
HAL Id: hal-01993391
https://hal.science/hal-01993391

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Chartered Buses Routes Under
Uncertainties Using Probabilistic Vehicle Routing

Problem Modeling
Zied Bouyahia, Hedi Haddad, Nafaâ Jabeur, Ahmed Nait-Sidi-Moh

To cite this version:
Zied Bouyahia, Hedi Haddad, Nafaâ Jabeur, Ahmed Nait-Sidi-Moh. Optimization of Chartered Buses
Routes Under Uncertainties Using Probabilistic Vehicle Routing Problem Modeling. Procedia Com-
puter Science, 2018, 130, pp.644-651. �10.1016/j.procs.2018.04.115�. �hal-01993391�

https://hal.science/hal-01993391
https://hal.archives-ouvertes.fr


ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 130 (2018) 644–651

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2018.04.115

10.1016/j.procs.2018.04.115

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs. 

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Optimization of Chartered Buses Routes Under Uncertainties Using
Probabilistic Vehicle Routing Problem Modeling

Zied Bouyahiaa,∗, Hedi Haddada, Nafâa Jabeurb, Ahmed Nait Sidi Mohc
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Abstract

Most of the current Probabilistic Vehicle Routing (PVRP) Problem models simultaneously address only one stochastic aspect of
the problem, and there is a need of more realistic PVRP models that can take into consideration more than one stochastic aspect
in the same time. In this paper we propose a new stochastic PVRP algorithm that takes into consideration both uncertain transport
demand and travel time. We propose a priori generalization strategy that can be either rigid or flexible in order to provide decision
makers with rapid and adjustable solution schemes. A simulated annealing algorithm has been implemented to solve the PVRP
with stochastic travel times in the context of chartered buses, and the results are quite satisfactory.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Vehicle Routing Problem (VRP) is a widely studied topic in the field of Operations Research. It has been ex-
tensively applied to the transportation and logistics domain to solve the generic problem of satisfying transportation
requests of spatially dispersed customers using a fleet of vehicles. The challenge consists in the identification of
the best configuration of customers’ pick up orders, time and routes that minimizes the total transportation cost 5.
Many varieties of VRP models have been presented in the literature, but the basic distinction is between deterministic
(DVRP) and probabilistic/stochastic (PVRP or SVRP) models. Stochastic VRP models are proposed to reflect the
intrinsic real-world uncertainty. In fact, in a real context, many aspects of the VRP problem cannot be exactly known
in advance. Consequently, many PVRP models have been proposed to address every stochastic element of the VRP,
such that VRP models with stochastic demand, stochastic customers, stochastic pickup and delivery, stochastic travel
times and stochastic service time (see 7,8 for complete reviews). However, most of the proposed probabilistic models
simultaneously address only one stochastic aspect, and except few works 9, there is a need of more realistic PVRP

∗ Corresponding author. Tel.: +968-2323-7215 ; fax: +968-2323-7215.
E-mail address: zbouyahia@du.edu.om

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Optimization of Chartered Buses Routes Under Uncertainties Using
Probabilistic Vehicle Routing Problem Modeling

Zied Bouyahiaa,∗, Hedi Haddada, Nafâa Jabeurb, Ahmed Nait Sidi Mohc
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models that can take into consideration more than one stochastic aspect in the same time 4.

In this paper, we propose a new stochastic algorithm that takes into consideration both uncertain transport demand
and travel time. As an application domain, we address the problem of chartered buses, which has been adopted by
companies with a large number of employees to alleviate the costs of transportation of working force and to reduce
the negative impact of lateness caused by public transportation. It has been also widely used by school buses’ com-
panies to daily drive students to their schools. Chartered buses is a typical example of PVRP with both uncertain
demand and travel times. Regarding demand, customers - especially students- can be absent without pre-notification,
or they may exceptionally ride with their friends or parents. Traveling times are uncertain too, mainly because of the
dynamic nature of traffic state, especially delays caused by unusual events (accidents, heavy fog, urgent roads’ main-
tenance, etc.). Both uncertainties need to be taken into consideration to calculate the optimal routing order of the VRP.

The remainder of this paper is organized as follows. In Section 2, we present an overview of the general elements
of basic PVRP models. In Section 3, we recall the solution schemes that we use to solve the PVRP, which are inspired
by the work of Bertsimas2. In Section 4, we present and formalize our new algorithm for PVRP with both stochastic
demand and travel time. In Section 5, we report the results of an experimental study that we performed to evaluate
our algorithm. In Section 6, we stress the main contributions of our work and we highlight the extensions that shall
be developed further in future work.

2. The probabilistic vehicle routing problem (PVRP)

From a conceptual perspective, basic VRP models suppose that all vehicles start from an initial location called
depot, collect the demands according to the selected order, and once their capacities are attained they return back to
the depot. The problem is modeled as a complete graph, where nodes represent customers’ locations and weighted
arcs correspond to the routes between them. To formulate the VRP, let us consider a complete network G = {C,A}
where C is a set of n nodes 0, 1, ..., n. Let the node 0 be considered as a depot such that all routes traveled by the
vehicles should start and end with 0. Nodes set C correspond to customers pick up locations with respective demands
Di. A = {ai j} is the set of arcs ai j, where i and j are nodes in C. Let us denote by δ(i, j) the cost associated to ai j , such
that δ(i, j) ≤ δ(i, k) + δ(k, j). For the sake of simplification, let us assume that costs are symmetric i.e. δ(i, j) = δ( j, i).
The case of asymmetric distances can be easily derived from the symmetric one1. On the other hand, let us consider a
set of f vehicles denoted as F = {V1, ...,Vf } with capacities Qj, 1 ≤ j ≤ f such that ∀1 ≤ j ≤ f , Qj ≥ maxi Di. In this
paper, we consider the case of equal-capacities vehicles, i.e. ∀1 ≤ i ≤ f , Qi = Q. The vehicle routing problem (VRP)
is stated as follows: Given the network G and the fleet F , the objective is to find a set of minimum-length routes to
meet the demands of the customers such that each route starts and finishes at the depot node 0 whenever its capacity
is reached.

