	i-th	feature	in	a	test	sample,	and	227	
with	𝑦"$, … , 𝑦"'	the	corresponding	n	values	in	the	training	set,	then	if	 𝑥" − 𝜇" > 6𝜎" 	(condition	1),	228	
where		229	

	𝜇" =
$
'

𝑦"/'
/0$ ,			 	 	 	 	 	 	 	 (1)	230	

	𝜎"1 =
$

'2$
𝑦"/ − 𝜇"

1'
/0$ ,	 	 	 	 	 																								 (2)	231	

Feature	𝑦" 	is	totally	eliminated	from	the	model	computation	for	the	prediction	of	that	test	sample.		232	
	233	

The	MMP	module	 represents	an	unsupervised	processing	block	 required	 to	maintain	sufficiently	high	234	
accuracy	also	in	accidental	situations	such	as	a	power	blackout,	or	a	general	inability	to	acquire	data	(e.g.,	235	
a	 temporary	subject	out	of	 focus	event).	 	MMP	may	have	the	consequence	to	reduce	the	number	of	236	
features	used	in	the	construction	of	the	regression	model.	The	MMP	module	provides	the	test	input	to	237	
the	regression	model	(RM).	238	

	239	
2. The	Dynamic	Training	Template	Recruitment	(DTTR)	module	aims	to	select,	for	each	data	in	test,	the	240	

nearest	measured	values	in	the	training	set	for	the	construction	of	the	optimal	prediction	model.	The	241	
DTTR	 module	 is	 based	 on	 the	 well-known	 concept	 of	 training	 templates.	 When	 a	 test	 data	 is	242	
processed,	 the	 Euclidean	 distance	 between	 its	 feature	 vector	 and	 those	 of	 the	 training	 data	 are	243	
computed,	 after	 min-max	 normalization.	 The	 smallest	 K	 distances	 are	 identified	 and	 the	244	
corresponding	K	training	samples	are	taken	as	model	templates	for	further	model	construction.	The	245	
module	 DTTR	 is	 an	 unsupervised	 block	 that	 mimics	 the	 K-nearest	 neighbours	 (K-NN)	 pattern	246	
recognition	paradigm.	It	consists	in	identifying	and	extracting	the	K	nearest	K	templates	in	training	247	
that	exhibit	the	highest	affinity	with	the	data	in	test	(provided	by	the	MMP	module)	in	terms	of	a	248	
given	distance	metric.	Here,	K	is	a	fixed	parameter	selected	with	the	requirement	to	store	at	most	K	249	
elements	at	each	time	provided	that	the	starting	training	set	contains	200	samples	that	enlarges	as	250	
time	 goes	 on.	 In	 our	work,	we	 selected	 K=200	 as	 a	 trade	 off	 between	 computation	 burden	 and	251	
template	representativeness.	252	
	253	

3. The	Maximum	Relevance	Modality	Selection	(MRMS)	module	aims	to	select	in	the	training	set	the	254	
modalities	that	best	correlate	with	the	expected	output	to	build	the	predictive	model.		The	MRMS	255	
method	 selects	 features	 that	 mostly	 correlate	 with	 the	 output	 level	 of	 arousal	 and	 valence	256	
independently.	 Denoting	with	𝑦" 	 the	 i-th	 	 feature	 in	 the	 training	 set,	 i=1,…,Q,	being	Q	 the	 total	257	
number	of	features	provided	by	the	DTTR	module,	and	with	𝑧	being	the	expected	level	of	the	output	258	
property	at	a	given	time	(provided	by	the	expert	evaluation),	then	the	MRMS	criterion	finds	a	subset	259	
of	D	features	𝑦",	𝑖 = 1, … , 𝐷 ≤ 𝑄,	to	maximize	the	following	quantity	260	



																			 		𝑀𝑅𝑀𝑆 ≡ max $
@

𝐼 𝑦", 𝑧	
BC ,		 	 	 	 	 (3)	261	

where	𝐼(𝑦", 𝑧)	represents	the	mutual	information	between	feature	𝑦"	and	𝑧	defined	as	262	

																													𝐼 𝑦", 𝑧 = 𝑝(BGBC 𝑦", 𝑧)	𝑙𝑜𝑔
K(BC,L)
K BC K(L)

