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Abstract—Research on automatic emotion recognition from speech
has recently focused on the prediction of time-continuous dimen-
sions (e. g., arousal and valence) of spontaneous and realistic ex-
pressions of emotion, as found in real-life interactions. However, the
automatic prediction of such emotions poses several challenges,
such as the subjectivity found in the definition of a gold-standard
from a pool of raters and the issue of data scarcity in training
models. In this work, we introduce a novel emotion recognition
system, based on ensembles of single-speaker-regression-models.
The estimation of emotion is provided by combining a subset of the
initial pool of single-speaker-regression-models selecting those that
are most concordant among them. The proposed approach allows
the addition or removal of speakers from the ensemble without the
necessity to re-build the entire recognition system. The simplicity
of this aggregation strategy, coupled with the flexibility assured by
the modular architecture, and the promising results observed on
the RECOLA database highlight the potential implications of the
proposed method in a real-life scenario and in particular in web-
based applications.

Index Terms—Speech emotion recognition, cooperative regression
model, naturalistic emotional display

1 INTRODUCTION

SPeech is one of, if not the, most natural way
for humans to communicate. In everyday social

interactions, humans express various complex feelings
such as emotion and empathy. Despite the fact that the
cognitive processes used to encode affective informa-
tion during social interactions are relatively complex,
humans can easily manage to decode such informa-
tion in real time from multimodal cues. Conversely,
the effort required of computer-based systems for a
reliable and autonomous understanding of emotion
is still challenging, even for the unimodal analysis of
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speech. Nonetheless, the development of such affec-
tive computing systems is promising for many distinct
fields of research. Health care systems may offer a
personalised treatment according to the measured
emotional content, along with an auxiliary diagnostic
tool of the psychological or developmental state of the
patient, such as depression [1], [2] or autism spectrum
conditions [3], [4]. Remote care assistance can benefit
from the estimation of the affective state (e. g., stress
or fear) in the voice of elder people [5]. Moreover,
applications such as speech based advertising [6],
remote teaching (e-learning) [7], job interview [8], and
surveillance systems [9] may be incredibly enriched
by customer-affect oriented services and monitoring,
among many others.

Beyond the proven interests in the relatively new
discipline of affective computing, until now numerous
issues have limited the full development and use of
speech emotion recognition (SER) systems in real-
life applications [10]. Whereas the automatic recog-
nition of acted emotion can provide useful insights
in the process of affective behaviours encoding into
speech and lead to very high recognition rates [11],
[12], [13], it is widely acknowledged that such data
cannot be a good representative of the emotions
produced in real-life interactions [14]. Spontaneous
emotions are indeed much more subtle and almost
never appear as a ”full-blown” expression [15]. As
a result, the automatic recognition of spontaneous
emotions is much more challenging in comparison to
the automatic recognition of acted emotions. In such
scenario, we aimed at developing a system able to
continuously and automatically predict the perceived
emotional condition of a subject expressed in any kind
of naturalistic environment.

1.1 Related work
Recently, databases of emotion collected during nat-
ural interactions with time-continuous ratings (e. g.,
arousal and valence [16]) have emerged, such as the
Sensitive Artificial Listener (SAL) set in the HU-
MAINE database [17], the SEMAINE database [18]
and the RECOLA database [19]. Such databases have
caused a shift in methods, first of all moving from
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classification to regression to be able to model contin-
uous affective dimensions [20], and next moving from
utterance or segment level labels [21] to quasi time-
continuous labels [18], [22]. Automatic recognition
of naturalistic emotion from time-continuous labels
presents, however, several challenges that are not yet
solved [10], such as the definition of a reliable gold-
standard from a pool of raters and the issue of data
scarcity in training models.

In the light of the appraisal theory from the do-
main of emotion psychology [23], each annotator may
have a subjective perception of the affective state
expressed by an individual, motivated by his/her
own past and present experience, memories, rea-
soning, etc. Additionally, humans have natural bias
and inconsistencies in their judgement [24], which
creates additional noise in the ratings. Further, the
variability in emotion perception can also be observed
in the time domain, since the evaluators may have
different reaction lag (RL) during the procedure of
time-continuous annotation [25]. However, the natu-
ral diversity found in emotion perception is usually
merged when a machine learning model is trained, by
averaging several evaluations from a pool of raters
into a single gold-standard. Whereas the use of all
annotation data can help at preserving diversity in
emotion perception, e. g., by using multi-task learning
of each annotator [26], [27], it has the main disadvan-
tage to increase the overall complexity of the model
according to the number of available raters. The issue
of synchronisation of various individual ratings for
defining a gold-standard has also been investigated
with signal processing techniques. Models of RL have
been estimated from the data, by maximising the
correlation coefficient ([28], [29], [30]), or the mutual
information [25] between audiovisual features and
emotional ratings while shifting back in time the
latter.

Regarding the issue of data scarcity, the main ques-
tion to be solved is how to deal with the huge di-
versity found in a collection of spontaneous displays
of emotion. The common approach in the literature is
to use all the emotion variability found in the data
as training material and tune the machine learning
system in order to disregard the less relevant instances
(e. g., by optimising the number of support vectors
and the soft margin in Support Vector Regression
(SVR)) for emotion prediction [20], [31], [32], [33]. Re-
cent work has proposed to use cooperative learning as
a means to select the most informative instances from
a set of unlabelled acoustic utterances [34]. But the
core underlying idea of this approach is to reduce the
cost of the human annotation task, e. g., by selecting
instances which are predicted with a low confidence
level, not to consider consensus as a way to optimise
the predictability of a given SER system. Attempts
have already been made in developing cooperative
strategies in supervised classification with ensemble

models [35], or by considering multi-scaled sliding
windows for binary classification [36]. Cooperative
strategies have also been used to perform fusion of
multimodal stimuli, by using either early (i. e., feature-
level) or late (i. e., decision-level) fusion techniques
[27], [37], [38], [39].