Despite its high potential to solve a wide range of practical problems dealing with transportation, logistics, etc., in
the deterministic definition of VRP, we assume that the customers’ demands are known when the solution is designed.
However, this assumption is not realistic since these demands can vary from time to time and some of them might be
canceled. A natural modeling for this situation is to consider the number of customers as a random variable which can
be done by assigning to each customer node i, a probability pi of having non-zero demand. The solution cost under
this assumption is then a random variable and the associated goal is to minimize its expectancy. This probabilistic
generalization of the vehicle routing problem was first proposed by D. Bertsimas2 motivated by applications in strate-
gic planning and distribution systems. Instead of resolving the problem when the demand becomes known, the author
proposes to design an a priori sequence among all customers of minimal expected total length. The model that we
propose in this paper is inspired by Bertsimas’ solution and is detailed in the following section.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.04.115&domain=pdf
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models that can take into consideration more than one stochastic aspect in the same time 4.

In this paper, we propose a new stochastic algorithm that takes into consideration both uncertain transport demand
and travel time. As an application domain, we address the problem of chartered buses, which has been adopted by
companies with a large number of employees to alleviate the costs of transportation of working force and to reduce
the negative impact of lateness caused by public transportation. It has been also widely used by school buses’ com-
panies to daily drive students to their schools. Chartered buses is a typical example of PVRP with both uncertain
demand and travel times. Regarding demand, customers - especially students- can be absent without pre-notification,
or they may exceptionally ride with their friends or parents. Traveling times are uncertain too, mainly because of the
dynamic nature of traffic state, especially delays caused by unusual events (accidents, heavy fog, urgent roads’ main-
tenance, etc.). Both uncertainties need to be taken into consideration to calculate the optimal routing order of the VRP.

The remainder of this paper is organized as follows. In Section 2, we present an overview of the general elements
of basic PVRP models. In Section 3, we recall the solution schemes that we use to solve the PVRP, which are inspired
by the work of Bertsimas2. In Section 4, we present and formalize our new algorithm for PVRP with both stochastic
demand and travel time. In Section 5, we report the results of an experimental study that we performed to evaluate
our algorithm. In Section 6, we stress the main contributions of our work and we highlight the extensions that shall
be developed further in future work.

2. The probabilistic vehicle routing problem (PVRP)

From a conceptual perspective, basic VRP models suppose that all vehicles start from an initial location called
depot, collect the demands according to the selected order, and once their capacities are attained they return back to
the depot. The problem is modeled as a complete graph, where nodes represent customers’ locations and weighted
arcs correspond to the routes between them. To formulate the VRP, let us consider a complete network G = {C,A}
where C is a set of n nodes 0, 1, ..., n. Let the node 0 be considered as a depot such that all routes traveled by the
vehicles should start and end with 0. Nodes set C correspond to customers pick up locations with respective demands
Di. A = {ai j} is the set of arcs ai j, where i and j are nodes in C. Let us denote by δ(i, j) the cost associated to ai j , such
that δ(i, j) ≤ δ(i, k) + δ(k, j). For the sake of simplification, let us assume that costs are symmetric i.e. δ(i, j) = δ( j, i).
The case of asymmetric distances can be easily derived from the symmetric one1. On the other hand, let us consider a
set of f vehicles denoted as F = {V1, ...,Vf } with capacities Qj, 1 ≤ j ≤ f such that ∀1 ≤ j ≤ f , Qj ≥ maxi Di. In this
paper, we consider the case of equal-capacities vehicles, i.e. ∀1 ≤ i ≤ f , Qi = Q. The vehicle routing problem (VRP)
is stated as follows: Given the network G and the fleet F , the objective is to find a set of minimum-length routes to
meet the demands of the customers such that each route starts and finishes at the depot node 0 whenever its capacity
is reached.

Despite its high potential to solve a wide range of practical problems dealing with transportation, logistics, etc., in
the deterministic definition of VRP, we assume that the customers’ demands are known when the solution is designed.
However, this assumption is not realistic since these demands can vary from time to time and some of them might be
canceled. A natural modeling for this situation is to consider the number of customers as a random variable which can
be done by assigning to each customer node i, a probability pi of having non-zero demand. The solution cost under
this assumption is then a random variable and the associated goal is to minimize its expectancy. This probabilistic
generalization of the vehicle routing problem was first proposed by D. Bertsimas2 motivated by applications in strate-
gic planning and distribution systems. Instead of resolving the problem when the demand becomes known, the author
proposes to design an a priori sequence among all customers of minimal expected total length. The model that we
propose in this paper is inspired by Bertsimas’ solution and is detailed in the following section.
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3. Solving the PVRP

