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Abstract—One of the major obstacles that has to be faced
when applying automatic emotion recognition to realistic human–
machine interaction systems is the scarcity of labelled data for
training a robust model. Motivated by this concern, this article
seeks to utmost exploit unlabelled data that are pervasively
available in the real-world and easy to be collected, by means of
novel Semi-Supervised Learning (SSL) approaches. Conventional
SSL methods such as self-training, suffer from their inherent
drawback of error accumulation, i. e., the samples that are
misclassified by the system are continuously employed to train
the model in the following learning iterations. To address this
major issue, we first propose an enhanced learning strategy,
by which we re-evaluate the previously automatically labelled
samples in each learning iteration, in order to update the training
set by correcting the mislabelled samples. We further exploit
multiple modalities and models in the SSL system, by using col-
laborative SSL, where all modalities and models are considered
simultaneously; samples are selected by means of minimising the
joint entropy. This strategy is supposed to not only improve the
performance of the model for data annotation and consequently
enhance the trustability of the automatically labelled data,
but also to elevate the diversity of selected data. To evaluate
the effectiveness of the proposed approaches, we performed
extensive experiments on the RECOLA database, which includes
multimodal recordings of spontaneous affective interactions of
dyads. The empirical results show that the proposed approaches
significantly outperform recently well-established SSL methods.

Index Terms—enhanced semi-supervised learning, collabora-
tive learning, audiovisual emotion recognition

I. INTRODUCTION

Automatic emotion recognition has attracted wide attention
in artificial intelligence over the past decade, since it plays
an essential role in achieving natural and friendly human–
machine interactions [1]–[5]. However, one major obstacle that
impedes its broad applications in real-life settings is the lack
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of sufficient labelled data in terms of quantity and diversity,
which is regarded to be of high importance to build a robust
and efficient recognition model [6]–[8].

Because of the public availability of massive unlabelled data
that can be easily collected via pervasive electronic devices [8],
[9], one natural solution comes to leveraging the value of these
data in an effective way. Semi-Supervised Learning (SSL)
has been emerged as a promising approach since it aims to
efficiently make use of machines (i. e., recognition models)
to automatically ‘annotate’ unlabelled data, with (almost) no
need of manual intervention. Over the past few years, some
efforts have been made and have shown the benefits of SSL
for emotion recognition.

In [10], Wu et al. introduced a graphic-based SSL model
for emotion recognition from music, by which the supervision
knowledge (or the label information) is propagated from the
labelled data to the unlabelled data by calculating the acoustic
and tag similarity among songs. In [11], Schels et al. employed
a density estimation of all available data to transfer the
label information to unlabelled data. Similar work was further
reported in [12], but for the text-based emotion classification.

In contrast to these transductive SSL approaches where
both labelled and unlabelled data are considered to perform
a prediction on the unlabelled data, more research efforts
need to follow an inductive SSL paradigm, mainly due to
the fact that the powerful capability of discriminative models
(e. g., Neural Networks) for emotion recognition has been
frequently shown over the past decade [13]. In the inductive
paradigm, a predictive model is pre-built only on the labelled
data and then used for predicting the unlabelled data. As an
example, Zhang et al. [14] employed a typical inductive SSL
approach called self-training to explore the unlabelled data
from different databases for emotion recognition from speech.
In addition, co-training was proposed to exploit two views
(feature sets) for emotion recognition. For example, Zhang et
al. [15], [16] split the acoustic features into two groups (e. g.,
energy- or spectral-related), each of which is regarded as one
‘view’ for emotion recognition from speech. Likewise, Li et
al. [17] took the personal and impersonal (i. e., the sentence
whose subject is not a person) opinions as two ‘views’ for
emotion recognition from text. Recently, deep neural network-
based SSL has emerged a great potential method owing to its
capability to distil high-level representations. Most recently,
Deng et al. [18] introduced a shared-hidden-layer framework
with multi-task learning, which consists of two tasks – recon-
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structing inputs (autoencoder path) and predicting emotions
(classification path). It is expected that the knowledge can be
transferred from unlabelled data to labelled data through the
autoencoder path.

However, most of these studies merely focused on a sig-
nal modality, i. e., either audio [19], video [20], [21], or
text [17]. Nowadays, recognising emotion via multiple modal-
ities emerges to be prominent [22]–[27], not only due to the
broad usage of cameras and microphones as aforementioned,
but also due to the fact that the combination of various
modalities can often offer better performance than unimodality
for emotion recognition [23]–[25], [28], [29]. Nevertheless,
multimodal information is often ignored in most previous SSL
research. Different from previous studies, in this article we
intend to make efficient use of multiple modalities in SSL for
emotion recognition.

Furthermore, traditional SSL approaches often suffer from
a problem of performance degradation. That is, when adding
more automatically annotated data to the training set often
results in worse, rather than better, performance of recognition
models [30]–[32]. Largely because the automated annotations
(model predictions) are often not totally correct, the mis-
labelled samples (i. e., error or noise) are potentially taken
into account when updating training models and sequentially
accumulated in the follow-up learning iterations, leading to a
gradual decrease of model performance [30]–[32]. The occur-
rence of this issue is supposed to highly relate to two factors:
model goodness, and correctness and diversity of selected
data when updating training data [33]. A poorly performed
model reduces the reliability of the automated annotations,
and increases the risk of adding mislabelled samples into the
updated training set. In addition, as to the intrinsic prediction
inclination of a model, the diversity of selected data in SSL
might be limited [32], [34]. Adding more selected data from
one model probably leads to a higher mismatched distribution
between the updated training set and test set [32].