Taking inspiration from the cooperative strategy
proposed in [40], here we introduce a system able to
autonomously and temporarily change the composi-
tion of a restricted group of predictors provided by
single-speaker-regression-models (SSRMs) in a coop-
eration task governed by a concordance paradigm.

1.2 Main contributions
Motivation of our work lies in the intention to pro-
duce a system that can predict the perceived level
of emotion of a subject from speech analysis through
the fusion of multiple independently trained systems.
To this end, we propose a three-topics formulation of
the problem of SER from time-continuous labels: (1)
emotion subjectivity, (2) models concordance, and (3)
dynamic settings.

As mentioned earlier, the use of annotated data of
emotion has the immediate consequence of forcing
the discrepancy between the emotion produced by
the subject and that perceived by the evaluators [23].
Even though the latter may not match the actual
affective state of the subject, the evaluators provide
the unique available judgement about the emotion,
transferring the natural subjectivity of the speaker into
the subjectivity of a group of listeners. Hence, in this
article, we propose a modular strategy based on co-
operative models to perform emotion prediction from
speech data. A consensus-based merging strategy is
crucial for the cooperation of concordant responses,
either of the evaluators (e. g., the Evaluator Weighted
Estimator (EWE) [41]) or of the model developed for
each speaker. The main goal here is not to consider
emotion prediction as a fixed evaluation procedure,
but rather as a dynamic cooperative task.

The first stage of our SER system consists of de-
veloping an SSRM for each speaker. Then, a second
stage follows that consists of applying a coopera-
tive strategy to merge the responses provided by
the different SSRMs, while dynamically selecting the
window of observation in which the concordance of
the responses is estimated. The possibility to develop
single-speaker-models merged through a cooperative
strategy makes the proposed method easily applicable
for real-time applications. Mobile devices and web-
based applications require that the regression model
can be continuously updated with new data, while
avoiding the exponential increase of the learning time
or the re-training of the whole model after the addi-
tion of new speakers to the system. The cooperative
approach proposed in this article offers an elegant
solution to this constraint, because it is able to em-
bed new speakers’ models independently trained on
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separate speech sequences in a dynamic cooperative
generation rule. Further, the dynamic adaptation of
the SSRM along the observation window allows the
system to automatically select the most concordant
models and thus maximise the overall performance.

In line with the three-topics formulation named
above, and in accordance with the article’s organ-
isation, the main contributions of this contribution
can be listed as follow: (i) we propose to use a
quadrant-based temporal division to estimate the RL
of emotion annotation and perform feature selection
(topic emotion subjectivity), (ii) we define a dynamic
consensus-based cooperative strategy to predict emo-
tion from several SSRMs (topics dynamic settings and
models concordance), and (iii) we perform extensive
evaluations on a fully naturalistic database of emotion
(RECOLA) to compare the performance of our system
with methods from the state-of-the-art.

The remainder of this article is structured as fol-
lows: first, Section 2 gives a detailed description of
the proposed consensus-based SER system, and in-
troduces the database used for the experiments; next
Section 3 reports results. Final remarks and direction
of future research are given in Section 4.

2 DATA AND METHODS

2.1 Database

A new multimodal corpus of spontaneous interactions
in French called RECOLA, for REmote COLlaborative
and Affective interactions, was recently introduced
by Ringeval et al. [19]. Spontaneous interactions
were collected during the resolving of a collaborative
task (“Winter survival task”) that was performed in
dyads (i. e., interaction of two speakers at a time)
and remotely by video conference. The RECOLA
database includes 9.5 h of multimodal recordings, i. e.,
audio, video, electro-cardiogram (ECG) and electro-
dermal activity (EDA), that were continuously and
synchronously recorded from 46 participants. Ratings
of emotion were performed by six French-speaking
assistants (three male, three female) via the ANNEMO
web-based annotation tool [19], i. e., time- and value-
continuous, for the first five minutes of all recorded
sequences. The dataset for which participants gave
their consent to share their data is reduced to a set of
34 participants for an overall duration of seven hours,
from which the annotation of 23 participants (10 male,
13 female; age: µ = 21.3years and � = 4.1years) were
made publicly available1. Even though all partici-
pants were French speakers, they had different mother
tongue: 17 subjects were French, three German and
three Italian. Note that the nonconsecutive numeric
speaker labels displayed in this article – e. g., P16, P17,
P21, and so on – originate from the RECOLA dataset.

1. https://diuf.unifr.ch/diva/recola/
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Fig. 1. Schematic description of the consensus based
speech emotion recognition system.

Algorithm 1 Construction of each Single Speaker
Regression Model (SSRM)

1: acoustic features extraction
2: gold-standard estimation
3: Quadrant-Based Temporal Division (QBTD)
4: for all q = {a�, a+, v�, v+} do

5: L

q

 length of each segment
6: for all RL = 0 to 8 s step 0.04 s do

7: shift gold-standard of RL

8: return CFS(RL) for feature selection
9: end for

10: RL

q

opt

 argmax

RL

(CFS)

11: save selected features according to RL

q

opt

12: end for

13: return RL
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⇣
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14: return RL
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15: gold standard synchronisation by RL

a and RL

v

16: concatenate selected features for each dimension
17: features normalisation by Z�score
18: linear regression by Partial Least Square (PLS)

2.2 Single Speaker Regression Model (SSRM)
Fig. 1 shows a schematic description of the whole
method. Coloured blocks identify each SSRM receiv-
ing as input the speech of a speaker as well as
the corresponding annotations in terms of arousal
and valence. The cooperative regression model (CRM)
used for the prediction of an emotional dimension
(e. g., arousal or valence) from an unlabelled speech
sequence involves to average the responses of each
SSRM exhibiting a common consensus, as illustrated
by the stylised men with raised hand. The steps
needed for the construction of SSRM and CRM are
listed in Algorithm 1 and 2, respectively, and are
detailed in the following sections.