3.1. Solution strategies

The PVRP can be solved using two different strategies: reoptimization and a priori. The reoptimization scheme
consists in finding a minimum cost solution for every possible instance of the probabilistic problem. Each reduced
version of the VRP instance is considered as a deterministic VRP defined over the subset I ⊆ C of customers requiring
visits. The optimum cost for the subset I is denoted by L(I,Opt). Using the reoptimization scheme, the associated
cost for the PVRP is a random variable denoted by L(Opt) and its expected value is given by:

E
[
L(Opt)

]
=
∑
I⊆C

P(I)L(I,Opt) (1)

As a matter of fact, reoptimization scheme provides an optimal solution albeit not workable since the number of
possible subsets (i.e. I ⊆ C) is 2n and, consequently, the computational complexity rises exponentially by increasing
the number of nodes in C. In the a priori scheme, an a priori solution is first designed for the whole set of nodes in
C regardless their probabilities to require visits. Then, for every subset I ⊆ C, the a priori solution is rapidly updated
using a modification algorithmU. The cost under the a priori scheme is a random variable denoted by L(I, µ) and its
expectancy is given by the following expression:

E [L(U)] =
∑
I⊆C

P(I)L(I,U) (2)

Bertsimas proposed and studied two implementations of the a priori strategy depending on the modification method
U. These strategies are baptized rigid and flexible with respect to two modification methodsUA andUB. Under the
rigid strategy, the vehicle visits all the assigned nodes in the a priori route and stops only at nodes when the customer
has non-zero demand. When the capacity of the vehicle is attained, the vehicle returns to the depot and then resumes
the route from the next node in the designed route. In the flexible strategy, the vehicle visits only the nodes that
require a visit. When the maximum capacity of a vehicle is reached at a given node i, the vehicle returns to the depot
to unload; then resumes its route from the next node requiring a visit. Figure 1 illustrates the two a priori strategies.

Fig. 1. Example of a priori strategy for a PVRP instance with 5 customers having binary demands and one vehicle of capacity 2. The a priori route
(a), the modified routes when only customers 2 and 5 have non-zero demands under the rigid strategy (b) and the flexible strategy (c).

3.2. Objective function

Under the rigid a priori strategy relying on UA, the expected length of a feasible route is given by the sum of the
expected cost of the a priori route

∑n
i=0 δ(i, i + 1) and the expected cost of the additional route the vehicle has to travel

when its maximum capacity has been reached. To calculate the cost of the additional route, we assume without loss of
generality that the maximum capacity of the vehicle is reached at the node i with a probability αi. Whence, the vehicle
shall return to the depot (which corresponds to the cost δ(i, 0)) and then resume the route from the node i+1 regardless
its actual demand which corresponds to δ(0, i + 1). The length of this additional trip is δ(i, 0) + δ(0, i + 1) − δ(i, i + 1).
The probability αi is calculated using the following polynomial-time scheme:

4 Author name / Procedia Computer Science 00 (2018) 000–000

• αi = 0,∀i = 0, . . . ,Q − 1
• αrQ+i = prQ+i

∑r
k=1 γ(rQ + i − 1, kQ − 1), 0 ≤ i ≤ Q,

where γ(m, c) = P(c among the m customers have non-zero demand) and prQ+i is the probability that node rQ+i
has non-zero demand.

The computation of γ(m, c) is achieved using the following recursive scheme:

• Boundary conditions: γ(m,m) =
∏m

i=1 pi and γ(m, 0) =
∏m

i=1(1 − pi)
• Induction: γ(m, c) = pmγ(m − 1, c − 1) + (1 − pm)γ(m − 1, c)

Finally, under the rigid strategy, the objective function is given by the following formula:

EUA [Lr] =
n∑

i=0

δ(i, i + 1) +
n∑

i=1

αi s(i, i + 1), (3)

where s(i, j) = δ(0, i) + δ( j, 0) − δ(i, j).

Under the flexible strategy, the objective function is calculated based on the minimum expected length of Hamil-
tonian tour in the sense of Probabilistic Traveling Salesman Problem6. Without loss of generality, let us assume that
i is the first node in the a priori solution and that j is the last node before the vehicle has reached its maximum ca-
pacity. The expected costs to travel from and to the depot from the two aforementioned nodes i and j are respectively
δ(0, i)pi

∏i−1
k=1(1− pk) and δ( j, 0)p j

∏m
k=i+1(1− pk). Contrarily to the reoptimization strategy, when the vehicle reaches

its maximum capacity at a node i and returns to the depot, it skips all nodes with zero-demand following i and resumes
its route from the first node with non zero-demand and therefore discards nodes i + 1, ..., j − 1 from its route. Hence
the objective function is defined as follows:

EUB [Lr] =
n∑

i=1

δ(0, i)pi

i−1∏
k=1

(1 − pk) +
n∑

j=1

δ( j, 0)p j

m∏
k=i+1

(1 − pk) +

n∑
i=1

n∑
j=i+1

δ(i, j)pi p j

j−1∏
k=i+1

(1 − pk) +
n∑

i=1

n∑
j=i+1

αi s(i, j)p j

j−1∏
k=i+1

(1 − pk) (4)

Time complexity. The computation of the expected costs under both reoptimization and a priori strategies relies on
the calculation of the probabilities λi. Since λi = 0, ∀0, ...,Q − 1, then n − Q probabilities require computation, each
consisting in the summation of a maximum of n

Q terms. Hence, the computation cost of λi is O
(
(n − Q) n

Q

)
= O(n2).