,		 	 	 	 (4)	263	

where	𝑝 𝑦", 𝑧 	is	the	discrete	joint	probability	distribution	(or	probability	mass	function)	of	variables	264	
𝑦" 	and	output	𝑧	,	and	𝑝 𝑦" 	represents	the	marginal	probability	mass	function	of	the	variable	𝑦".	The	265	
mutual	 information	 between	 two	 variables	 tells	 us	 how	much	 one	 of	 the	 two	 variables	 can	 be	266	
statistically	explained	by	the	other,	hence,	in	our	case,	to	which	extent	the	output	can	be	explained	267	
by	a	feature.	Note	that,	the	term	in	eq.	(3)	maximizes	the	mutual	information	between	each	feature	268	
and	the	expected	output,	and	it	is	also	called	Relevance	Term.	Further	details	can	be	found	in	[1,40].	269	
Feature	 selection	 is	 performed	 modality	 by	 modality	 and	 therefore	 we	 named	 it	 as	maximum	270	
relevance	modality	selection.	As	outlined	in	the	Introduction,	feature	redundancy	is	not	solved	at	this	271	
step	 as	 a	 strategy	 to	 increase	 system	 robustness.	 However,	 to	 assure	 the	 system	works	 even	 in	272	
presence	 of	 highly	 correlated	 features,	we	 decided	 to	 implement	 a	 regression	module	 based	 on	273	
partial	least	square	regression.	It	is	well	known	that	this	kind	of	technique	solves	collinearity	problem	274	
since	the	input	space	is	preliminary	projected	into	a	smaller	domain	with	the	immediate	effect	of	275	
reducing	such	phenomenon.		276	
	277	

4. The	Regression	Module	(RM)	aims	at	predicting	the	level	of	arousal	and	valence	of	the	new	data	(test	278	
input	from	the	MMP	module).	It	is	built	using	the	template	(DTTR)	and	the	features	selected	in	the	279	
training	set	 (MRMS).	The	Partial	Least	Square	 (PLS)	 regression	approach	 is	applied	to	arousal	and	280	
valence	prediction,	iteratively	and	adaptively	trained	according	to	the	selected	and	reduced	set	of	281	
features	from	the	training	set	[42,43].	In	our	work,	we	built	a	separate	PLS	model	for	arousal	and	282	
valence	expected	output.	The	optimal	number	of	latent	variables	for	each	regression	model	is	chosen	283	
as	 the	 value	 for	which	 the	 root	mean	 square	 error	 of	 the	 validation	 (RMSECV)	 computed	 in	 the	284	
validation	dataset	 (20	splits,	10	 iterations,	and	mean	centring	 in	both	 input	and	output	variables)	285	
reaches	the	minimum	value	[45].45	The	corresponding	test	output	values	are	sent	to	the	dynamic	286	
measure	integration	(DMI)	module.	287	

	288	
The	MRMS	and	RM	modules	constitute	the	supervised	prediction	blocks	that	use	the	information	about	289	
the	expected	levels	of	arousal	and	valence	in	the	training	set	to	construct	the	optimal	predictive	model.	290	
PLS	 regression	has	been	preferred	over	other	available	 regression	approaches	as	 it	accounts	 for	data	291	
collinearity.	Feature	redundancy,	related	to	the	competitive	property	of	sensor	fusion	in	C3	paradigm,	is	292	
a	crucial	concept	here	with	positive	effects.	In	fact,	fault	tolerance	can	be	supported	also	by	a	certain	293	
level	of	redundancy	that	may	protect	from	the	accidental	fault	of	a	single	measurement	in	a	given	sensor	294	
modality.	For	this	reason,	methods	that	preliminarily	reduce	redundancy	(such	as	stepwise	or	sequential	295	
floating	forward	feature	selection),	or	regression	approaches	that	generally	suffer	from	excessive	feature	296	
redundancy	(such	as	ANN)	may	not	have	a	chance	of	success	in	respect	of	robustness.	297	