2.2.1 Acoustic features extraction

According to previous work [27], we consider the 65
acoustic low level descriptors (LLDs) and their first
order derivatives (producing 130 LLDs in total) that
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were used for the INTERPSEECH Computational
Paralinguistic challengE since its 2013 edition [42].
The COMPARE feature set has been computed with
the open source extractor OPENSMILE (release 2.0)
[43]. This feature set includes a group of 4 energy
related LLDs, 55 spectral related LLDs, and 6 voicing
related LLDs, cf. Table 1 and step 1 in Algorithm 1. For
more details on the COMPARE feature set, the reader
is referred to [44]. In what follows, we denote with
N

t

the temporal length of each speech sequence, with
N

f

the total number of acoustic features, with N

e

the
number of evaluators for each speech sequence, and
with N

sp

the number of speakers for which data and
annotations are available as training material.

2.2.2 Gold-standard estimation

Learning the acoustic model of an emotional dimen-
sion requires the computation of a gold-standard from
the annotated data of each speaker, cf. step 2 in
Algorithm 1. This is often achieved by averaging the
traces provided by each rater. The EWE [41] procedure
can be used to centre the ratings to a value that
maximises the inter-rater agreement [27]. Assuming
that individual mean centring of each annotation may
alter the original rating by resetting the natural bias
of each annotator, i. e., the subjective perception of
each rater, here we propose a new weighted averaging
strategy that maintains the original dynamic of the
annotations similarly to the one used in [27].

Formally, indicating with d each dimension, i. e.,
d = {a, v}, and starting from the evaluation provided
by each rater, e

i

, y

ei
d

(t), i = 1, . . . , N

e

, the six eval-
uations are shifted by the same quantity ȳ

d

that is
obtained by applying Eqs. (1) – (3).

⇢̄

d
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1
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e
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(y
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d

), (3)

with ⇢̄

d

(i) the mean pair-wise Pearson’s correlation
coefficient of the annotation provided by the eval-
uator e

i

with the remaining N

e

� 1, and ⇢̃

d

(i, j) =

max (0, ⇢

d

(i, j)) the positive Pearson’s correlation co-
efficient of the ratings provided by the evaluators e

i

and e

j

.
Such procedure gives thus priority to the raters

that agree more with the pool when averaging their
respective annotation. If all raters perfectly agree with
each other, then all pair-wise correlation coefficients
are equal to one and our procedure corresponds to a
simple average of the annotations after mean centring.

TABLE 1
COMPARE acoustic feature set: 65 low-level

descriptors (LLDs).

4 energy related LLDs Group

Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic
RMS energy, Zero-crossing rate Prosodic
55 spectral LLDs Group

RASTA-filt. aud. spect. bds. 1–26 (0–8 kHz) Spectral
MFCC 1–14 Cepstral
Spectral energy 250–650 Hz, 1 k–4 kHz Spectral
Spectral roll-off pt. 0.25, 0.5, 0.75, 0.9 Spectral
Spectral flux, Centroid, Entropy, Slope Spectral
Psychoacoustic sharpness, Harmonicity Spectral
Spectral variance, Skewness, Kurtosis Spectral
6 voicing related LLDs Group

F0 (SHS & Viterbi smoothing) Prosodic
Probability of voicing Voice quality
log. HNR, Jitter (local & �), Shimmer (local) Voice qual.

Note that we do not consider in the computa-
tion of the gold-standard the annotations that exhibit
negative correlation coefficients to avoid unwanted
compensation effects in the normalisation procedure.

2.2.3 Quadrant-based temporal division (QBTD)

According to Russell’s two dimensional representa-
tion of emotions [16], each quadrant of the diagram
conveys specific characteristics of emotion. Further,
all emotions are not conveyed by a unique acoustic
feature set [45], and such associations can also vary
according to the age and the gender of the speaker,
among many other paralinguistic traits and states [46].

We therefore propose to consider such peculiari-
ties to select relevant acoustic feature subsets and
estimate RL of the raters. For the purpose of opti-
mising the feature selection as well as the reaction
lag estimation procedures, we decide to segment the
gold-standards y

d

(t) and the corresponding acoustic
features x

k

(t), k = 1, . . . , N

f

into segments of posi-
tive and negative arousal or valence. Denoting with
q = {a+, a�, v+, v�} each possible quadrant of the
2D arousal-valence space, cf. step 3 in Algorithm 1,
the corresponding segments of the gold-standard are
indicated by y

a

+
(t), y

a

�
(t) and y

v

+
(t), y

v

�
(t), and

the corresponding segments of acoustic features by
x

k

a

+(t), x

k

a

�(t) and x

k

v

+(t), x

k

v

�(t), where y

a

+
(t) =

{y
a

|y
a

� 0}, y

a

�
(t) = {y

a

|y
a

< 0} and y

v

+
(t) =

{y
v

|y
v

� 0}, y
v

�
(t) = {y

v

|y
v

< 0}. With reference to
the Russell representation, we call this segmentation
the quadrant-based temporal division (QBTD). Seg-
mentation is performed by simply concatenating all
the segments of a single quadrant. Such procedure
adds the benefit to avoid that feature selection is
mostly guided by the most populated quadrant.
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2.2.4 Reaction lag estimation and feature selection

It is known that, evaluators need some time to eval-
uate the cues observable in an audiovisual sequence
and then report the corresponding emotion. This is
especially observable on time-continuous ratings used
on dimensional models of emotion, where a delay
occurs between the observable cues and the reported
emotional value. According to the evaluations per-
formed in [25], we assume here a RL distinct for each
speaker and emotional dimension with a negligible
variation among the six ratings of the same speaker,
compensating this effect with the correlation-based
estimation of the gold-standard. However, we relate
the estimation of the optimal RL to a feature selection
procedure that is performed independently on each
quadrant of the 2D arousal-valence emotional space,
to consider the peculiarities of the acoustic features
according to the emotions.