To address the performance degradation problem of SSL,
many efforts have been made in the context of machine
learning. In [20] and [32], Cohen et al. used unlabelled
data to search for a better structure of Bayesian Network.
This algorithm can effectively alleviate the problem, but it
is only designed for probabilistic models. In [35], Nigam et
al. suggested to assign different weights to unlabelled data
according to their prediction probabilities (i. e., confidence).
Their approach then trains a new model using the combination
of original labelled and new weighted-unlabelled data, and
iterates. This method effectively reduces the detrimental effect
of poorly labelled data by machines [35]. Further, rather than
such a soft-weighted strategy, its binary version was frequently
used as well. That is, only a few most confidently predicted
data are added to the labelled data set [30]. Besides, another
enhanced version was introduced by Li et al. [36], by which
the unlabelled data are actively identified with the help of some
local information in a neighbourhood graph. By doing this, it
keeps those mislabelled data from being added to the training
set; hence, a less noisy training set is obtained [36].

In this article, we propose a novel SSL approach called
enhanced collaborative SSL (ecSSL), with the purpose to

address the performance degradation problem by leveraging
multiple modalities and models with a re-evaluation process
on selected data. Compared with previous work, the proposed
approach can utmost upgrade the goodness of the recognition
model as well as the ‘correctness’ and diversity of selected
data. In general, our main contributions can be summarised as
follows.
• We exploit the complementary of multiple modalities

(i. e., audio and video) and classification models for
SSL. This combination is crucial and assumed to offer
at least two benefits: to build an enhanced and robust
emotion recognition model, and to select more accurate
and diverse data in the SSL process. Taking advantage
of multiple models is originally motivated by the work
presented in [37], [38], where different machine learning
models can be learnt mutually.

• We propose to sequentially re-evaluate previously se-
lected data to increase the correctness of selected data. It
is supposed to correct possibly mislabeled data in previ-
ous iterative learning stages and this further enhances the
overall confidence of the system predictions.

• We demonstrate the superiority of the proposed ecSSL
approach on a multimodal database and provide insightful
analysis.

The remainder of this article is organised as follows. In Sec-
tion II, we describe the proposed enhanced collaborative SSL
in detail. Then, we perform extensive empirical evaluations
on the RECOLA database in Section III. Finally, we draw
conclusions and point out some potential research directions
in Section IV.

II. ENHANCED COLLABORATIVE SEMI-SUPERVISED
LEARNING

Let L = {(xi, yi), i = 1, . . . , nl} denote the small set of
labelled data and U = {xi, i = 1, . . . , nu} denote the large set
of unlabelled data, where x ∈ X indicates the feature vector
in the input feature space; y ∈ Y indicates the label of the
emotional label space; and nl and nu are the total number of
labelled and unlabelled data, respectively. It is assumed that
nl is lower than nu (nl � nu) due to the limited availability
of labelled data as discussed in Section I.

In this article, we conduct SSL in an inductive paradigm.
To select the data in each SSL iterations, we follow up the
classic strategy based on prediction confidence (aka prediction
uncertainty). Only the samples predicted most confidently are
selected. To evaluate the confidence value, we employ the en-
tropy E(p) as a measure, which is calculated from the discrete
probability distribution of predictions in our classification case,
as

E(p) =

C∑
i=1

pilog(pi), (1)

where pi indicates the prediction probability for class i, and
C is the number of classes. In this sense, a higher confidence
value refers to a lower entropy. Henceforth, we use the entropy
of the prediction probability E(·) as a criterion for data
selection.
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Further, as mentioned, for emotion recognition it is a
common case that the prepared samples are in an imbalanced
category distribution. Those imbalanced training data probably
lead to a model prediction bias: The samples pertaining
to the dominant categories (e. g., neutral speech) are easily
classified with high confidence [39]. Such a prediction bias
consequentially gives rise to a vicious circle in which the
dominant categories are recognised increasingly better, while
the opposite observation holds for the less represented cate-
gories [16]. According to the findings presented in [40], we
employ the same number of samples per class to build the
initial labelled-training-set. Moreover, we equally select the
samples per class in each learning iteration. Compared with the
‘traditional’ SSL methods that are only based on the prediction
confidence, the proposed balanced selection can effectively
avoid the selection bias towards the dominant categories [16],
[40].

A. Self-Training and Co-Training

As mentioned in Section I, self-training and co-training are
the two widely used inductive SSL approaches for emotion
recognition. For self-training [31], a classifier is firstly trained
with an ‘original’ human-labelled data set L. After that, the
classifier is used to recognise the unlabelled data set U .
Typically, the unlabelled data S that are recognised with
high confidence (or low entropy E(yx)), together with their
predicted labels, are added to the original training set (L∪S),
and removed from the unlabelled data set (U r S). The
classifier is then retrained with the updated training set. This
process is repeated several times until a predefined stopping
criterion is met.

To cease the learning process, several criteria can be imple-
mented: e. g., (i) no performance improvement is shown on the
evaluation set, (ii) a predefined iteration number is matched,
or (iii) no target data remains in the unlabelled data set. Note
that, in this article, the second stopping criterion is chosen
throughout all of the experiments for an easy performance
comparison.

Compared with self-training, where the classifier uses its
own prediction to teach itself, co-training [41] tries to ex-
ploit the mutual information between two models trained on
different feature domains (‘views’) – Xv1 and Xv2, each of
which uses its predictions to teach not only itself but also
the other one. Specifically, each ‘view’ is used to create one
‘good’ classifier hv1 or hv2, and each classifier is tested on
the unlabelled data set U . The unlabelled data (S = Sv1∪Sv2)
predicted with high confidence values (or low entropy E(yx))
are then added (together with the new label) to the training
set (L∪S) and removed from the unlabelled data set (U rS).
Afterwards, the two classifiers are retrained from the updated
training set based on the corresponding feature domain. The
whole process repeats several times as self-training does.