Remark. Let us note that in the particular case where all customers have the same probability to require visit, the
probability γ(m, c) is given by the following closed form formula:

γ(m, c) =
(
m
c

)
pc(1 − p)(m−c)

This case is trivial but serves for customer clustering purposes when the vehicle number and capacities are limited.
During the pooling stage, customers having the same probability of requiring visit can be assigned to the same fleet.
Another interest of this case is that it shows the similarity of this problem with other probabilistic combinatorial
problems such as probabilistic traveling salesman problem (PTSP)6, the probabilistic scheduling problem (PSP)3,
etc. This similarity allows for the utilization of combinatorial properties of well-studied problems and therefore the
design of efficient solution schemes.

4. PVRP with stochastic travel times

In this section we present our proposed PVRP with both stochastic demand and travel time. We first present the
objective function, then we elaborate the lower bounds before elaborating the steps of the proposed algorithm.



	 Zied Bouyahia  et al. / Procedia Computer Science 130 (2018) 644–651� 647
Author name / Procedia Computer Science 00 (2018) 000–000 3

3. Solving the PVRP

3.1. Solution strategies

The PVRP can be solved using two different strategies: reoptimization and a priori. The reoptimization scheme
consists in finding a minimum cost solution for every possible instance of the probabilistic problem. Each reduced
version of the VRP instance is considered as a deterministic VRP defined over the subset I ⊆ C of customers requiring
visits. The optimum cost for the subset I is denoted by L(I,Opt). Using the reoptimization scheme, the associated
cost for the PVRP is a random variable denoted by L(Opt) and its expected value is given by:

E
[
L(Opt)

]
=
∑
I⊆C

P(I)L(I,Opt) (1)

As a matter of fact, reoptimization scheme provides an optimal solution albeit not workable since the number of
possible subsets (i.e. I ⊆ C) is 2n and, consequently, the computational complexity rises exponentially by increasing
the number of nodes in C. In the a priori scheme, an a priori solution is first designed for the whole set of nodes in
C regardless their probabilities to require visits. Then, for every subset I ⊆ C, the a priori solution is rapidly updated
using a modification algorithmU. The cost under the a priori scheme is a random variable denoted by L(I, µ) and its
expectancy is given by the following expression:

E [L(U)] =
∑
I⊆C

P(I)L(I,U) (2)

Bertsimas proposed and studied two implementations of the a priori strategy depending on the modification method
U. These strategies are baptized rigid and flexible with respect to two modification methodsUA andUB. Under the
rigid strategy, the vehicle visits all the assigned nodes in the a priori route and stops only at nodes when the customer
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require a visit. When the maximum capacity of a vehicle is reached at a given node i, the vehicle returns to the depot
to unload; then resumes its route from the next node requiring a visit. Figure 1 illustrates the two a priori strategies.

Fig. 1. Example of a priori strategy for a PVRP instance with 5 customers having binary demands and one vehicle of capacity 2. The a priori route
(a), the modified routes when only customers 2 and 5 have non-zero demands under the rigid strategy (b) and the flexible strategy (c).

3.2. Objective function

Under the rigid a priori strategy relying on UA, the expected length of a feasible route is given by the sum of the
expected cost of the a priori route

∑n
i=0 δ(i, i + 1) and the expected cost of the additional route the vehicle has to travel

when its maximum capacity has been reached. To calculate the cost of the additional route, we assume without loss of
generality that the maximum capacity of the vehicle is reached at the node i with a probability αi. Whence, the vehicle
shall return to the depot (which corresponds to the cost δ(i, 0)) and then resume the route from the node i+1 regardless
its actual demand which corresponds to δ(0, i + 1). The length of this additional trip is δ(i, 0) + δ(0, i + 1) − δ(i, i + 1).
The probability αi is calculated using the following polynomial-time scheme:
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where γ(m, c) = P(c among the m customers have non-zero demand) and prQ+i is the probability that node rQ+i
has non-zero demand.

The computation of γ(m, c) is achieved using the following recursive scheme:

• Boundary conditions: γ(m,m) =
∏m

i=1 pi and γ(m, 0) =
∏m

i=1(1 − pi)
• Induction: γ(m, c) = pmγ(m − 1, c − 1) + (1 − pm)γ(m − 1, c)

Finally, under the rigid strategy, the objective function is given by the following formula:
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n∑

i=0

δ(i, i + 1) +
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αi s(i, i + 1), (3)

where s(i, j) = δ(0, i) + δ( j, 0) − δ(i, j).

Under the flexible strategy, the objective function is calculated based on the minimum expected length of Hamil-
tonian tour in the sense of Probabilistic Traveling Salesman Problem6. Without loss of generality, let us assume that
i is the first node in the a priori solution and that j is the last node before the vehicle has reached its maximum ca-
pacity. The expected costs to travel from and to the depot from the two aforementioned nodes i and j are respectively
δ(0, i)pi

∏i−1
k=1(1− pk) and δ( j, 0)p j

∏m
k=i+1(1− pk). Contrarily to the reoptimization strategy, when the vehicle reaches

its maximum capacity at a node i and returns to the depot, it skips all nodes with zero-demand following i and resumes
its route from the first node with non zero-demand and therefore discards nodes i + 1, ..., j − 1 from its route. Hence
the objective function is defined as follows:

EUB [Lr] =
n∑

i=1

δ(0, i)pi
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k=1

(1 − pk) +
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Time complexity. The computation of the expected costs under both reoptimization and a priori strategies relies on
the calculation of the probabilities λi. Since λi = 0, ∀0, ...,Q − 1, then n − Q probabilities require computation, each
consisting in the summation of a maximum of n

Q terms. Hence, the computation cost of λi is O
(
(n − Q) n

Q

)
= O(n2).