The importance of such kind of analysis has been
demonstrated by the results obtained in preliminary
comparative simulations performed without the RL-
based synchronisation of features and gold-standard.
In this regard, in Section 3.5 we will discuss results of
the related experiments run to reinforce our assump-
tion.

All gold-standard segments y

a

+
(t), y

a

�
(t), y

v

+
(t),

and y

v

�
(t) extracted by the QBTD decomposition are

thus used separately for each quadrant to perform
synchronisation with the corresponding acoustic fea-
tures. For each quadrant q and a variable RL value
in the range [0, 8] s with a step of 0.04 s, the corre-
sponding gold-standard segment is shifted back in
time with a lag equal to RL and the correlation-based
feature selection (CFS) measure is computed [47],
[48] (steps 7-8 in Algorithm 1). The optimal reaction
lag RL

q

opt

is then defined as the RL that maximises
the CFS measure (step 10 in Algorithm 1). Given the
two optimal values RL

q

opt

for a given dimension (i. e.,
arousal or valence), the final reaction lag is estimated
by weighting the two values obtained on each side of
the considered dimension with the length of the cor-
responding segments (step 13 for arousal and step 14
for valence in Algorithm 1). Compensation of the
annotation delay is finally obtained by shifting back
in time the gold-standard with the corresponding RL

(step 15 in Algorithm 1).
The results show that, an average RL of 3.89 s is

obtained for arousal (� = 1.16 s) and 4.52 s (� = 2.15 s)
for valence, in total agreement with the experimental
results reported in the literature [25], [27]. Arousal
is indeed a less subjective emotion dimension than
valence is, and thus requires less time for being
evaluated. Concerning the results of feature selection,
we list in Appendix A the most frequently selected
features in each quadrant along with the related
description. Note that, the list of features that are
selected in each quadrant are saved (step 11 in Al-

gorithm 1) and concatenated (step 16 in Algorithm 1)
for each affective dimension in order to be used for
the prediction of an unknown speaker’s emotion.

2.2.5 Feature normalisation and linear regression

The features selected using the QBTD procedure are
normalised by a Z-score (step 17 in Algorithm 1),
i. e., the mean is removed from the features and the
values are further divided by the standard-deviation,
and the normalisation parameters µ

x̃

k
q

and �

x̃

k
q

(mean
and standard deviation) are stored in the SSRM’s
parameters for being used later in the cooperative re-
gression. Concerning the regression part of the SSRM,
we trained Partial Least Square regression (PLS) on
the selected features (step 18 in Algorithm 1). The
SIMPLS algorithm is used for this purpose [49]. The
optimal numbers of latent variables LV

a

and LV

v

(for arousal and valence, respectively) are extracted
through contiguous block splitting cross-validation
(10 splits) performed on the entire speech of the
speaker.

2.3 Cooperative Regression Model (CRM)

The principle of the cooperative regression model
(CRM) is illustrated in Fig. 1. The CRM receives
as inputs the predictions provided by each SSRM.
Only the predictions that exhibit a common consensus
(indicated by the men with raised hand) are averaged,
and a final prediction is produced. The cooperation
principle is based on a two-fold strategy. First, each
SSRM is applied on the speech of a new speaker
sp

x

which produces an individual response. Then,
only the most concordant responses among the N

sp

available ones are retained and merged to produce
the final prediction. In order to select the most con-
cordant predictions, we used the mutual concordance
correlation coefficient (CCC), ⇢

c

[50]. It is a measure of
agreement between two time-continuous predictions
that non-linearly combines in a unique parameter the
Pearson correlation coefficient (CC), ⇢, and the mean
square error. The parameter CCC computed on two
time-series y1(t) and y2(t) on a given observation
time-interval T is defined as follows:

⇢

c

(y1, y2) =
2⇢(y1, y2)�y1 �y2

�

2
y1

+ �

2
y2

+ (µ

y1 � µ

y2)
2 , (4)

where the CC (⇢), the mean (µ), and the standard
deviation (�) are meant to be computed under the
assumption of stationarity of the two time-series y1(t)

and y2(t) on the observation time-interval T . The
underlying idea of using the CCC is to measure the
consensus of the predictions provided by the speakers
in the cooperation observed on a given time period T .
The steps used in the CRM are listed in Algorithm 2
and detailed below.
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Fig. 2. Illustration of the dynamic consensus-based cooperative merging rule for emotion prediction on arousal.
The left and right plots represent two consecutive segments each of 20 s of duration. The red curve represents
the gold-standard (speaker P19), the black curve is the unsmoothed prediction obtained after averaging the
most concordant predictions (the magenta curves, i. e., those that fall below the 60th-percentile) and excluding
the less concordant ones (the green curves). The blue curve is the final prediction obtained after applying a
moving average sliding window for smoothing purpose. On the top of the figure, the magenta circles indicate
the speakers that were included in the cooperation process for each of the two segments whereas green circles
indicate those that were excluded. The magenta arrows indicate the process of inclusion of the SSRMs (speakers
P62 and P64) and the green ones the process of exclusion (speakers P25, P26 and P28) when in the second
segment.