Co-training relies on two assumptions [41]: (a) sufficiency
– each ‘view’ is sufficient for classification on its own. That
is, the two hypotheses fv1 : Xv1 7→ Y and fv2 : Xv2 7→ Y
are good enough for recognition; (b) conditional independence
– the ‘views’ are conditionally independent given the class

Algorithm 1: Enhanced Semi-Supervised Learning.
Initialise:
nl: number of initial labelled training samples;
nu: number of unlabelled samples;
n: incremental number of selected samples per learning
iteration;
h: classification model;
x: feature set, i. e., xa, xv , or xav

1 for i = 1, ..., I do % iterate learning process
2 Train classifier hi := f(Li(x, y));
3 Predict (y′x, E(y′x))← hi(∀x ∈ U);
4 % re-evaluate the whole original unlabelled set
5 Split U = {Uc, c = 1, . . . , C}, where ∀x ∈ Uc,

y′x = c;
6 for c = 1, ..., C do % equally selected per class

by the strategy of minimum entropy
7 Set ni = i× bn/Cc;
8 Copy Sc from Uc, size(Sc) = ni, and satisfy

E(y′xc)
∀xc∈Sc

≤ E(y′x′c)
∀x′c∈(UcrSc)

;

9 Si =
⋃
Sc;

10 end
11 Li+1 = L0 ∪ Si;
12 end

label [41], that is, p(yi|x) ← p(yi|xv1)p(yi|xv2), where x =
[xv1,xv2].

B. Enhanced SSL

One main drawback of SSL is error accumulation, as
mentioned in Section I. For traditional SSL, the data selected
by the machine are fully trusted and pooled into the training
set. However, some of these data are inevitably mislabelled in
practise, and result in a noisy training set (cf. Section I).

To tackle this problem, we propose to not always trust the
automatically labelled data, and call this approach enhanced
SSL. The pseudocode describing the algorithm is shown in
Algorithm 1. The core idea of this approach is to retain the
previously selected data in the original unlabelled data set at
each learning iteration. In doing this, the previously selected
data will be re-evaluated by the following enhanced model.
Therefore, it is possible to correct mislabelled data in future
iterations with an improved model. Naturally, the previously
selected samples may not be selected again in the following
learning process, i. e., Si 6⊂ Sj , i < j.

Specifically, given the incremental number of selected sam-
ples per learning iteration n, the i-th learning iteration will
select i × n samples in total, while the unlabelled data
collection U remains the size of nu, in our case.

C. Modality-based Collaborative SSL

The proposed collaborative SSL (cSSL) in this article can
be considered an extension of co-training, where the views
involve not only the feature domains (i. e., modality-based
cSSL), but also the recognition models (i. e., model-based
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cSSL, discussed in Section II-D). When integrated with the
enhanced SSL, the new algorithm is named as enhanced cSSL.

The pseudocode describing the algorithm of enhanced cSSL
based on multimodality is displayed in Algorithm 2. Compared
with self-training, modality-based cSSL (e. g., audio, video,
text, and physiology) employs multiple modalities as indepen-
dent ‘views’ for training different models. Compared with co-
training, it can implement multiple, rather than two, modalities
in the learning system, which is similar to multi-view learning
with less restriction in terms of conditional independence (For
more details, the reader is referred to [42]).

Besides, in contrast to conventional co-training where dif-
ferent views individually select the samples that are clas-
sified with lowest entropies and then fuse them together
(i. e., minimum-individual-entropy strategy) [15], [41], cSSL
takes a minimum-joint-entropy strategy. That is, all predictions
obtained by various views for each sample will be merged
as one by means of majority voting. Particularly, in the even
cases, the final decision is assigned to the category classified
with the least entropy. This algorithm improvement can not
only avoid the prediction-conflict caused by different views but
also potentially increase the automated annotation correctness
of the selected data [43]. Furthermore, the final entropy is
calculated by averaging all entropies obtained by different
views. These merged predictions and entropies will be then
relied on for the following data selecting operation.

For the sake of simplicity, in this article we took audio
and video as two representative modalities. In this case, the
parameter P in Algorithm 2 equals to two, and both audio
and video feature vectors can serve as different ‘views’, i. e.,
xa ∈ Xa = X1, and xv ∈ Xv = X2. The complete feature
vector can be expressed as x = [xa,xv].

D. Model-based Collaborative SSL
In contrast to modality-based cSSL, the model-based cSSL

seeks the benefits from multiple diverse classifiers, which
are trained on the same feature sets. The pseudocode of its
enhanced approach is shown in Algorithm 2 as well.

When combining multiple models (classifiers) into a strong
one, it normally requires the individual ones to be sufficiently
effective and diverse [44]. Again, for the sake of simplicity,
we choose two models for evaluation in this article (i. e.,
Q = 2 in Algorithm 2). The two models are Support Vector
Machines (SVM) and Recurrent Neural Networks (RNN), each
of which are widely applied to emotion recognition [13], [23],
[38]. In detail, SVM is a convex optimisation function, the
characteristics of which offer it the capability to capture the
global optimisation. Moreover, SVM is learnt by minimising
an upper bound on the expected risk, as opposed to the
neural networks that are trained by minimising the errors on
all training data, which endows SVM a superior ability to
generalise [45]. By contrast, the RNN model is easily trapped
in a local minimum which can be hardly avoided and has a
risk of overfitting, whilst it is good at capturing the context.
Particularly, a memory-enhanced variation of RNN, namely
Long Short-Term Memory RNN (LSTM-RNN), holds a much
more powerful capability of learning long-range contextual
information.