Remark. Let us note that in the particular case where all customers have the same probability to require visit, the
probability γ(m, c) is given by the following closed form formula:

γ(m, c) =
(
m
c

)
pc(1 − p)(m−c)

This case is trivial but serves for customer clustering purposes when the vehicle number and capacities are limited.
During the pooling stage, customers having the same probability of requiring visit can be assigned to the same fleet.
Another interest of this case is that it shows the similarity of this problem with other probabilistic combinatorial
problems such as probabilistic traveling salesman problem (PTSP)6, the probabilistic scheduling problem (PSP)3,
etc. This similarity allows for the utilization of combinatorial properties of well-studied problems and therefore the
design of efficient solution schemes.

4. PVRP with stochastic travel times

In this section we present our proposed PVRP with both stochastic demand and travel time. We first present the
objective function, then we elaborate the lower bounds before elaborating the steps of the proposed algorithm.
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4.1. Objective function

From an application point of view, the costs of the arcs linking the nodes in G are usually varying depending on
the traffic state between the visited nodes. The use of constant distances as costs for the links is not realistic and leads
to an inaccurate estimation of routes costs and a significant discrepancy between the model and the ground-truth data.
Instead of considering the physical length of the routes between two nodes i and j, we propose to use the travel time.
We assume that the travel time between nodes i and j is a random variable following an exponential distribution of
parameter λi j. To illustrate the impact of travel time randomness on the solution design let us consider the following
example. Consider a complete graph G with one depot and three customer nodes 1, 2, 3. Let us also consider a fleet
with 2 vehicles. For the sake of simplification, let us assume that travel times between these nodes are symmetrical
and that travel times from depot to customer nodes are identical (δ(0, i) ∼ e(λ0)). Let us consider a feasible route in
which the nodes 1 and 3 are visited first (by the two vehicles). After nodes 1 and 3 have been visited, the next node
to be visited is 2 with a probability p. The next vehicle to visit node 2 is the one that has finished his visit which
corresponds to min j=1,3 δ(0, j). Since δ(0, j) ∼ e(λ0 j) then min j=1,3 δ(0, j) ∼ e(λ0,1 + λ0,3). Then if we denote by τ2,
the moment node 2 is visited by one of the vehicles, then the following cases are possible (see Figure 2):

• Nodes 1 and 3 do not require visit and node 2 can be visited by one of the two available vehicles.
• Only one node among {1, 3} requires visit. Then possible cases are (i) node 2 does not require visit, or node 2 is

visited after 1 (ii) or after 3 (iii).
• Both nodes 1 and 3 are visited and node 2 is visited afterwards. In this case, we distinguish two main scenarios

depending on which node (1or3) is reached first. Then depending on the probability p node 2 shall or not
require visit. Hence there are 6 possible routes.

Let φi be the random variable referring to the time point at which the next visit has to be planned, we have:

E
[
φ1
]
=

p2

λ01 + λ03
+ p2(1 − p) +

(
1

λ01 + λ12

)
+ p(1 − p)2

(
1∑

j=1,3 λ0 j +
∑

j=1,3 λ j2

)
.

Since E
[
φ2
]
= E
[
φ1
]
+ E
[
φ2 − φ1

]
, we have:

E
[
φ2 − φ1

]
=

p2

λ01 + λ03
E
[
φ2 − φ1 |nodes 1 and 3 are visited and node 1 is visited first

]
+

p2

λ01 + λ03
E
[
φ2 − φ1 |nodes 1 and 3 are visited and node 3 is visited first

]
+

p(1 − p)E
[
φ2 − φ1

∣∣∣Only node 1 is visited
]
+ p(1 − p)E

[
φ2 − φ1

∣∣∣Only node 3 is visited
]
+

(1 − p)2E
[
φ2 − φ1 |nodes 1 and 3 are both absent

]

Hence:

E
[
φ2
]
=

p2

λ01 + λ03
+ p2(1 − p) +

(
1

λ01 + λ12

)
+ p(1 − p)2

(
1∑

j=1,3 λ0 j +
∑

j=1,3 λ j2

)
+

p2

λ01 + λ03
+ p2(1 − p)

λ03

λ01 + λ03
p
(

1
λ01 + λ12

+ (1 − p)
1
λ01

)
+

p2(1 − p)(
1

λ02 + λ03
(
λ03

λ03
+
λ02

λ02
)) + p2(1 − p)(

1
λ02 + λ03

(λ03λ02 +
λ03

λ02
)) + E

[
φ1
]

Since the distances δ(i, j), 1 ≤ i, j ≤ n follow exponential distributions with parameters λi j, then mini, j δi j ∼ e(λ), λ =∑
i, j λi j. Therefore, p(mini, j{λi j = λkl}) = λkl

λ
. Then, under the rigid a priori strategy and random distances:

E
[
EUA [Lr, }]

]
=
∑
I⊆C

p(I)
|I|
λI
+
∑
I⊆C

∑
k∈I|k is served

∑
i ∈ Pred(k)

λik

λI
EUA [I − {k}] (5)
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Remark. In the particular case, where all arcs’ values follow the same exponential distribution e(λ), the distances
δ(i, j) follow a gamma distribution Γ(1, 1

λ
). Whence, δ(i, k) + δ(k, j) ∼ Γ(2, 1

λ
). Based on an expectancy-wise compar-

ison between δ(i, j) and δ(i, k) + δ(k, j), the triangle inequality holds.