Algorithm 2 Implementation of the CRM
1: for t = 0 to N

t

step t0 = 200ms do

2: for w = 0 to 80 s step 2 s do

3: application of each SSRM at time t

4: y(t, sp

x

, sp

p

) prediction of sp
x

provided by
the pth-SSRM

5: ⇢

c

(w, p)  average pair-wise ⇢

c

of pth-
prediction in each w

6: ⇢

c

(w)  average over ⇢

c

(w, p) in the 60th-
percentile

7: end for

8: w

opt

 argmax

w

(⇢

c

(w))

9: average prediction values in the optimal win-
dow w

opt

10: end for

11: return y(t)  average predictions collected for
each time step

12: return output smoothing by moving average with
time lag of 8 s

At each time t (step 1 in Algorithm 2) and for a
given temporal window w (step 2 in Algorithm 2), the

pth-SSRM is first applied to the unlabelled speech se-
quence sp

x

producing a response y(t, sp

x

, sp

p

) (step 4
in Algorithm 2). We emphasise that the range of [0 �
80]s where to select the most concordant responses
has been chosen to let the approach have a wide range
of possibilities to choose the optimum interval of
concordance from. Then, for each SSRM, the average
pair-wise CCC is computed considering its prediction
with the others ⇢

c

(w, p) (step 5 in Algorithm 2). A
global concordance factor ⇢

c

(w), for the duration w,
is obtained by averaging only the ⇢

c

(w, p) that fall
into the 60th-percentile (step 6 in Algorithm 2). This
value has been selected after running experiments
using values in the range [50 � 70]th-percentile and
selecting the optimal trade-off between the number of
predictions merged on average and the performance
in the prediction. The optimal window duration w

opt

and the most concordant predictions are defined by
the arguments that maximise the value of ⇢

c

, (step 8 in
Algorithm 2). The most concordant responses are then
averaged which produces the final prediction in w

opt

(step 9 in Algorithm 2). Continuous monitoring can
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be achieved by implementing a sliding windowing
procedure with a time lag t0 = 200 ms. Due to
the optimal duration selection (w

opt

) and to the used
sliding window, there can be overlapping predictions
that are finally averaged time by time (step 11 in
Algorithm 2). Finally, a moving average procedure
over 8 s is applied to produce a smoothed response
in the final prediction (step 12 in Algorithm 2).

The described procedure illustrates how the most
concordant predictions are selected according to the
average pair-wise CCC computed on a dynamically
changing window. This implementation choice is mo-
tivated by the fact that it is not a priori known which is
the duration of consensus or of disagreement of each
predictor with the majority. As a consequence, the
composition of the cooperation changes dynamically
over time as it is shown in Fig. 2.

3 RESULTS AND DISCUSSION
The proposed method has been tested using the
RECOLA database which contains 23 publicly avail-
able emotion speech sequences of five minutes length
each that were annotated in terms of arousal and
valence. To assess the performance of the CRM we
implemented a leave-one-speaker-out (LOSO) cross-
validation strategy to ensure speaker independence
in testing the system.

In the following, we describe each test that has been
performed to evaluate system performance.

3.1 Training and optimisation of SSRM
We first evaluated the performance obtained during
the training and the optimisation of the SSRM. The
CCC, CC, and root mean square error (RMSE) be-
tween the gold-standard and the prediction, as well
as the average CFS (i. e., averaged over the two CFS
carried out in the two quadrants of the same di-
mension) computed during the optimisation step are
given in Fig. 3 and 4 for arousal and valence, respec-
tively. Results show that, arousal is significantly better
recognised from the acoustic features than valence.
This result is in agreement with the literature, where
acoustic features have always been shown to present
a stronger correlation with the arousal dimension in
comparison to valence [22], [26], [27], [31], [38]. The
values of CCC and CC are most of the time almost
identical, as the RMSE is quite low; we obtained an
average RMSE of 0.068 for arousal and of 0.128 for
valence over a range of 2.

3.2 Overall performance of the CRM
We tested our system on the RECOLA database by
applying the CRM on the predictions provided by
each SSRM with a LOSO evaluation framework. The
performance obtained for each speaker is combined in
the box-plot in Fig. 5 for CCC (top) and CC (bottom)
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Fig. 3. Performance obtained during the training of
each SSRM for the arousal dimension (from top to bot-
tom): concordance correlation coefficient (CCC), Pear-
son’s correlation coefficient (CC), root mean square
error (RMSE), and correlation-based feature selection
(CFS).
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Fig. 4. Performance obtained during the training of
each SSRM for the valence dimension (from top to bot-
tom): concordance correlation coefficient (CCC), Pear-
son’s correlation coefficient (CC), root mean square
error (RMSE), and correlation-based feature selection
(CFS).

and for arousal (left) and valence (right) dimensions.
Results confirm that the prediction of arousal from
acoustic features provides significantly better results
than for valence. The combination of weak predictors
(PLS) in the CRM, which is similar to a boosting strat-
egy [51], provides a performance that is comparable
with the one obtained with more complex machine
learning methods that are trained on a full set of
speakers [27], [38].

3.3 Inclusion of the SSRM in the CRM
Since our system dynamically adapts the ensemble
of SSRM used in the cooperation strategy to perform
emotion prediction, we have analysed the frequency
of inclusion (i. e., the number of times the SSRM of a
speaker is included in the cooperation over the num-
ber of observation windows) of each speaker in the
model. Fig. 6 illustrates two bar diagrams (the upper
for arousal and the lower for valence), representing
the frequency with which each speaker is included
in the cooperation. The x-axis reports the speaker
labels. Results highlight that some speakers such as
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Fig. 5. Box-plots of CCC (top) and CC (bottom) values
of the cooperative regression model applied to each
speaker in testing phase for arousal and valence.