5. The	Dynamic	Measures	Integration	(DMI)	module	aims	to	selectively	enlarge	the	training	set	with	the	298	
predicted	 data	 (test	 output)	 to	 increase	 the	 sensor	 network	 knowledge-base	 and	 improve	 its	299	
capability	to	deal	with	future	unknown	affective	conditions.	This	semi-supervised	module	provides	a	300	
feedback	input	to	the	approach	(to	the	DTTR	and	the	MRMS	modules)	by	dynamically	increasing	the	301	
training	set	with	the	selective	inclusion	of	the	predicted	test	data,	aiming	to	maintain	a	high	accuracy	302	



also	 if	 unknown	 affective	 conditions	 are	 presented	 as	 input	 to	 the	 system,	 especially	 when	 the	303	
training	 set	 did	 not	 embrace	 all	 the	 plethora	 of	 possible	 emotions.	Of	 course,	 to	 simultaneously	304	
maintain	 the	 robustness	 of	 the	 system	 to	 prediction	 errors,	 only	 data	 whose	 level	 of	 predicted	305	
emotions	 (arousal	 and	 valence	 separately)	 is	 within	 a	 certain	 range	 with	 respect	 to	 the	 already	306	
predicted	content,	are	included.	In	particular,	indicating	with	𝜎L	and	𝜇L	the	standard	deviation	and	307	
the	mean	values	of	the	predicted	output	z	computed	up	to	time	t,	then	the	new	predicted	value	𝑧		at	308	
time	t+1	will	be	added	to	the	training	labels	only	if		309	
	310	

𝑧 − 𝜇L <	3	𝜎L	.	 	 	 	 	 	 	 	 (5)	311	
	312	
Otherwise,	 the	 sample	 is	 not	 included	 in	 the	 knowledge-base	 (here,	 three	 times	 the	 standard	313	
deviation	has	been	considered	as	a	reliable	range).	The	DTTR	module	will	then	consider	the	additional	314	
data	for	selecting	the	K-NN	templates	in	case	of	high	affinity	with	the	new	test	data.	The	selected	315	
constrain	is	needed	to	avoid	the	system	has	to	predict	output	values	out	of	the	range	(i.e.,	the	need	316	
to	extrapolate	data).	For	this	reason,	the	training	set	has	to	be	selected	in	order	to	cover	a	wide	range	317	
of	output	values	for	arousal	and	valence.	In	practical	applications,	it	means	that	it	is	impossible	to	318	
ask	the	system	to	predict	strongly	positive	valence	values	if	it	has	been	trained	only	on	negative	and	319	
low	positive	values.	320	
	321	

4. Experiments		322	
	323	

In	order	to	demonstrate	the	effectiveness	of	the	proposed	strategy,	we	performed	the	following	extensive	324	
experiments.		325	

First,	 in	 Test	 1,	 the	 dynamic	 approach	was	 applied	 considering	 all	 the	 sensor	modalities	 in	 a	whole	 and	326	
compared	with	a	static	configuration	(sensor	fusion	at	feature	level).	Such	an	experiment	allows	us	to	predict	327	
the	 potential	 improvement	 of	 the	 proposed	 novel	 configuration.	 The	 prediction	 capability	 was	 assessed	328	
through	 the	 Concordance	 Correlation	 Coefficient	 (CCC)	 [44],	 which	 combines	 the	 Pearson’s	 correlation	329	
coefficient	(CC)	with	the	square	difference	between	the	mean	of	the	two	compared	time	series	as	follows:	330	

																				𝐶𝐶𝐶 𝑥, 𝑦 = 	 1OPQPR
PQSTPRST UQ2UR

S	,	 		 	 	 	 	 (6)	331	

where	ρ	is	the	Pearson	correlation	coefficient	between	two	time	series	(e.	g.,	prediction	and	gold	standard)	332	
𝑥	and	𝑦,	𝜎V1,	𝜎B1,	𝜇V	and	𝜇B	are	the	variances	and	the	mean	values	of	the	two	time	series.	Such	metric,	used	333	
as	 official	 scoring	 metric	 for	 the	 AVEC’15	 and	 AVEC’16	 challenges,	 outperforms	 other	 kind	 of	 standard	334	
performance	measures	 (e.g.,	 CC	 or	 RMSE)	 on	 this	 task	 in	 terms	 of	 suitability	 and	meaningfulness,	 since	335	
predictions	that	are	well	correlated	with	the	gold	standard	but	shifted	in	value	are	penalised	in	proportion	336	
to	the	deviation	while	predictions	that	averagely	approach	each	other	but	do	not	correlate,	still	exhibit	low	337	
CCC	values	with	respect	for	example	to	RMSE	[45].		338	