Fig. 2. Allocation scenarios for a PVRP instance with three customers having binary demands, vehicle capacity Q = 2 and distances following an
exponential distribution

4.2. Lower bounds

Let us consider the particular case of unit-demands. This configuration corresponds to a door-to-door visit strat-
egy. We assume that the objective is to design a set of routes to pick travelers at their residence locations. Under this
assumption, we derive two lower bounds for both a priori and reoptimization schemes. Assume that each customer
has a probability pi of requiring a ride from node i ∈ G. Let us first consider the reoptimization scheme and let us
also consider a feasible solution for the problem in which the vehicle (bus) has to collect a subset Iu ⊂ N such that
|Iu| ≤ Q. After |Iu| customer have been driven to the depot node, the vehicle resumes its tour with the first node in
the next subset |Iu+1|, Iu ∩ Iu+1 = ∅. If L�u is the cost of the route to visit all nodes in |Iu| in the optimal solution, then
L�u ≥ maxi∈Lu δ(0, i) + δ(i, 0). Since maxi∈Luδ(0, i) ≥

∑
i∈Iu δ(0,i)
|Iu | and maxi∈Luδ(i, 0) ≥

∑
i∈Iu δ(0,i)
|Iu | and |Iu| ≤ Q, then we

can write L�u ≥
∑

i∈Iu δ(0,i)+δ(i,0)
Q . Hence, R� ≥ 2

∑
i∈N δ(0,i)+δ(i,0)

Q . Finally, E [LS � ] ≥ 1
Q
∑
N⊆C P(N)

∑
i∈C δ(i, 0) + δ(0, i) =

1
Q
∑n

i=1 δ(i, 0) + δ(0, i)pi.
Let us note that since the costs are calculated based on the travel time between nodes in C and these costs are
considered random variables taking into account the fluctuating traffic status, the triangle inequality (i.e. δ(i, j) ≤
δ(i, k) + δ(k, j)) does not apply. If we denote by λi j, λik and λk j the parameters of the exponential distributions of

δ(i, j), δ(i, k) and δ(k, j) respectively, the density of δ(i, k) + δ(k, j) is fδ(i,k)+δ(k, j)(x) =
(
λikλk j

) (
e−λikλk j x

(λk j−λik)

)
.

In order to computer tighter lower bounds when the triangle inequality does not hold for random arcs values, we set
δ′(i, j) = δ(i, j) − (di + d j) such that δ′(i, j) ≥ 0 (one can choose di = min δ(i, j)). Let S = 0, 1, ...., n, 0 be a minimum-
cost solution for the PVRP with respect to δ(i, j), 0 ≤ i, j ≤ n under the a priori strategy and let us denote by E [S ]
and E [S ′] the expected costs of S and S ′ with respect to δ(i, j), 0 ≤ i, j ≤ n and δ′, (i, j), 0 ≤ i, j ≤ n. Then, we have:

E
[
S ′
]
= E [S ] −

n∑
i, j=1

(di + d j) − d0(1 +
n∑

i=1

αi)

Since E [S ′] ≥ 0 then:

E [S ] ≥
n∑

i, j=1

(di + d j) − d0(1 +
n∑

i=1

αi) (6)

4.3. Solution procedure

The VRP is NP-complete and its exact resolution is not workable for large instances. The proposed PVRP is as at
least as complex as its deterministic counterpart. An heuristic based algorithm should be used to yield near-optimal
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4.1. Objective function

From an application point of view, the costs of the arcs linking the nodes in G are usually varying depending on
the traffic state between the visited nodes. The use of constant distances as costs for the links is not realistic and leads
to an inaccurate estimation of routes costs and a significant discrepancy between the model and the ground-truth data.
Instead of considering the physical length of the routes between two nodes i and j, we propose to use the travel time.
We assume that the travel time between nodes i and j is a random variable following an exponential distribution of
parameter λi j. To illustrate the impact of travel time randomness on the solution design let us consider the following
example. Consider a complete graph G with one depot and three customer nodes 1, 2, 3. Let us also consider a fleet
with 2 vehicles. For the sake of simplification, let us assume that travel times between these nodes are symmetrical
and that travel times from depot to customer nodes are identical (δ(0, i) ∼ e(λ0)). Let us consider a feasible route in
which the nodes 1 and 3 are visited first (by the two vehicles). After nodes 1 and 3 have been visited, the next node
to be visited is 2 with a probability p. The next vehicle to visit node 2 is the one that has finished his visit which
corresponds to min j=1,3 δ(0, j). Since δ(0, j) ∼ e(λ0 j) then min j=1,3 δ(0, j) ∼ e(λ0,1 + λ0,3). Then if we denote by τ2,
the moment node 2 is visited by one of the vehicles, then the following cases are possible (see Figure 2):

• Nodes 1 and 3 do not require visit and node 2 can be visited by one of the two available vehicles.
• Only one node among {1, 3} requires visit. Then possible cases are (i) node 2 does not require visit, or node 2 is

visited after 1 (ii) or after 3 (iii).
• Both nodes 1 and 3 are visited and node 2 is visited afterwards. In this case, we distinguish two main scenarios

depending on which node (1or3) is reached first. Then depending on the probability p node 2 shall or not
require visit. Hence there are 6 possible routes.

