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Abstract
Multi-criteria reverse engineering (MRE) has arisen from the cross-fertilization of advances in mathematics and shifts
in social demand. MRE, thus, marks a progressive switch (a) from empirical to formal approaches able to simulta-
neously factor in diverse parameters, such as environment, economics, and health; (b) from mono-criterion optimiza-
tion to multi-criteria decision analysis; (c) from forward engineering, observing the results of process conditions, to
reverse engineering, selecting the right process conditions for a target output. The food sector has been slow to adopt
reverse engineering, but interest is surging now that the industry is looking to shift production towards personalized
food. MRE has followed a heterogeneous development trajectory and found applications in different disciplines. The
scope of this review spans MRE applications in the food sector covering food packaging and food consumption and
focuses on demonstrating potentialities of MRE in a complex field like food. We explain how MRE enables the
development of sustainable processes, looking at similar approaches used in sectors other than food. Building on this
extensive review, we sketch out some guidelines on approaches to be used in future MRE applications in food,
working up from the problem statement.

Keywords Multi-criteria quality design . Reverse engineering . Food eco-packaging . Food sensory perception . Multi-criteria
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Introduction

The design and development of sustainable processes and
products that integrate technical and economic criteria, satisfy
customer demand, and safeguard ecosystems is a major chal-
lenge in the wider context of global change (climate change,
energy scarcity, rising energy prices, and so on) [1].

In this context, evaluating product quality, from production to
consumption and even afterwards to waste management, is a
complex process that has historically relied on numerous criteria
(nutritional, sensory, practical, and health–hygiene qualities) that
are now further completed by emerging concerns, such as envi-
ronmental impact and economic value. However, these many
aspects of quality and shelf life and their various components are
not always compatible, and improving them all simultaneously
is a problem that has no obvious solution and sometimes no
solution at all when contradictory objectives clash, thus posing
challenges for decision-making to determine the best trade-offs
[2]. In addition, there is growing demand in Global North coun-
tries for functional foods, i.e., foods that deliver additional or
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enhanced benefits over and above their basic nutritional value.
In this context, reverse engineering is a technique for selecting
the right process conditions for the design or redesign of foods,
food processes, and food-related systems—typically packag-
ing—which we collapse together under the umbrella term Bfood
design.^ It thus has driven a switch from forward engineering,
observing the results of process conditions, to selecting the right
process conditions for a target output. Handling this growing
complexity requires numerical and computational approaches,
which has ultimately led to the emergence of multi-criteria re-
verse engineering (MRE). Food design has thus switched (a)
from empirical to formal approaches factoring in numerous di-
verse parameters, and conjointly, (b) from mono-criterion opti-
mization to multi-criteria decision analysis, and (c) from studies
on the direct effects of processing on end product properties to
reverse approaches that start out from food requirements to de-
sign or redesign process and product. Furthermore, changes in
food requirements driven by the interests of some consumer
segments can dynamically impact all consumer segments (less
informed or educated sectors, lower-income sectors, etc.). Such
effects have been explored in some food-related socio-economic
approaches [3–6].

While Breverse engineering^ is applicable in various fields,
it generally refers to the process that consists in designing
manufacturing conditions according to desired end product
properties (and not the contrary). In this paper, the end product
is not considered to be an existing food product we try to find
the way to reproduce, but a virtual ideal one that would have
expected properties. The objective is, thus, to find the way to
best obtain it, through modeling and simulation. As for
Bmulticriteria reverse engineering^ (MRE), the term denotes
a reverse engineering process which allows the designer to
consider several criteria simultaneously in the desired end
product properties, which increases the complexity of the
problem. Hence, MRE is an approach to design innovative
product manufacturing and to accurately define the problem
to be solved, but it is not bound to any restrictive problem-
solving model or tool. On the contrary, it may gain frommany.
This is what the paper aims to illustrate.

This review is not intended exclusively as a comprehensive
review but as a primer on the MRE concept in the food sector.
Indeed, MRE offers a way to explore a new trend in food
processing and food science and to push further ahead in the
development of new food. This paper explains and illustrates
how MRE has arisen from the cross-fertilization of advances
in mathematics technology and shifts in social demands.MRE
has followed a heterogeneous development trajectory and
found applications in different disciplines, but it is still scarce-
ly considered and applied in the food sector. Here, we take a
novel angle by looking at food and life science applications of
MRE, with discussion encompassing the specificities in-
volved. After highlighting the pivotal steps that led to MRE
(the BPivotal Steps Toward Multi-Criteria Reverse

Engineering^ section), we illustrate ongoing advances with
two contrasted case studies: MRE for food products (the
BMulti-Criteria Reverse Engineering for Food: The Complex
Case of Food Organoleptic Properties^ section) and MRE for
food packaging (the BMulti-Criteria Reverse Engineering for
Food: the Case of Food Eco-Packaging Design^ section). The
BDiscussion^ section proposes a discussion of the bigger pic-
ture based on insight and feedback from various applications,
before concluding on a set of guidelines for implementing an
efficient MRE approach in the food sector.