	339	

Second,	in	Test	2,	we	evaluated	the	robustness	of	the	proposed	system	to	noisy	or	unreliable	feature	values,	340	
assuming	that	also	under	a	sensor	operation	status,	some	of	the	measured	values	cannot	be	used	for	the	341	
prediction,	as	highlighted	in	Fig.1.	Single	feature	unreliability	was	artificially	injected	by	randomly	setting	the	342	



10%	of	the	descriptors	of	each	modality	in	test	in	turn	to	spurious	or	missing	values	for	the	entire	duration,	343	
and	applying	the	multimodal	prediction	approaches	(dynamic	and	static	configurations)	as	in	Test	1.	344	

All	 the	 experiments	 were	 conducted	 on	 the	 10	 subjects	 selected.	 Each	 feature	 sequence	 was	 originally	345	
reduced	at	the	beginning	and	at	the	end	of	an	amount	of	samples	needed	to	eliminate	N/A	descriptors	in	the	346	
video	modality	probably	arisen	from	excessive	movements	of	the	subject	at	the	beginning	and	at	end	of	the	347	
task.	The	resulting	sequences	included	671	samples	and	had	a	duration	of	268.4	s.	Then,	for	each	subject,	we	348	
considered	a	training	set	represented	by	the	 initial	200	samples	of	each	modality	with	 the	corresponding	349	
annotations	(80	s),	and	the	remaining	471	samples	(188.4	s)	for	testing.		350	

5. Results	351	

In	this	section,	we	provide	numerical	results	of	the	two	tests	performed.	352	
	353	
Test	1.	The	dynamic	approach	was	applied	considering	all	the	sensor	modalities	in	a	whole	and	compared	354	
with	a	 static	 configuration,	 i.e.,	 a	PLS	 regression	module	 trained	on	 the	 same	original	 training	 set	of	 the	355	
dynamic	configuration	with	the	addition	of	the	MRMS	feature	selection	module.	Test	1	demonstrated	that,	356	
the	multimodal	configuration	allows	to	obtain	a	more	reliable	emotion	prediction,	being	more	robust	to	the	357	
intra-subject	variability	occurring	during	the	predictions	of	the	emotion	thanks	to	a	higher	level	of	adaptation.	358	
Median	(std)	CCC	values	of	0.62	(0.12)	and	0.60	(0.20)	for	the	arousal	(dynamic	and	static	configuration)	and	359	
of	 0.30	 (0.26)	 and	 0.05	 (0.25)	 for	 the	 valence	 (dynamic	 and	 static),	 respectively,	 have	 been	 obtained.	 In	360	
addition,	Fig.	4	illustrates	the	boxplots	of	the	CCC	values	obtained.	A	paired	t-test	was	run	to	estimate	the	361	
statistical	 significance	 of	 the	 achieved	 improvement.	 It	 can	 be	 noted	 that,	 the	 best	 improvement	 was	362	
obtained	in	the	valence	estimation	which	is	the	most	difficult	affective	dimension	to	estimate	according	to	363	
the	literature	[1,2,3,9,10,24,45].	In	Fig.	5,	we	also	showed	the	result	of	the	arousal	(top)	and	valence	(bottom)	364	
prediction	 obtained	 using	 the	 dynamic	 configuration	 for	 the	 speaker	 P16.	 The	 blue	 line	 identifies	 the	365	
prediction	achieved,	the	red	line	represents	the	expected	affective	dimension,	and	the	green	squares	locate	366	
the	training	session.	The	corresponding	CCC	values	obtained	are	also	indicated.	367	

In	order	to	compare	the	performance	of	the	multimodal	configuration	with	those	of	each	single	modality,	in	368	
Table	2	we	listed	the	median	CCC	values	along	with	the	corresponding	standard	deviation	values	of	the	single	369	
modalities.	Note	that	the	multimodal	dynamic	configuration	outperforms	each	of	the	single	modalities	using	370	
the	same	dynamic	configuration	in	case	of	arousal	prediction,	and	strongly	improves	the	results	in	case	of	371	
valence	prediction.	372	