Algorithm 2: Enhanced Collaborative Semi-Supervised
Learning based on Multi-Modality or Multi-Model.
Initialise:
nl: number of initial labelled training samples;
nu: number of unlabelled samples;
n: incremental number of selected samples per learning
iteration;
h: classification model

1 for i = 1, ..., I do % iterate learning process
2 • either based on multi-modality
3 for p = 1, ..., P do % use P modalities
4 Train classifier based on the p-th modality,

hip := f(Li(xp, y));
5 Classification (y′xp

, E(y′xp
))← hip(∀xp ∈ U);

6 end
7 Merge predictions y′x ←M(y′x1

, · · · , y′xp
);

8 Average entropies Ē(y′x)← 1
P

∑P
p=1 E(y′xp

);

9 • or based on multi-model
10 for q = 1, ..., Q do % use Q models
11 Train the q-th classifier hiq := fq(Li(x, y));
12 Classification (y′qx , E(y′qx ))← hiq(∀x ∈ U);
13 end
14 Merge predictions y′x ←M(y′1x , · · · , y′Qx );
15 Average entropies Ē(y′x)← 1

Q

∑Q
q=1 E(y′qx );

16 Split U = {Uc, c = 1, . . . , C}, where ∀x ∈ Uc,
y′x = c;

17 for c = 1, ..., C do
18 Set ni = i× bn/Cc;
19 Copy Sc from Uc, size(Sc) = ni, and satisfy

Ē(y′xc)
∀xc∈Sc

≤ Ē(y′x′c)
∀x′c∈(UcrSc)

;

20 Si =
⋃
Sc;

21 end
22 Li+1 = L0 ∪ Si;
23 end

Thus, it is supposed that combining the two models could
provide an opportunity for them to learn the strength from each
other and avoid the weaknesses. Encouraged by the success of
such a combination for continuous emotion recognition [26],
[38], we believe that this algorithm could further enhance
the correctness and the diversity of the selected data in each
learning iteration. Analogous to the modality-based cSSL,
a minimum-joint-entropy strategy is taken as well for data
selection in this case.

E. Enhanced Collaborative SSL based on Multi-Modality and
-Model

An enhanced cSSL based on multi-modality and -model is
illustrated in Fig. 1, which integrates the enhanced modality-
based cSSL (cf. Section II-C) and the enhanced model-based
cSSL (cf. Section II-D). By this approach, the data from the
audio and video domains are respectively utilised to build
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Fig. 1. Flowchart of enhanced collaborative Semi-Supervised Learning based
on multi-modality (i. e., audio [a] and video [v]) and multi-model (i. e., RNN
[r] and SVM [s]).

RNN and SVM models. For each sample, predictions via
various modalities and models are merged to one by majority
voting

y′x = M(y′1x1
, · · · , y′qxp

, · · · , y′QxP
), (2)

where y′qxp
denotes the prediction from the q-th model by using

the p-th modality. In case of a draw, the decision is then made
by the category that holds the least entropy. Meanwhile, the
joint prediction entropy is calculated by

Ē(y′x) =
1

Q · P

Q∑
q=1

P∑
p=1

E(y′qxp
), (3)

where E(·) indicates the prediction entropy. After that, the data
selection process is conducted by the minimum-joint entropy
strategy for each category as described in Section II-C, such
that the sample x with pseudo-label c in the selected subset
S satisfies

Ē(y′xc)
∀xc∈Sc

≤ Ē(y′x′c)
∀x′c∈(UcrSc)

. (4)

It is worth noting that the size of the selected subset is
incrementally increased to i× n, whereas the unlabelled data
set always remains the same size nu, and the updated training
set becomes nl + i× n, at the i-th learning iteration.

III. EXPERIMENTS AND RESULTS

In this section, we perform an empirical evaluation of
the proposed SSL approaches on the audiovisual RECOLA
database for emotion recognition.

TABLE I
DISTRIBUTION OF SPEAKERS AND INSTANCES PER PARTITION OF THE

RECOLA DATABASE. SPK: SPEAKERS, POS: POSITIVE, NEG: NEGATIVE.

# spk arousal
# POS # NEG

∑
pool 23 623 344 967
test 11 366 149 515

A. RECOLA Database

The multimodal corpus REmote COLlaborative and Affec-
tive interactions (RECOLA) [46] (the standard database of
the AVEC challenges for audiovisual emotion recognition in
2015 and 2016 [29]) was selected for our experiments due
to its widespread use in this area. This database was created
to study socio-affective behaviours from multimodal data in
the context of remote collaborative tasks. Spontaneous and
natural interactions were proceeded from 46 French-speaking
participants (27 females and 19 males with a mean age of 22
years and a standard deviation of 3 years) whilst solving a
collaborative task conducted in dyads via video conferencing.
In total, the database includes 9.5 hours multimodal record-
ings, i. e., audio, video, electrocardiogram, and electro-dermal
activity, which were obtained synchronously and continuously
over time. Due to the consent of the participants to share their
data, the data set is reduced to a subset of 34 participants with
an overall duration of 7.0 hours.

After the data collection process, six gender-balanced
French-speaking assistants were asked for annotating the time-
continuous ratings of emotional arousal for the first five min-
utes of all recordings via the ANNEMO web-based annotation
toolkit. For the purpose of this study, these continuous ratings
for arousal dimension are further discretised into a binary
category – POSitive and NEGative. To do this, the continuous
audiovisual signals were firstly split into sequential short
segments (instances) via voice activity detection. Then, we
assigned POS or NEG to each of them if the average rating
value of the segment is above or under zero. These data were
finally divided into pool set (unlabelled data set) and test set
assuring a speaker independence. The details of the speaker
and instance distribution of RECOLA used in this article are
shown in Table I. More information on the RECOLA database
can be found in [46].