Let φi be the random variable referring to the time point at which the next visit has to be planned, we have:

E
[
φ1
]
=
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λ01 + λ03
+ p2(1 − p) +

(
1

λ01 + λ12

)
+ p(1 − p)2
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1∑
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∑

j=1,3 λ j2
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.

Since E
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φ2
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φ1
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p2

λ01 + λ03
E
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φ2 − φ1 |nodes 1 and 3 are visited and node 1 is visited first
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p2
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φ2 − φ1

∣∣∣Only node 3 is visited
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∑
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λ02
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1
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]
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Fig. 2. Allocation scenarios for a PVRP instance with three customers having binary demands, vehicle capacity Q = 2 and distances following an
exponential distribution

4.2. Lower bounds

Let us consider the particular case of unit-demands. This configuration corresponds to a door-to-door visit strat-
egy. We assume that the objective is to design a set of routes to pick travelers at their residence locations. Under this
assumption, we derive two lower bounds for both a priori and reoptimization schemes. Assume that each customer
has a probability pi of requiring a ride from node i ∈ G. Let us first consider the reoptimization scheme and let us
also consider a feasible solution for the problem in which the vehicle (bus) has to collect a subset Iu ⊂ N such that
|Iu| ≤ Q. After |Iu| customer have been driven to the depot node, the vehicle resumes its tour with the first node in
the next subset |Iu+1|, Iu ∩ Iu+1 = ∅. If L�u is the cost of the route to visit all nodes in |Iu| in the optimal solution, then
L�u ≥ maxi∈Lu δ(0, i) + δ(i, 0). Since maxi∈Luδ(0, i) ≥
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|Iu | and maxi∈Luδ(i, 0) ≥
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can write L�u ≥
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Q . Hence, R� ≥ 2
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∑
N⊆C P(N)

∑
i∈C δ(i, 0) + δ(0, i) =

1
Q
∑n
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Let us note that since the costs are calculated based on the travel time between nodes in C and these costs are
considered random variables taking into account the fluctuating traffic status, the triangle inequality (i.e. δ(i, j) ≤
δ(i, k) + δ(k, j)) does not apply. If we denote by λi j, λik and λk j the parameters of the exponential distributions of

δ(i, j), δ(i, k) and δ(k, j) respectively, the density of δ(i, k) + δ(k, j) is fδ(i,k)+δ(k, j)(x) =
(
λikλk j

) (
e−λikλk j x

(λk j−λik)

)
.

In order to computer tighter lower bounds when the triangle inequality does not hold for random arcs values, we set
δ′(i, j) = δ(i, j) − (di + d j) such that δ′(i, j) ≥ 0 (one can choose di = min δ(i, j)). Let S = 0, 1, ...., n, 0 be a minimum-
cost solution for the PVRP with respect to δ(i, j), 0 ≤ i, j ≤ n under the a priori strategy and let us denote by E [S ]
and E [S ′] the expected costs of S and S ′ with respect to δ(i, j), 0 ≤ i, j ≤ n and δ′, (i, j), 0 ≤ i, j ≤ n. Then, we have:
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Since E [S ′] ≥ 0 then:
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4.3. Solution procedure

The VRP is NP-complete and its exact resolution is not workable for large instances. The proposed PVRP is as at
least as complex as its deterministic counterpart. An heuristic based algorithm should be used to yield near-optimal
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solutions. In this work, we outline a simulated annealing algorithm for the solution design of the stochastic vehicle
routing problem with uncertain demands and varying inter-nodes costs. The proposed SA algorithm is achieved in
five main steps:

Step 1 First, an initial route is randomly generated using as follows:

1. Generate a random number of nodes in each route τr, 1 ≤ r ≤ R such that
∑

i∈τr
Di ≤ Q.

2. For each route τr, 1 ≤ r ≤ R, assign first nodes with highest probabilities of presence pi.

Step 2 Using a constructive heuristic, a new set of routes is generated based on the initial route. Let E [EU [Lr]]q

be the expected cost of the new solution and E [EU [Lr]]q−1 be the old one. The perturbation in the so-called
system energy is ∆EU = E [EU [Lr]]q − EU [Lr]q−1. We proceed to step 3 if there is an improvement in the
expected solution cost (i.e. ∆EU ≥ 0). Otherwise, step 4 should follow.
The constructive heuristic used in this work relies on the probabilities pi and relies on three functions: Swap,
Insert and Revert.
At each iteration, one of the three functions is randomly selected to perturb the current solution. Swap is used to
randomly swap nodes in the a priori route, Insert is used to insert a random sequence of nodes in the a priori
solution and Revert inverts the order of visits of a random number of nodes.

Step 3 Generate a random number R ∼ U[0, 1] and compute the probability P to accept the solution built in Step 2

such that P = e
−∆EApriori

T . If R < P then step 4 follows, otherwise, the old set of routes should be kept and reapply
step 2.

Step 4 The obtained solution S q = {rq
1, ..., r

q
m} is considered for the next iteration and E

[
EUB [Lr]

]q−1
= E
[
EUB [Lr]

]q.