Test	2.	Single	feature	unreliability	has	been	simulated	by	randomly	setting	10	%	of	the	descriptors	of	each	373	
modality	 to	 spurious	 or	 missing	 values	 for	 the	 entire	 duration	 and	 applying	 the	 multimodal	 prediction	374	
approaches	(dynamic	and	static	configurations)	as	before	in	Test	1.	Test	2	aims	at	proving	the	effectiveness	375	
of	the	proposed	approach	to	protect	the	system	against	random	(occasional)	descriptor	unreliability	due,	for	376	
example,	 to	 errors	 in	 the	 post-processing,	 in	 the	 storage,	 or	 in	 the	 transmission	 of	 data.	 Of	 course,	 if	377	
correlated	features	are	simultaneously	missing	and	those	features	are	all	significant	for	the	prediction,	the	378	
system	performance	can	heavily	degrade.	On	the	other	hand,	we	injected	missing	data	only	on	the	10%	of	379	
descriptors	for	each	modality	hence	avoiding,	on	average,	to	fall	in	such	critical	scenario.			380	

	381	



Figure	6	 shows	 the	boxplots	of	 the	CCC	values	of	 the	proposed	 strategy	 for	 arousal	 (upper)	 and	 valence	382	
(lower)	prediction.	The	proposed	dynamic	multimodal	configuration	(Dyn	Mul)	is	compared	against	the	static	383	
multimodal	configuration	(Stat	Mult)	as	in	Test	1.	384	

From	 the	 observation	 of	 the	 results,	 it	 is	 evident	 that	 the	 static	 configuration	 is	 critically	 influenced	 by	385	
spurious	values	injected	in	the	10	%	of	the	feature	values	of	a	single	modality.	This	is	due	to	the	fact	that	the	386	
static	configuration	selects	 the	optimal	 features	only	once	at	 the	beginning	of	 the	procedure.	Hence,	 if	a	387	
descriptor	 is	 selected	and	then	 it	assumes	spurious	values	during	 test,	all	 the	predicted	output	sequence	388	
results	in	failure.	On	the	contrary,	the	proposed	approach,	thanks	to	the	dynamic	selection	of	the	features	389	
and	the	outlier	elimination	procedure	forwarded	by	the	data	acquired	in	test,	eliminates	the	features	that	390	
exhibit	spurious	values	in	the	test	and	protects	the	prediction	from	failures.		391	

	392	

6. Discussion	393	

In	this	study,	we	presented	a	novel	multi-sensor	platform	and	fault-tolerance	processing	strategies	able	to	394	
integrate	multimodal	emotion	data	collection,	and	robustness	to	occasional	data	unreliability	during	test.	395	
Moreover,	 the	system	 is	able	 to	 incorporate	 the	new	 input	data	along	with	 the	corresponding	estimated	396	
affective	content,	thanks	to	a	dedicated	architecture	able	to	protect	the	system	from	drift	and	instability	of	397	
the	 future	 predictions.	 The	 proposed	 architecture	 satisfies	 the	 C3	 paradigm	 being	 complementary,	398	
competitive,	and	cooperative	as	demonstrated	in	the	Tests	1	and	2.		399	

An	interesting	part	of	this	study	was	to	investigate	the	distribution	over	the	four	sensor	modalities	of	the	400	
features	selected	at	each	frame	for	the	prediction	of	arousal	and	valence.	Figure	7	shows	a	stacked	bar	graph	401	
in	which	for	each	speaker	the	length	of	each	coloured	bar	represents	the	relative	frequency	of	selection	of	402	
the	modality.	 Modalities	 are	 identified	 by	 colours.	 Noteworthy	 is	 the	 fact	 that,	 if	 for	 arousal	 the	 audio	403	
modality	 is	almost	always	the	most	selected	one,	 for	the	valence	dimension	the	frequency	of	selection	 is	404	
much	 more	 distributed	 over	 the	 modalities.	 This	 fact	 demonstrates	 once	 more	 the	 usefulness	 of	 the	405	
multimodal	approach	to	account	for	the	inter-subject	variability.	Moreover,	the	diverse	distribution	over	the	406	
speakers	in	the	valence	prediction	allows	to	assign	equal	importance	to	the	four	modalities	and	in	general	407	
reduces	the	superiority	of	the	audio	modality	that	is	manifested	instead	in	the	arousal	prediction.		408	