B. Acoustic and Visual Features

Regarding the acoustic features, we kept in line with
the standard statistical feature set for the past four INTER-
SPEECH Computational Paralinguistic ChallengEs (COMPARE
2013-2017) [47]. This feature set is obtained by apply-
ing various functionals (segment level) on the Low-Level
Descriptors (LLDs, frame level). Specifically, it contains
4 energy related LLDs (loudness, RASTA spectrum, RMS
energy, and zero-crossing rate), 55 spectral related LLDs
(spectrum bands, MFCC 1-14, spectral energy, spectral
flux/centroid/entropy/slope, psychoacoustic sharpness, har-
monicity, and spectral variance/skewness/kurtosis), and 6 voic-
ing related LLDs (F0, probability of voicing, logHNR, jitter,
and shimmer). These 65 LLDs of speech with their first order
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derivate leads to 130 LLDs in total (for more details, please
refer to [48]). After that, 5 functionals (min, max, range,
mean, and variance) are applied over each LLD contour. Thus,
the complete acoustic feature set includes 650 attributes per
segment.

Regarding the visual features, we extracted 20 LLDs and
their first order derivate (40 LLDs in total) for each frame in
the video recordings. The 20 LLDs contain 15 facial actions
units (AU1-2, 4-7, 9, 11-12, 15, 17, 20, and 23-25), head-
pose in three dimensions, and the mean and standard deviation
of the optical flow in the region around the head (for more
details, please refer to [49]). Similar to acoustic features, the
same 5 functionals are applied over the extracted frame-based
LLD contours per video segment, which leads to 200 visual
attributes per segment in total.

C. Experimental Setup and Evaluation Metrics

Following on previous work [33], we kept taking the binary
arousal recognition as a representative emotion recognition
task. For SSL, we considered audio, video, audio+video (i. e.,
combined audio and video) as three independent modalities,
respectively leading to an acoustic (650), a visual (200), and an
audiovisual (850) feature set. As to the modality-based cSSL,
the acoustic and visual feature sets were separately split into
two pseudo ‘views’ (feature subsets) based on the property
of the LLDs – the efficiency of this rule was frequently
demonstrated in our previous work [15], [16]. That is, the
acoustic feature set was divided by the rule of MFCC-related
or not, and the visual feature set was partitioned by original
or first derived delta features. For the audiovisual feature set,
nevertheless, it was split as usual into individual acoustic and
visual feature sets as two ‘views’.

As to the model-based cSSL, we chose two of the most
popular and robust models, i. e., RNNs and SVMs, as exem-
plary ones, since both of them i) are widely used for emotion
recognition (see [29], [47], [50]); ii) are considered to be
highly distinct in principle, and frequently employed in an
ensemble learning paradigm [38], [51]. Specifically, the RNN
model was constructed in the Tensorflow platform [52] with
40 hidden neurons of one hidden layer. To accelerate the RNN
learning process, we employed a mini batch of eight instances
as network inputs. Additionally, we trained the RNN models
with Adam Stochastic Gradient Descent with a learning rate of
10−4. Meanwhile, the SVM model used for our experiments
was implemented with the LibSVM toolbox [53], and was
optimised with a polynomial kernel and a fixed penalty factor
of 0.05.

To carry out the SSL experiments, we first randomly and
equally selected 20 instances per class from the pool set, i. e.,
nl = 40 in total, with the annotations obtained from human
raters as an initial training set, which resembles approximately
4% of the whole pool set. The remaining instances in the pool
set were regarded as the unlabelled data set. At each SSL
iteration, we incrementally selected n = 40 instances (20 in-
stances per class based on the pseudo (automated) annotations
by a pre-trained model). (Note that because the unlabelled
data set always remains the same in each learning iteration,

selecting a fixed number instances is equal to selecting a fixed
ratio of the whole pool set.) More specifically, at the i-th
learning iteration, 40 instances were selected in total for our
baseline SSL approaches without the enhancement strategy,
whilst 40× i instances were picked in total for the SSL with
the enhancement strategy as the previously selected instances
remain in the pool set for re-evaluation by an updated model
(cf. Section II-B). Further, the learning iteration time was set
to be I = 20 for better performance comparison. To ease the
influence of random selection for the initial training set, we
repeated the initial selection 20 times with different random
initialisations (‘seeds’), leading to 20 independent learning
runs throughout all the following experiments.

For performance evaluation, we utilised the widely used
metric in the context of emotion recognition – Unweighted
Average Recall (UAR). It is calculated by the sum of recalls
per class divided by the class number as

UAR =

∑K
i=1 Recalli

K
, (5)

where K is the number of classes. Thus, UAR well reflects the
overall accuracy in the presence of class imbalances. Further,
to assess the statistical difference of the performance obtained
between two approaches, we employed a paired t-test in what
follows. Moreover, to estimate the diversity of selected data,
we took euclidean distance measurement that is calculated by

D(X) =

√√√√√
 n∑

i=1,j=1

(xi − xj)2/n

, (6)

where n is the instance number in data set X .

D. Enhanced vs Non-Enhanced SSL

Fig. 2 and 3 illustrate the performance of enhanced SSL and
non-enhanced SSL evaluated by the models of the RNN and
SVM, respectively. Note that for the multi-modalities based
cSSL, the audio and video feature sets are partitioned into
two pseudo ‘views’ as mentioned in Section III-C. For the
multi-model based cSSL, both the RNN and SVM models are
jointly considered for data selection, but the learning process is
assessed by either the RNN (cf. Fig. 2) or the SVM (cf. Fig. 3).