Pivotal Steps Towards Multi-Criteria Reverse
Engineering

From Empirical to Formal Approaches

The long-term competitiveness of food and bioproduct com-
panies and the general health and wellness of citizens depend
on the availability of safe, tasty, affordable, ready-to-use, and
eco-friendly products [7]. Tomeet such expectations, there is a
need to merge heterogeneous data in order to develop the
necessary decision support systems [8].

The food industry has developed from traditional companies
relying on a lot of experience and little innovation to a dynamic
industry geared to follow consumer trends [9]. Until recently,
food design had relied more on experience than on science, but
recent efforts have substantially increased the number of re-
search projects, improved knowledge of the phenomena in-
volved, and drastically rationalized the food sector [10],
prompting an explosion of scientific papers and at the same time
a need to integrate them into a comprehensive corpus of knowl-
edge. Therefore, there is a pressing need to channel effort into
developing the necessary tools and decision support systems.
The industry today requires knowledge from its own know-
how as well as from integrative approaches and knowledge en-
gineering disciplines. One challenge is to identify and exploit all
the key information—and only the key information—from the
mass of data available. Today, the value of information comes
not from its scarcity but from how it can be contextualized,
managed, and integrated into a system to make it available with
the relevant features at the right time and the right place [11, 12].

From Mono- to Multi-Criteria Concerns

In food engineering, choices concerning the best characteristics
of the end-product rely on various sources and cover different
points of view. They include health–hygiene and environmental
impact concerns, sensory and nutritional aspects, cost, and, pos-
sibly, practicality aspects too (Fig. 1). Moreover, factoring these
aspects into a reverse engineering approach means that they
have to be technically feasible and economically viable given
the skills, knowledge, and profit expectations of the enterprise.
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Studies and syntheses in the economics and management fields,
such as [13, 14], address the linkage with enterprise profit ex-
pectations. Information sources go from websites, project meet-
ings, expert interviews, scientific articles, and manufacturing
practices to consumer patterns, opinions, preferences, and
choices, available through online forums, to sales statistics,
new marketing trends, and the list goes on [15].

Within the framework of these general criteria (environ-
ment, nutrition, etc.), more specific goals are expressed
concerning the outcomes expected for the end product.
Examples of such goals are B25% increase of soluble
fibers^ for the nutritional criterion, Bkeeping pesticide con-
tamination risk low^ for the food safety criterion, Bno
packaging waste^ for the environmental criterion, etc.
Simultaneously achieving several goals is not always pos-
sible and depends, in particular, on whether or not the
actions leading to each of these goals are compatible. If
they are not compatible, we need to find a compromise,
and, so, we look for the Bbest^ compatible sets of actions,
which should be deduced from the preferences expressed
by the decision-makers on the outcomes.

As an illustrative example, the evolution in the field of oper-
ations research, in general, and decision support systems (DSS),
in particular, shows a transition from mono-criterion optimiza-
tion approaches to multiple-objective optimization and multi-
criteria decision-making [16]. We distinguish between both in
BThe Emergence of Compromise Computation^ and BThe
MRE Issue Shared by Sectors Other than Food^ sections.

The Emergence of Compromise Computation

Several types of approaches can be referred to as methods for
Bcompromise computation.^ Here, we look at five of them,

which may be combined to solve a problem. Historically, the
first was probably the social choice approach. Its utility value
in food-related applications has recently been explored [17]. It
is premised on the principle that the food design process
should internalize the opinions of all categories of food chain
actors, and, so, actors’ opinions are computed as votes. The
second type of approach, called multi-criteria decision [18],
can be broken down into the following two categories of is-
sues: evaluation issues, in which a set of pre-defined alterna-
tives is to be evaluated according to various criteria (environ-
ment, cost, etc.), and design issues, in which the alternatives
are not defined a priori but have to be found through satisfying
constraints (e.g., maximizing digestibility while minimizing
energy consumption). In cases where the set of alternatives
is large (possibly infinite), mathematical combinatory ap-
proaches for optimization are then used, which takes us into
the scope of a third type of approach called multi-objective
optimization [19]. A recent concern in both multi-criteria de-
cision andmulti-objective optimization scholarship is the need
to explain and trace the conclusions obtained. Why was a
given alternative chosen? Which criteria were best satisfied,
and which were left aside? Do all actors benefit equally from
the solution? What arguments served for or against each alter-
native? How did possible compromises emerge from them?
This way of reasoning is central to the fourth type of approach,
called argumentation theory [20], which has also been ex-
plored in food applications [2, 15, 21, 22]. The fifth type of
approach for compromise computation becomes relevant in
cases where data and/or knowledge describing each alterna-
tive is available in a data or knowledge base. It consists in
formulating the compromise search problem as a query an-
swering the problem submitted to the data or knowledge base
[23]. Preferences are expressed as optional search criteria in
the query, whereas constraints are expressed as mandatory
search criteria in the query. If the system fails to find a re-
sponse, meaning that there is no answer that perfectly matches
the query, then some of the criteria have to be relaxed until an
answer is found. This answer then serves as a candidate for a
compromise solution.