One	 of	 the	 most	 interesting	 properties	 of	 the	 system	 presented	 here	 is	 the	 ability	 to	 cope	 with	 the	409	
unexpected	lack	of	data	(an	entire	sensor	modality	or	a	subset	of	feature	values).	To	further	demonstrate	410	
this	ability,	we	ran	a	dedicated	experiment	with	the	aim	to	simulate	a	progressive,	not	instant,	sensor	missing.	411	
We	artificially	set	to	missing	values	an	increasing	percentage	of	feature	values	for	the	same	modality	(video	412	
in	 the	 experiment),	 until	 one	 obtains	 the	 entire	 fault	 of	 that	 sensor	modality.	 The	 simulated	 scenario	 is	413	
illustrated	 in	 Fig.	 8	 for	 the	 valence	 dimension.	 The	 progressive	 degradation	 of	 sensor	 performance	 is	414	
graphically	illustrated	by	the	insets	shown	over	the	prediction	at	three	time	instants	(80	s,	160	s,	and	268	s).		415	
Coloured	 bars	 represent	 the	 four	modalities	 as	 indicated	 in	 the	 legend.	 The	 bottom	 bars	 represent	 the	416	
percentage	 of	 non-spurious	 features	 for	 each	 modality	 and	 shows	 that	 features	 in	 the	 video	 modality	417	
progressively	move	entirely	towards	fault.	The	top	bars	indicate	the	corresponding	percentage	of	features	418	
selected	 in	 each	modality.	Note	 that,	 a	 subset	of	 features	 from	 the	 video	modality	 is	 still	 chosen	by	 the	419	
algorithm	at	the	beginning	of	the	prediction,	but	the	percentage	of	selection	goes	down	to	zero	as	long	as	420	
the	percentage	of	spurious	video	features	increases	(268	s).		421	



As	a	final	evidence	of	the	effectiveness	of	the	dynamic	multimodal	configuration	proposed	in	this	work,	we	422	
staged	a	more	critical	scenario,	in	which	an	entire	modality	in	turn	is	missed	by	assuming	that	one	of	the	four	423	
input	signals	is	not	available	during	the	entire	duration	of	test.	The	comparative	approaches	are	again	the	424	
dynamic	and	the	static	multimodal	architectures.	A	total	of	four	different	simulation	results	are	collected,	425	
one	for	each	missing	modality.		Such	a	test	aims	at	verifying	the	effectiveness	of	the	proposed	strategy	in	a	426	
fault	risk	scenario,	where	one	modality	of	the	test	sequence	can	be	totally	off-line.		Figure	9	shows	the	CCC	427	
values	of	arousal	(upper),	and	valence	(lower)	predictions,	when	the	dynamic	configuration	is	compared	to	428	
the	static	solution.	Note	that,	in	this	case,	especially	when	the	audio	modality	is	totally	missing,	prediction	429	
performance	drastically	degrades,	demonstrating	once	more	the	crucial	role	of	the	audio	modality	in	emotion	430	
recognition,	especially	for	arousal.		431	

As	a	further	important	aspect,	the	proposed	system	has	been	specifically	developed	for	real	time	applications	432	
when,	after	an	initial	training	phase,	the	system	is	able	to	predict	one	sample	at	a	time,	in	less	than	400ms	433	
that	is	the	sampling	time	chosen	in	this	study.	All	the	techniques	implemented	in	the	approach	have	been	434	
selected	since	they	require	very	small	computational	effort	and	can	take	advantage	of	matrix	calculus	(PLS,	435	
Euclidean	distance	among	vectors,	MRMS,	etc.).	Simulations	were	performed	using	Matlab	2017®,	on	an	436	
Intel	Core	i7	machine.		Of	course,	for	longer	prediction	session,	a	restricted	number	of	training	samples	have	437	
to	be	chosen	by	definitely	eliminating	oldest	training	samples	hence	avoiding	to	calculate	Euclidean	distance	438	
over	an	even	larger	training	set.	439	

To	 conclude,	 it	 is	 important	 to	highlight	 the	potential	 application	of	 the	proposed	 strategy	 to	diversified	440	
scenarios,	such	as	chemical	sensors,	or	signal	processing	in	general.	The	approach	presents	an	architecture	441	
that	can	be	easily	adapted	to	alternative	frameworks	with	the	aim	to	protect	systems	from	failure	and	out-442	
of-range	 predictions.	 Moreover,	 even	 under	 the	 general	 assumption	 that	 there	 is	 not	 any	 superior	443	
configuration	 for	 sensor	 fusion,	 the	 C3	 paradigm	 assumption	 is	 a	 fundamental	 step	 toward	 better	444	
performance	in	a	large	plethora	of	scenarios.		445	