From the figures, it can be seen that the enhanced SSL
(black solid lines) performs better than the non-enhanced SSL
(black dash lines) in a majority of experimental settings either
by the models of RNN (cf. Fig. 2) or SVM (cf. Fig. 3). Specif-
ically, all the scenarios where the enhanced SSL significantly
outperforms the non-enhanced SSL are indicated by p < .05
at the bottom of each subfigure.

To find out the reason behind the performance improvement,
we further calculate the UAR of the predictions on the selected
data set, which is presented by the blue lines in Fig. 2 and 3.
From these subfigures, it is interesting to notice that the
enhanced SSL (solid lines) is able to select more accurately
predicted samples than the non-enhanced SSL (dash lines) in
most settings. In addition, one can further observe that the
performance gain obtained on the selected set highly relates
to the gain on the test set. Intuitively, the figures show that
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Fig. 2. Performance (averaged UAR over 20 independent runs) comparison between enhanced and non-enhanced (collaborative) Semi-Supervised Learning
(SSL), evaluated by Recurrent Neural Networks (RNNs). The left (black) and right (blue) y-axes indicate the obtained performance on the test set and
the selected set, respectively. Four subfigure-rows from top to bottom refer to the performance of traditional self-training, multi-modality based, multi-model
based, and multi-modality and -model based collaborative SSL, respectively. Three subfigure-columns from left to right denote the performance on acoustic
(audio), visual (video), and audiovisual (audio+video) features, respectively. (Note: the missing x-axes, left y-axes, and right y-axes are aligned with the
bottom, left, and right ones, respectively.)

the cases where the selected set predicted more accurately
(in black lines) are largely overlapped to the cases where the
test set is recognised more precisely (in blue lines). Such a
accuracy increase on the selected set potentially attributes to
the fact that the updated models are likely to have corrected
part of the previously selected samples that are misclassified
by previous weak-models or have dismissed them in the
subsequent data selection steps. These re-evaluation and re-
selection operations on the pre-selected data set, therefore,
partially mitigate the error accumulation problem of SSL and
consequentially deliver a more efficient model. The conclu-
sion is consistent with the assumption proposed in Section I
and II-B.

Furthermore, the enhanced SSL strategy sounds to per-

form more effectively when integrating with cSSL approaches
(cf. the subfigures in the second, third, and fourth rows
of Fig. 2 and 3) than integrating with self-training (cf. the
subfigures in the first row of Fig. 2 and 3). This implies that
for the better models we obtain in the SSL process, a higher
performance gain can be yielded by the enhanced SSL strategy.

E. Collaborative vs Non-Collaborative SSL

According to the findings presented in Section III-D, we
henceforth concentrate on the enhanced SSL for analysing the
collaborative learning strategy. In Fig. 4 and 5, we compare
the proposed collaborative SSL approaches with the non-
collaborative SSL (self-training), evaluated on the modalities
of audio, video, or audio+video, and by the models of RNN
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Fig. 3. Performance (averaged UAR over 20 independent runs) comparison between enhanced and non-enhanced (collaborative) Semi-Supervised Learning
(SSL), evaluated by Support Vector Machines (SVMs). The left (black) and right (blue) y-axes indicate the obtained performance on the test set and the
selected set, respectively. Four subfigure-rows from top to bottom refer to the performance of traditional self-training, multi-modality based, multi-model based,
and multi-modality and -model based collaborative SSL, respectively. Three subfigure-columns from left to right denote the performance on acoustic (audio),
visual (video), and audiovisual (audio+video) features, respectively. (Note: the missing x-axes, left y-axes, and right y-axes are aligned with the bottom, left,
and right ones, respectively.)

(Fig. 4) and SVM (Fig. 5). Specifically, the subfigures in the
first rows of Fig. 4 and 5 plot the averaged UARs (test set) over
20 independent runs in each learning iteration, achieved by
three cSSL approaches and self-training. Generally speaking,
all exemplary SSL approaches remarkably further the original
UAR gained by the initial training model.

The modality-based cSSL (green lines) significantly outper-
forms self-training (red lines) in almost all chosen modalities
and models by performing a paired t-test, which keeps in line
with the findings reported in our previous work merely with
audio as modality [15], [16]. Similar observations are further
made for the model-based cSSL (blue lines), which implicitly
indicate that employing multiple models in a mutual learning
paradigm is quite helpful to boost the performance of SSL.

We further discover that the modality-based approach performs
better than the model-based one when using the classification
model of the RNN, and vice versa for the SVM. This outcome
is partially due to the initial UAR gap gained by the RNN
model and the SVM model (more details will be found in
Section III-F).

When combining the modality- and model-based cSSL
(black lines), it can be seen that better performance can
be delivered in three out of six cases (see the first rows
of Fig. 4 and 5). To quantitatively analyse the performance
improvement of cSSL, we calculated the averaged initial,
last, maximum, mean (over the 20 learning iterations) UARs
as well as their corresponding standard deviation across 20
independent runs for each SSL approach (see Table II).
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Fig. 4. Comparison between the proposed collaborative Semi-Supervised Learning approaches and self-training, evaluated by Recurrent Neural Networks
(RNNs). Three rows from top to bottom denote the obtained UARs on the test set, the obtained UARs on the selected set, and the euclidean distance among
the data of the selected set, respectively. Three columns from left to right indicate the obtained UARs or euclidean distance on acoustic (audio), visual (video),
and audiovisual (audio+video) features, respectively. (Note: the missing x-axes and y-axes are aligned with the bottom and left ones, respectively.)