P16, P17, and P21 (for arousal), P17, P34, and P62 (for
valence), marked by the black arrows and represented
by red bars, are rarely selected in the cooperative rule.
Indeed, if one speaker generally produces emotion
in such a specific way that her/his data cannot be
used to predict efficiently another speaker’s affective
behaviour, then these data are not included in the
cooperation rule. In addition, we observed that the
gold-standard annotation of these speakers (in terms
of arousal, valence, or both) exhibit a very small
total variation (quantified by the sum of the absolute
first derivative over the entire period), meaning that
the annotations remain almost stable except for a
few small time intervals. This strong heterogeneity
in terms of depicted emotions is another possible
explanation for the exclusion of the corresponding
SSRM from the consensus rule. Therefore, the system
autonomously solves this aspect by the dynamic se-
lection of the members of the cooperation, assuring
that speakers with low generalisation capabilities do
not deteriorate the overall prediction performance.

3.4 Comparison with standard approaches
To further quantify the performance of the proposed
method (i. e., SSRM combined with CRM) with respect
to standard regression approaches, we also imple-
mented two other emotion recognition strategies.

The first one, labelled as AVERAGE, consists in
averaging predictions from all the SSRMs without
using the cooperation rule. Such test allows to verify
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Fig. 6. Bar diagrams (top: arousal, bottom: valence)
showing the frequency of inclusion of the SSRM in the
CRM. Bars corresponding to the SSRMs that are rarely
involved in the CRM are coloured in red and indicated
with a descending black arrow.

the improvement achieved by the proposed adaptive
merging procedure.

The second comparative approach, labelled as
GLOBAL, is based on a global training of a unique
PLS model performed on the entire training dataset.
This comparison allows to highlight the advantage of
using an ensemble of SSRM in a modular architec-
ture without taking into account the benefits of the
CRM for adaptive merging. Note that, the learning
of the global model is computationally much more
demanding than the other two approaches, because
all speakers are used to compute the PLS model.
Moreover, such approach is not flexible to the on-line
addition of new speech sequences.

Performance is quantified through the median CCC
value and the corresponding inter-quartile range (i. e.,
the distance between the 75th and the 25th per-
centiles), and is given in Fig. 7 for each of the
three comparative methods, i. e., CRM, AVERAGE
and GLOBAL.

The results show that, the performance obtained
with the CRM approach is significantly higher
than the two other strategies (i. e., AVERAGE and
GLOBAL) for both arousal (p < 0.001) and valence
(p < 0.05, paired t-test). Although the performance
is slightly higher for AVERAGE in comparison to
GLOBAL, for both arousal and valence, the differ-
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Fig. 7. Comparison of the performance (median and
inter-quartile range of CCC) obtained with the pro-
posed CRM, the average of all SSRM (AVERAGE),
and a single PLS model learnt on all the training
data (GLOBAL) for arousal (top) and valence (bottom).
The p-values obtained by a t-test on the CCC values
between CRM and the two other methods are also
indicated.

ences are not statistically significant (i. e., (p > 0.05)).

3.5 Gold-standard and features synchronisation
by the estimated RL
Another novelty proposed in this article is the syn-
chronisation of the gold-standard with acoustic fea-
tures for the construction of each SSRM, performed
using the reaction lag estimated separately for arousal
and valence. To prove the importance of such proce-
dure, we compare the CCC values computed on the
predictions achieved by the proposed approach with
those obtained without the synchronisation and the
RL estimation procedures. In the latter case, features
are selected without shifting back the gold-standard
of a quantity equal to the estimated reaction lag.

Fig. 8 shows the box-plots of the CCC values ob-
tained in the two experiments for arousal (top) and
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p < 0.001
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Fig. 8. Box-plots of the performance in terms of
CCC values obtained with (left – labelled as SYNC)
or without (right – labelled as NO-SYNC) the shifting
back of the gold-standard by the estimated reaction
lag for each dimension, for arousal (top) and valence
(bottom). The p-values of a paired t-test between the
CCC values obtained on those two approaches are
reported.

valence (bottom). The statistical significance of the
improvements obtained with the inclusion of the syn-
chronisation procedure is verified by a paired t-test for
both arousal and valence; we obtained p < 0.001 for
those two dimensions, demonstrating the importance
of the synchronisation procedure for constructing the
SSRMs that cooperate in the CRM.

3.6 QBTD-optimisation of the SSRM

We also propose in this article the use of a QBTD-
optimisation for the construction of each SSRM. To
demonstrate the importance of the QBTD procedure,
we performed a global optimisation of the SSRM by
using all the quadrants of a given emotional dimen-
sion, i. e., passive and active for arousal and negative
and positive for valence. This global optimisation is
labelled as ALL in the following. Related results,
comparing the QBTD and the ALL procedures in
terms of CCC values obtained for arousal (top) and
valence (bottom), are collected in the box-plots shown
in Fig. 9.

The statistical significance of the improvements
obtained with the QBTD procedure over the global
optimisation (ALL), is verified with a paired t-test
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Fig. 9. Box-plots of the performance in terms of
CCC values obtained with (left – labelled as QBTD) or
without (right – labelled as ALL) the use of the QBTD
procedure for the construction of the SSRM for arousal
(top) and valence (bottom). The p-values of a paired
t-test between the CCC values obtained on those two
approaches are reported.

for both arousal and valence; we obtained p < 0.001

and p = 0.027 for arousal and valence, respectively,
demonstrating the importance of the QBTD procedure
for constructing the SSRM. Indeed, the QBTD allows
the selection of acoustic features that are well corre-
lated with each quadrant of the 2D arousal-valence
space. Further, the analysis of the selected acoustic
feature sets shows that they strongly depend on the
quadrant, especially for valence, cf. Appendix A.