	446	

7. Conclusion	447	

Despite	 the	 increasing	 interest,	 human	 emotion	 remains	 a	 complex,	 dynamically	 changing	 scenario	 that	448	
expresses	itself	in	diversified	human	spheres.	Therefore,	a	smart	sensor	network	architecture	is	required	for	449	
reliable	prediction.	In	this	paper,	we	presented	a	novel	dynamic	sensor	network	configuration	that	receives	450	
the	 emotion	 events	 communicated	 through	 the	 speech,	 the	 facial	 mimic,	 and	 physiological	 signals	 of	 a	451	
subject	acquired	while	he/she	is	involved	in	natural	conversation	in	a	controlled	environment.		The	shown	452	
system	is	able	to	continuously	predict	the	two	dimensions	of	affect	(arousal	and	valence)	under	normal	and	453	
simulated	 critical	 working	 conditions	 as	 demonstrated	 by	 specific	 experiments	 run.	 Although	 adequate	454	
performance	was	obtained	in	the	experimental	tests,	more	investigations	are	required	in	order	to	improve	455	
robustness,	especially	with	 the	prediction	of	 the	emotional	valence,	 that	still	appears	as	 the	most	critical	456	
affective	 dimension.	 This	 is	 crucial	 especially	 in	 those	 applications	where	 positive,	 neutral,	 and	 negative	457	
valence	levels	are	used	to	calibrate	the	results	of	behavioural	disorder	studies	conducted	such	as	on	children.	458	
To	further	verify	the	robustness	of	the	prediction	system,	future	work	will	also	account	for	the	presence	of	459	
noise	sources	(wind	noise,	phone	noise,	car	and	train	noises,	etc.)	investigating	strategies	for	protecting	the	460	
system	from	both	soft	and	hard	failures	in	real-life	operation	modes.		461	

	462	
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Tables	Captions:		598	

Table	1.	Metadata	of	the	10	speakers	used	in	this	work.	599	

Table	2.	CCC	median	and	median	absolute	values	for	the	arousal	and	valence	prediction	using	the	dynamic	600	
single	modality	configuration:	multi	(multimodal).	601	
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607	



Table	1.		608	

Speaker	Label	 Age	 Sex	 Mother	tongue	 Arousal	(µ	±	σ)	 Valence	(	µ	±	σ)	

P16	 21	 M	 French	 				0.03	±			0.17	 				0.13		±		0.10	
P19	 20	 F	 French	 				0.09	±			0.15	 				0.12		±		0.13	
P21	 19	 F	 Italian	 				0.03	±			0.15	 				0.11		±		0.11	
P28	 18	 F	 French	 			-0.09	±			0.14	 				0.09		±		0.12	
P30	 22	 F	 Italian	 			-0.15	±			0.19	 				0.03		±		0.14	
P34	 25	 M	 French	 			-0.19	±			0.17	 			-0.02		±		0.05	
P41	 23	 M	 German	 				0.15	±			0.10	 				0.11		±		0.09	
P45	 19	 F	 French	 			-0.02	±			0.19	 				0.08		±		0.09	
P56	 22	 M	 French	 				0.07	±			0.16	 				0.12		±		0.11	
P64	 25	 M	 French	 				0.01	±			0.14	 				0.08		±		0.07	
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Table	2.		611	

Arousal	 Valence	
	 multi	 audio	 video	 ecg	 eda	 multi	 audio	 Video	 ecg	 eda	

median	CCC		 0.622	 0.587	 0.117	 0.098	 			-0.005	 0.303	 0.093	 -0.022	 0.028	 0.050	
std.	dev.	 0.121	 0.111	 0.132	 0.119	 0.063	 0.266	 0.166	 0.259	 0.092	 0.145	
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Figure	Captions:	637	

Figure	 1.	 Graphical	 representation	 of	 the	 problems	 to	 account	 for	 in	 a	 personalized	multimodal	 mood	 estimation	638	
framework.	639	

Figure	2.	Distribution	over	the	10	speakers	(denoted	with	P16	-	P64)	of	the	average	absolute	correlation	coefficient	(CC)	640	
of	 the	 features	 in	each	modality	 (distinguished	by	colours)	with	 respect	 to	 the	arousal	 (top)	and	valence	dimension	641	
(bottom).		642	