TABLE II
STATISTICAL PERFORMANCE (AVERAGED UARS AND CORRESPONDING STANDARD DEVIATION [STD]) COMPARISON BETWEEN THE ENHANCED
collaborative semi-supervise learning (BASED ON MULTI-MODALITY AND/OR MULTI-MODAL) AND THE ENHANCED SELF-TRAINING (BASED ON

UNIMODALITY AND UNIMODEL), EVALUATED BY A RECURRENT NEURAL NETWORK (RNN) AND A SUPORT VECTOR MACHINE (SVM). THE initial, last,
maximum, AND mean OF THE UARS OVER THE 20 LEARNING ITERATIONS ARE SHOWN. ALL VALUES ARE AVERAGED ACROSS 20 INDEPENDENT RUNS.

UAR [%] RNN SVM
Averagestd initial last maximum mean initial last maximum mean

self-training
audio 68.1±5.8 70.6±5.9 70.9±6.1 69.7±5.6 58.2±4.4 59.1±14.7 59.7±11.7 58.9±11.8

video 65.9±2.6 68.2±1.9 68.2±1.9 67.0±1.8 61.2±4.5 61.7±16.3 62.1±15.9 61.1±13.3

audio+video 69.1±5.1 73.4±4.1 73.4±4.1 70.8±4.6 60.3±5.4 64.3±13.8 64.6±11.5 63.3±11.8

multi-modality
based SSL

audio 68.1±5.8 73.7±4.6 73.7±4.3 72.3±4.6 58.2±4.4 58.9±12.2 60.4±9.6 59.2±10.6

video 65.9±2.6 70.0±1.6 70.0±1.7 68.6±2.1 61.2±4.5 65.4±11.3 65.5±11.4 63.9±9.6

audio+video 69.1±5.1 76.0±2.0 76.0±2.1 74.2±3.1 60.3±5.4 66.9±12.4 66.9±12.3 65.2±10.9

multi-model
based SSL

audio 68.1±5.8 69.2±5.3 69.8±5.7 69.2±5.5 58.2±4.4 67.7±4.6 67.7±4.6 64.9±4.9

video 65.9±2.6 68.8±3.6 68.9±3.6 68.0±3.7 61.2±4.5 68.8±4.1 68.8±4.1 66.0±4.2

audio+video 69.1±5.1 73.6±2.6 73.6±2.6 72.7±3.4 60.3±5.4 72.1±2.3 72.1±2.3 69.0±3.0

multi-modality
& -model based
SSL

audio 68.1±5.8 70.4±5.9 71.6±4.6 70.7±5.4 58.2±4.4 67.3±5.2 67.6±5.2 65.6±4.6

video 65.9±2.6 70.0±1.4 70.1±1.4 69.2±1.7 61.2±4.5 69.9±0.8 69.9±0.8 67.2±1.9

audio+video 69.1±5.1 74.7±1.7 74.8±1.7 73.8±2.4 60.3±5.4 70.3±1.7 70.3±1.7 68.0±2.9

Generally speaking, for RNN or SVM, the modality-based or
the model-based cSSL can yield better performance than self-
training according to the averaged maximum and mean UARs.
For example, the highest maximum UARs were achieved at

76.0 % on average by applying the multi-modality based SSL
to audio+video modality when using RNN, and achieved at
72.1 % on average by applying multi-model based SSL to
audio+video modality when using SVM. When further fusing
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Fig. 5. Comparison between the proposed collaborative Semi-Supervised Learning approaches and self-training, evaluated by Support Vector Machines
(SVMs). Three rows from top to bottom denote the obtained UARs on the test set, the obtained UARs on the selected set, and the euclidean distance among
the data of the selected set, respectively. Three columns from left to right indicate the obtained UARs or euclidean distance on acoustic (audio), visual (video),
and audiovisual (audio+video) features, respectively. (Note: the missing x-axes and y-axes are aligned with the bottom and left ones, respectively.)

the modality- and model-based cSSL, we can observe that
the models become more robust as the obtained UARs in 20
independent runs are with lower standard deviation. This is
important in realistic applications since the SSL process is
often undertaken only limited times, normally once. However,
we obverse that the models cannot always achieve the highest
UARs throughout all experimental scenarios, for example,
74.8 % and 70.3 % of UARs were obtained by using RNN or
SVM as classifiers, respectively, for the audio+video modality,
which are lower than the best results delivered by multi-
modality or multi-modal based SSL. These exceptions possibly
attribute to the limited sample number of the database we
employed for experiments. Despite of this observation, it can
be seen that the fused approach outperforms the ones based
on either multi-modality or multi-model for audio, video, or
audio+video modalities in four out of six cases when using
RNN or SVM. Therefore, the fused multi-modality & -model
based SSL is particularly attractive when without knowing
which modality or model fits the data best.

We further compared the enhanced cSSL (ecSSL) with two
traditional SSL approaches (i. e., Label Spreading (LS) [54]
and Label Propagation (LP) [55]), as well as two recently

TABLE III
PERFORMANCE COMPARISON IN TERMS OF UAR BETWEEN ENHANCED

COLLABORATIVE SEMI-SUPERVISED LEARNING (ECSSL) AND
TRADITIONAL APPROACHES IN 20 INDEPENDENT RUNS.