3.7 Correlation between inter-rater agreement
and prediction performance
According to our preliminary statements on the im-
portance given to the perceived emotions, we also
show that on average, the prediction performance in
terms of CC is positively correlated with the mean
inter-rater agreement (evaluated through the average
pair-wise CC of the ratings for each speaker), cf.
Fig. 10. This fact demonstrates how concordance can
be considered as a very promising merging principle,
both for the design of the cooperation of the models,
and for the collection of the gold-standard. Note that,
there is a good linear correlation (with ⇢ equal to
0.75 and 0.61 for arousal and valence, respectively)
among the two metrics, especially for arousal, that
also presents higher average inter-rater agreement as
expected. Moreover, we did not find any statistically
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Fig. 10. CC values of the prediction for each speaker
during testing versus the average CC value of the
evaluators: (top) arousal and (bottom) valence. Colours
identify female subjects (magenta) and male subjects
(cyan).

significant difference on the CC values grouped ac-
cording to the gender of speakers, proving that the
system is both gender and speaker independent.

3.8 Comparison between PLS and SVR
We investigate here the benefit of using a PLS re-
gression approach to perform adaptive boosting as
proposed with the CRM. The generalisation capability
of the CRM system based on PLS regression is com-
pared with the use of a predictor based on SVR, with
default settings, i. e., a complexity value of C = 1,
and a Gaussian kernel with � = 1/f

sel

[52], being
f

sel

the number of features selected in each SSRM.
The results reported in Fig. 11 illustrate two kinds of
experiments. The first two columns, labelled as SSRM-
PLS and SSRM-SVR, respectively, are the box-plots of
the CCC values obtained by subject-dependent cross-
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Fig. 11. Box-plots of the CCC values for the CRM
applied using PLS regression compared with the CRM
based on SVR. The first and the second column report
the CCC values obtained during subject-dependent
validation of each SSRM (SSRM-PLS and SSRM-
SVR), the third and the fourth column indicate the CCC
values during testing (CRM-PLS and CRM-SVR): p-
values obtained by running paired t-test on the CCC
values obtained for the CRM-PLS and the CRM-SVR
are also indicated. Results are presented separately
for arousal (top) and valence (bottom).

validation of each SSRM in the corresponding speaker
speech sequence, comparing PLS and SVR regression
methods. In addition, the third and fourth columns,
labelled as CRM-PLS and CRM-SVR, respectively,
represent the box-plots of the CCC values obtained
by merging the responses of all the SSRMs in the
training set and estimating the response in the test set,
using a LOSO subject-independent cross-validation
technique. Results are presented separately for arousal
(top) and valence (bottom). One can observe that,
even though the SVR provides the best performance
in the validation of each SSRM for both arousal
and valence, the PLS algorithm is more robust to
overfitting and thus produces significantly improved
performance on the test set. Our conclusion is that,
weak predictors are indeed more suitable to perform
boosting than more sophisticated algorithms [51].

3.9 Dynamic evaluation of the prediction perfor-
mance
As a final consideration, and due to the large duration
of the recorded speech signal (5 minutes for each
sequence), it is interesting to quantify the tightness
of the prediction. To this regard, after we collect the
prediction for each speaker, we apply a sliding win-
dowing with observation time frame w

o

in the range
[5, 300]s on each prediction in testing, and computed
the corresponding CCC and the CC values achieved in
that segment with respect to the corresponding gold-
standard. Given a w

o

, the maximum CCC and the
maximum CC values computed over all segments of
the same length w

o

are extracted. Then, by collecting
these values for all the 23 speakers, we have a single
box-plot related to a given w

o

. By repeating for each
w

o

, we derive the graph in Fig. 12. Such further test
allows us to emphasise the fact that for each window
length there is at least a segment for each speaker
exhibiting very high CCC and CC values in both
dimensions. The results indicate that, as long as the
window length w

o

decreases, the performance metrics
increase. This result can be explained by the fact that
it is more probable for the prediction to reach a high
concordance level with the gold-standard in a small
interval than in very long ones. However, from a pre-
liminary analysis, we also noted that, the significance
of the metrics CCC and CC decreased on very short
segments (i. e., less than 4 s), since the reliability of the
computation of CCC and of CC values depends on the
size of the data used for the calculus. For this reason,
we decided to consider the observation windows of
duration less than 4 s not as meaningful.

4 CONCLUSION
In this article, we presented a new strategy for con-
tinuous speech emotion estimation. New paradigms
have been presented concerning single speaker and
cooperative regression models. Those novel strategies
allow a system to dynamically select the most con-
cordant models over time, which provide an elegant
solution to the issues of data scarcity and inconsis-
tencies in the definition of emotion, by fostering the
paradigm of perception of an unknown speaker’s
emotion. A novel quadrant-based decomposition of
a speech sequence is used for model optimisation
to achieve emotion-related feature selection. Concepts
like evaluator’s reaction lag and concordance for ag-
gregation have also been addressed and embedded
in the whole method. As demonstrated with extensive
experiments on a database featuring spontaneous and
natural emotions, our approach confers robustness to
inter-rater agreement variability, but also to variations
in both gender and age of the speaker.