Figure	3.	A	schematic	illustration	of	the	proposed	method.	The	missing	measure	protection	(MMP)	module	identifies	643	
features/sensor	modality	that	are	spurious	or	missing	in	the	test	input	and	eliminate	them	from	the	training	set.	The	644	
dynamic	training	template	recruitment	(DTTR)	module	extracts	from	the	reduced	training	set	the	templates	most	affine	645	
to	 the	 reduced	 test	 input	 and	 sends	 them	 to	 the	 feature	 selection	module	based	on	maximum	 relevance	modality	646	
selection	(MRMS)	criterion.	Selected	training	templates	are	then	used	to	construct	the	regression	module	(RM)	that	647	
assigns	a	predicted	output	to	the	test	input	(test	output).	Finally,	the	dynamic	measure	integration	(DMI)	module	aims	648	
at	including	the	predicted	output	into	the	training	set	to	enlarge	the	knowledge-base.		649	

Figure	4.	Boxplot	of	the	concordance	correlation	coefficients	(CCC)	computed	for	the	dynamic	multimodal	configuration	650	
of	 the	 arousal	 (first	 column)	 and	 valence	 (third	 column)	 prediction	 against	 the	 static	multimodal	 configuration	 for	651	
arousal	(second	column)	and	valence	(fourth	column)	(Test	1).		The	p-values	of	the	improvement	quantified	by	running	652	
paired	 t-test	on	 the	CCC	values	are	also	 reported.	 	Dyn	Mult	Arousal	 and	Dyn	Mult	Valence	 indicate	 the	proposed	653	
dynamic	multimodal	prediction	of	arousal	and	valence,	respectively.	Stat	Mult	Arousal	and	Stat	Mult	Valence	indicate	654	
the	standard	static	multimodal	prediction	of	arousal	and	valence,	respectively.	655	

Figure	5.	Two	examples	of	arousal	(top)	and	valence	(bottom)	prediction	for	subject	P16.	The	blue	line	indicates	the	656	
achieved	prediction,	the	red	line	represents	the	expected	output,	and	the	green	squares	locate	the	training	session.	The	657	
corresponding	CCC	values	are	also	reported.	658	

Figure	6.	Boxplot	of	the	concordance	correlation	coefficients	(CCC)	computed	for	dynamic	multimodal	configuration	of	659	
the	arousal	(upper)	and	valence	(lower)	prediction	against	the	static	multimodal	configuration	in	case	of	10%	of	features	660	
for	each	modality	in	turn	randomly	set	to	missing	or	spurious	values	(Test	2).	Dyn	Mult	Arousal	and	Dyn	Mult	Valence	661	
indicate	the	proposed	dynamic	multimodal	prediction	of	arousal	and	valence,	respectively.	Stat	Mult	Arousal	and	Stat	662	
Mult	Valence	indicate	the	standard	static	multimodal	prediction	of	arousal	and	valence,	respectively.	663	

Figure	7.	Relative	frequency	of	selection	of	features	of	each	modality	during	prediction	of	arousal	(left)	and	valence	664	
(right)	in	the	dynamic	configuration.				665	

Figure	8.	Progressive	spurious	feature	injection	during	valence	prediction	in	the	video	modality.	Three	time	instants	are	666	
shown	(80s,	160s,	268s).	Bar	colours	indicate	the	four	modalities	as	explained	in	the	legend.	Bottom	bars	represent	the	667	
percentage	of	non-spurious	features	for	each	modality.	Top	bars	indicate	the	percentage	of	selected	features	for	each	668	
modality.		669	

Figure	9.	Boxplot	of	the	concordance	correlation	coefficients	(CCC)	computed	for	dynamic	multimodal	configuration	of	670	
the	 arousal	 (upper)	 and	 valence	 (lower)	 prediction	 against	 the	 static	multimodal	 configuration	 in	 case	 of	modality	671	
missing	 in	 turn.	Dyn	Mult	Arousal	 and	Dyn	Mult	Valence	 indicate	 the	proposed	dynamic	multimodal	 prediction	of	672	
arousal	and	valence,	 respectively.	Stat	Mult	Arousal	and	Stat	Mult	Valence	 indicate	the	standard	static	multimodal	673	
prediction	of	arousal	and	valence,	respectively.	 	674	
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