UARstd audio video audio+video

state of the art
label spreading [54] 53.7±0.0 58.1±0.0 53.8±0.0

label propagation [55] 67.3±0.0 59.4±0.0 64.8±0.0

GAN-based [56] 68.1±3.7 67.5±3.1 71.5±3.7

AE-based [18] 70.4±4.1 65.3±2.3 70.3±4.7

proposed
ecSSL (SVM) 67.6±5.2 69.9±0.8 70.3±1.7

ecSSL (RNN) 71.6±4.6 70.1±1.4 74.8±1.7

proposed deep-learning based SSL approaches (i. e., based
on either Generative Adversarial Network (GAN) [56] or
AutoEncoder (AE) [18]). The former two approaches belong to
transductive SSL, which take the distribution of the unlabelled
and labelled data into account as introduced in Section I. For
more details, the readers can be referred to [54] and [55]. The
later two approaches have recently attracted increasing interest
due to the rise of deep learning. GAN was first proposed
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in [57], where a deep generative model is learnt to model the
data distribution of target, when training jointly with another
discriminative model as two players in a minimax game. The
GAN-based SSL is particularly designed to address the data
sparsity problem – the generator aims to simulate sufficient
data as real as possible to augment the training set, whereas
the discriminator not only detects the sources where its input
samples come from, but also performs a classification [56].
Besides, the AE-based SSL was reported in [18], where
a multi-task learning framework was implemented. On the
one hand, it classifies the emotions in a supervised manner;
on the other hand, it simultaneously reconstructs the input
in an unsupervised manner. The motivation of taking this
framework is to explore the underlying representations shared
among the unlabelled and labelled data, so that the knowledge
can be transferred from the massive unlabelled data to the
limited labelled data. For a fair performance comparison, we
implemented the same network structure with the one used
in our approach for both two recently proposed approaches,
and the same learning rate and batch size when training the
networks. The performance comparison is shown in Table III.
When comparing with the two transductive SSL approaches
(i. e., LS and LP), we find that ecSSL significantly improves
the performance with the video or the fused audio+video
modalities when performing a statistical one-tailed z-test (p <
0.05). When comparing with the deep-learning based SSL
approaches (i. e., GAN-based and AE-based), we observe that
the proposed approach also yields performance gain in a large
margin by using RNN as a classifier.

F. Discussion
To demonstrate the observations shown in Section III-E,

we further investigate the quality of the selected data set in
terms of accuracy (second rows) and diversity (third rows) in
both Fig. 4 and 5. As to the accuracy, it can be seen that all
three proposed cSSL approaches can achieve higher averaged
UARs than self-training on the selected data set in most,
if not all, scenarios. Interestingly, the UAR curves obtained
on the selected set for each SSL approach have an almost
identical order with the UAR curves obtained on the test set,
which again explicitly indicates the importance of prediction
accuracy of the selected data as aforementioned (cf. Sec-
tion III-D). Further, as we expected, the averaged UARs are
to decrease when incrementally adding more automatically
labelled instances by the machine in the SSL process. This
clearly reveals the intrinsic problem of SSL where errors
will be accumulated along with the learning iterations. As a
consequence, the model performance will decrease when the
detrimental effect that the selected data cause surpasses the
benefit that they offer.

As to the diversity, Fig. 4 (third row) shows the averaged
euclidean distance among all data-pairs in the selected set,
by using the RNN classification model. Obviously, cSSL is
capable of choosing diverse data, which potentially provide a
plethora of feature variations and sufficiently cover the whole
picture of a data distribution. More concretely, the model-
based cSSL as well as its integrated approach with modality-
based cSSL can provide much more diverse data than the

modality-only-based cSSL. However, these observations are
not seen in Fig. 5 (third row) where self-training provides
relatively more diverse data. This might largely attribute to
the principle of SVMs for classification: The data far away
from the decision hyperplanes are often predicted with high
confidence, which gives rise to a high diversity of the selected
data.

To compare the performance of the modality-based cSSL
and the model-based cSSL when using RNN or SVM recogni-
tion models, we discover that for the RNN recognition model
(cf. Fig. 4), the preferably selected data by SVM are more
diverse than the ones just provided by RNN; in the third
subfigure-row of Fig. 4, the blue lines are obviously higher
than the green lines. Nevertheless, for the SVM recognition
model (cf. Fig. 5), the preferably selected data by the RNN
are more precise than the ones just provided by the SVM; in
the second subfigure-row of Fig. 5, the blue lines are obviously
higher than the green lines. Therefore, combining the two
models in a mutually learning paradigm can efficiently exploit
the strengths of each model, whilst avoiding their weaknesses.

Moreover, to compare the SSL performance between uni-
modality (i. e., audio or video, the first and second columns of
Fig. 4 and 5) and multi-modality (i. e., audio+video, the third
column of Fig. 4 and 5), one can notice that combining the
multiple modalities is able to boost the performance in almost
all cases. A more quantitative performance comparison can be
found in Table II as well. These findings are in consistence
with the ones reported by previous studies [38], [49].

IV. CONCLUSION

To leverage the ubiquitous unlabelled data for automatic
emotion recognition, this article proposed enhanced collab-
orative Semi-Supervised Learning (SSL). Dissimilar to tra-
ditional SSL, it performs a data re-evaluation process on
previously selected data (enhanced strategy) on one hand.
On the other hand it takes a mutual learning process among
multiple modalities and models (collaborative strategy). The
proposed approaches have been systematically evaluated on
the widely used audiovisual affective database RECOLA in
various settings. The experimental results demonstrate that
the proposed approaches significantly improve the system
performance by enhancing the correctness and diversity of
selected data.

More recently, deep learning algorithms have attracted
tremendous attention and achieved a great success in the
context of machine learning. This will form one of the main
research directions in the future, by considering diverse deep
learning architectures in the SSL systems.
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