Step 5 Let us denote by E [L]q (resp. E [L]q−1) the expected cost at the current (resp. previous) SA iteration, with
q > 1. We compute the thermal equilibrium condition defined as χ = |E[L]q−E[L]q−1 |

E[L]q−1 . If χ ≤ ε (ε is a predefined
parameter), the thermal equilibrium is attained and then the temperature T is decreased. Then step 2 follows
and q← q + 1.

The algorithm stops when the temperature threshold TS TOP is reached.

5. Experimental Study

5.1. Experimental setup

In this section we perform an experimental evaluation on randomly generated benchmarks, in order to evaluate the
performances of the re-optimization strategy and the a priori strategy. The experimental study consists in considering
three different values of fleet size f = 2, 4, 6 and generating, for each value, a complete graphGwith n customer nodes
(n = 20, 50, 70, 100, 200, 500) where the arcs ai j, 1 ≤ i, j ≤ n are valued by random travel times following exponential
distributions with parameters λi j ∈ [λmin, λmax] (λmin = 5, λmax = 20). Moreover, we assume that all vehicles have
the same capacity Q = 10. For the computation of a mean value of the expected routing costs under a priori strategy,
we generate, for each initial problem of size n, a subset of 1000 ”absent” nodes to be removed from vehicles’ routes
under both re-optimization and a priori strategies. We also assign to each node i a probability pi assumed to follow a
uniform distribution in [0, 1].

5.2. Preliminary results

The quality assessment of the a priori strategies is performed by measuring the deviation of a solution found by
means of a priori and re-optimization schemes compared to lower bounds. If we denote by LB the lower bound
calculated in eq. (6), we calculate for each solution cost L(I,UA) and L(I,UB), the following ratios:

RUA =

∑1000
i=1 L(Ii,UA)
1000 ∗ LB

× 100, and RUB =

∑1000
i=1 L(Ii,UB)
1000 ∗ LB

× 10 (7)
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Table 1. A priori strategy based solutions’ costs against lower bounds for different problem sizes n = 20, 50, 70, 100, 200, 500 and fleet size
f = 2, 4, 6. (1.0 is 1%).

n 20 50 70 100 200 500

UA UB UA UB UA UB UA UB UA UB UA UB

f=2 13.6 9.22 11.58 8.66 10.25 8.55 10.11 8.23 8.11 6.25 4.12 3.99

f=4 15.56 13.62 12.58 9.13 12.15 9.08 11.88 9.11 9.18 7.11 5.15 4.50

f=6 16.42 12.85 14.15 11.69 13.15 11.85 12.89 11.02 10.87 8.55 7.04 5.98

Table 1 reports the results of the conducted experiments. We notice that the higher is the number of vehicles, the
higher is the deviation of a priori strategy from optimal schedules. We also notice that the flexible a priori strategy
outperforms the rigid one regardless the size of the problem. While the number of vehicles slightly affects the expected
cost, the number of customers have a major impact on solution quality. Under the rigid strategy, the ratio RUA does
not exceed 8% for instances sizes larger than 500 (The results corresponding to n > 500 have been discarded). The
obtained results suggest that asymptotically, the a priori strategy converges towards an optimal solution. An ongoing
asymptotic analysis is being conducted to confirm the experimental findings.

6. Conclusion

In this paper, we proposed a stochastic generalization of a classical vehicle routing problem in which both customer
demands as well as the distances between customers are assumed to be random variables. This stochastic general-
ization allows for a more realistic modeling and provides long term robust solutions for several applications in the
context of transport and logistics. We explicitly introduced probabilities in the problem definition in order to cope with
uncertainties dealt with on a daily basis in the context of chartered and private buses route planning. Depending on the
availability of required customers demands data, the a priori strategy can be either rigid or flexible in order to provide
decision makers with rapid and adjustable solution schemes. The distances between nodes have been assumed to be
random with known distributions to conform with road network state fluctuations. A simulated annealing algorithm
has been implemented to solve the PVRP with stochastic travel times and the results are quite satisfactory. A deeper
study is being conducted to improve the proposed lower bounds.

References

1. D. Bertsimas. The probabilistic vehicle routing problem. Sloan School of Management, Massachusetts Institute of Technology, 1988.
2. D. Bertsimas. A vehicle routing problem with stochastic demand. Operations Research, 40:574–585, 1992.
3. Z. Bouyahia, M. Bellalouna, P. Jaillet, and K. Ghedira. A priori parallel machines scheduling. Computers and Industrial Engineering,

58(3):488 – 500, 2010.
4. K. Braekers, K. Ramaekers, and I. V. Nieuwenhuyse. The vehicle routing problem: State of the art classification and review. Computers and

Industrial Engineering, 99:300 – 313, 2016.
5. B. Eksioglu, A. V. Vural, and A. Reisman. The vehicle routing problem: A taxonomic review. Computers and Industrial Engineering,

57(4):1472 – 1483, 2009.
6. P. Jaillet. A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Operations Research,

36(6):929–936, 1988.
7. J. Oyola, H. Arntzen, and D. L. Woodruff. The stochastic vehicle routing problem, a literature review, part i: models. EURO Journal on

Transportation and Logistics, Oct 2016.
8. J. Oyola, H. Arntzen, and D. L. Woodruff. The stochastic vehicle routing problem, a literature review, part ii: solution methods. EURO Journal

on Transportation and Logistics, 6(4):349–388, Dec 2017.
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solutions. In this work, we outline a simulated annealing algorithm for the solution design of the stochastic vehicle
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