The proposed system presents important potential
implications. First of all, new speakers can be added
to the cooperative system simply by training a new



12

  4  20  36  52  68  84 100 116 132 148 164 180 196 212 228 244 260 276 292

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 C
CC

Observation window duration [s]

  4  20  36  52  68  84 100 116 132 148 164 180 196 212 228 244 260 276 292

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 C
C

Observation window duration [s]

Arousal

  4  20  36  52  68  84 100 116 132 148 164 180 196 212 228 244 260 276 292

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation window duration [s]

M
ax

im
um

 C
CC

 

  4  20  36  52  68  84 100 116 132 148 164 180 196 212 228 244 260 276 292

0

0.2

0.4

0.6

0.8

1
M

ax
im

um
 C

C 

Observation window duration [s]

Valence

Fig. 12. Box-plots of the maximum CCC and CC values computed over all the possible segments of the same
length w

o

and distributed over the 23 speakers: (top) arousal and (bottom) valence. The graph is obtained by
varying the window length w

o

in the range [5, 300] s.

SSRM using the speech sequence along with the cor-
responding annotations for the new speaker. Second,
new affective contents of a speaker already present
in the system may be included in the cooperation
simply by performing re-learning of the SSRM of that
speaker, adding a new speech sequence with a strong
reduction of the required learning time. Consequently,
system updating can be seen as a parallel procedure
that does not influence the normal functioning and,
in addition, it does not require time consuming re-
learning of the whole prediction system. For this
reason, the proposed architecture is perfectly suitable
for mobile applications, thanks to the easiness and
flexibility to develop single models separately trained
on distinct speech sequences with different emotional
contents. Web-based applications could offer the pos-
sibility to everyone to upload to the cloud his/her
speech sequence along with the corresponding anno-

tation.
Finally, the introduction of the QBTD paradigm

suggests future developments based on modular ar-
chitecture in which each SSRM is trained and opti-
mised on each quadrant and then merged using a
cooperative rule based on different machine learning
scenarios and other databases of emotional speech.
This strategy could also be applied for multimodal
emotion recognition, to ensure that only relevant cues
are effectively used over time [53], [54].

ACKNOWLEDGMENTS
The research leading to these results has been partially
funded by the European Union’s ERC Starting Grant
No. 338164 (iHEARu), and Horizon 2020 Programme
through the Innovation Action (IA) #644632 (MixedE-
motions), and #645094 (SEWA), and the Research IA
#645378 (ARIA-VALUSPA).



13

REFERENCES
[1] S. Alghowinem, R. Goecke, M. Wagner, J. Epps, M. Breakspear,

and G. Parker, “From joyous to clinically depressed: Mood
detection using spontaneous speech,” in Proceedings of the
25th International Florida Artificial Intelligence Research Society
Conference (FLAIRS). Marco Island, (FL) USA: AAAI, 2012,
pp. 141–146.

[2] K. E. B. Ooi, M. Lech, and N. B. Allen, “Prediction of major
depression in adolescents using an optimized multi-channel
weighted speech classification system,” Biomedical Signal Pro-
cessing and Control, vol. 14, pp. 228–239, November 2014.

[3] E. Marchi, F. Ringeval, and B. Schuller, “Voice-enabled as-
sistive robots for handling autism spectrum conditions: an
examination of the role of prosody,” in Speech and Automata
in Health Care (Speech Technology and Text Mining in Medicine
and Healthcare), A. Neustein, Ed. Boston/Berlin/Munich: De
Gruyter, 2014, pp. 207–236, invited contribution.

[4] F. Ringeval, J. Demouy, G. Szaszák, M. Chetouani, L. Robel,
J. Xavier, D. Cohen, and M. Plaza, “Automatic intonation
recognition for prosodic assessment of language impaired
children,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 19, no. 5, pp. 1328–1342, July 2011.

[5] R. Looije, M. A. Neerincx, and F. Cnossen, “Persuasive robotic
assistant for health self-management of older adults: Design
and evaluation of social behaviors,” International Journal of
Human-Computer Studies, vol. 68, no. 6, pp. 386–397, June 2010.

[6] A. Batliner, F. Burkhardt, M. van Ballegooy, and E. Nöth, “A
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APPENDIX
In this section, we provide additional results concern-
ing feature selection based on the QBTD procedure.
Table 2 lists for each quadrant the most frequently
selected features along with the corresponding LLD
name; the reader is referred to [44] for more informa-
tion on the computation of the features. These results
clearly show that, the sets of features selected for the
two partitions of arousal and of valence are almost
entirely disjoint—especially for valence—, underlin-
ing the importance of a quadrant-based selection.
Additionally, spectral based acoustic features appear
to be the most robust ones for emotion prediction of
both arousal and valence.

TABLE 2
Most selected acoustic LLD in each quadrant; R-PLP
stands for RASTA-PLP psychoacoustic filtering; for the

purpose of readability, only the minimum and
maximum value of frequency band are given for

consecutive spectral related features (this case is
indicated by a parenthesis including the number of

consecutive features).

Negative valence

Energy in R-PLP spectrum [547� 801]Hz

Energy in R-PLP spectrum [945� 1279]Hz

Energy in R-PLP spectrum [1469� 1911]Hz

Positive valence

Zero crossing rate
Energy in R-PLP spectrum [5865� 7203]Hz

Spectral roll off point at 90%

Negative arousal

Loudness (sum of all R-PLP coefficients)
Root mean square energy
Energy in R-PLP spectrum [799� 3077]Hz (9)
Energy in R-PLP spectrum [3074� 4280]Hz (2)
Energy in R-PLP spectrum [4277� 5870]Hz (3)
Energy in spectrum [250� 650]Hz

Energy in spectrum [1000� 4000]Hz

Spectral flux
Spectral slope

Positive arousal

Probability of voicing
Loudness (sum of all R-PLP coefficients)
Root mean square energy
Energy in R-PLP spectrum [4277� 5291]Hz

Energy in spectrum [250� 650]Hz

Energy in spectrum [1000� 4000]Hz

Spectral flux
Spectral variance
Energy in 1st MFCC [17� 163]Hz