From Forward to Reverse Engineering

In agrifood chains, products traditionally go through the inter-
mediate stages of processing, storage, transport and packaging,
and reach the consumer (demand) from the producer (supply).
As quality constraints have become increasingly critical, sever-
al parties are now involved in production process, from con-
sumers to industry players and back to health and hygiene au-
thorities, etc., each defending their own positions and express-
ing their own potentially conflicting requirements on the final
product [24]. This is where reverse engineering, in which it is
the demand (and not the supply) that sets the specifications of

Fig. 1 Illustration ofMRE applied tomanufacture a product havingmany
and varied qualities. Using various raw materials that undergo numerous
processes led to the production of a given product having certain criteria
(direct impact, black arrows). MRE is needed to define the processes and/
or raw materials necessary to obtain a product having the defined criteria
(reverse impact, red arrows)
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desired products and it is up to the supply to adapt and find its
ways to respond, can be considered as a way forward [2, 11].

This paper focuses on decision support in the reverse engi-
neering mode and highlights the need for many valued informa-
tion. Several aspects are considered. Reverse engineering im-
plies a preliminary assumption: having defined the desired out-
come of the process. Defining goals for possible outcomes is a
complex, multi-actor process based on ubiquitous information.
Once identified at best, several alternative scenarios may lead to
the desired outcome. Evaluating these alternative scenarios is an
early issue. While taking into consideration the positive conse-
quences that the different alternatives will generate, decisions
also have to account for possible negative impacts, which are
not explicitly expressed in the defined goals. Several examples
of such goals, alternatives, and positive/negative consequences
are provided on the best technological choices in breadmaking
[11, 15]. For instance, the choice of whole wheat products is
beneficial from a nutritional standpoint due to themicronutrients
and the fibers they provide, but it also implies an increased risk
of contamination by pesticides and other contaminants. Another
example ofmethodology for dealingwith this type of issue is the
CoGUI-Capex approach [25], in which an unexpected food
quality defect (e.g., bitterness) is corrected through process so-
lutions and then sorted according to the possible negative im-
pacts on other food qualities (e.g., texture). Thus, the reverse

engineering process has to be Bbipolar,^ in the sense that it also
factors in undesirable effects.

The previous paragraphs have sketched a picture of advances
in MRE applications in the food sector. To facilitate a mental
grasp of the array of approaches and tools involved, Fig. 2 gives
a global view. The food example presented, i.e., cheese, illus-
trates the complementary of the different approaches that could
be used to obtain a cheese having desired qualities.

Multi-Criteria Reverse Engineering for Food:
The Complex Case of Food Organoleptic
Properties

Beyond being fit for consumption, food primarily has to cover
physiological needs in terms of both energy and macro/
micronutrient intake. Nevertheless, environmental constraints
are increasingly part of the food product development frame-
work as a factor for ensuring food security and sustainability
[26]. The big food sector trend today is towards the concept of
personalized food. This paradigm shift implies that once we
know the properties desired by the consumer, we want to
know how modifying the raw product will affect it and how
to restore the original properties via the process.

Fig. 2 Overview of the network of approaches usable to obtain a cheese
having desired qualities; it is as complex as a neural network. Each tool
(in red) has a purpose (in blue) and answers a specific question (in black).

All together they contribute to the qualities of the final product. § refers to
the corresponding paragraph in the text
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The Main Criteria of Food Expectations: Problem
Statement

From an evolutionary point of view, the optimization of food
intake has been linked to a source of satisfaction. Indeed, plea-
sure from eating is assumed to be a strong driver of consumption
both in terms of food choices and in terms of amount of food
consumed [27]. Themost important drivers of food pleasantness
are the sensory sensations that food procures. For a food product
to be consumed, it has to fulfill relevant hedonic values, namely
to produce pleasant sensations like, for a cake, sweet taste,
smooth texture, and vanilla flavor. As we eat a food, it gets
broken down in the mouth, but differently according to the
individual’s physiology (e.g., mastication abilities, salivary
properties), which contributes to the release of the flavor stimuli
responsible for sensory perception. The development of food
that targets the needs of specific populations therefore has to
take these physiological parameters into account [28]. Sensory
characteristics need to be critically optimized to ensure actual
effective food consumption, which is a prerequisite to the ful-
fillment of any other criteria—including nutritional or environ-
mental criteria. Nevertheless, the pleasantness of a food product
is not driven exclusively by sensory features—the social context
of food consumption also plays a role, as does the psychosocial
dimension, especially the cognitive representation of foodwhich
is gaining importance [29]. The cognitive representation of food
is largely modulated by labels or other types of information that
cannot be properly assessed during consumption, such as fresh-
ness, naturalness, geographic origin, and ethics, among others.
Such features, which consumers are now increasingly informed
and aware of, may orient the choice of raw materials or food
transformation processes and, therefore, become further criteria
to be considered within the product development process.

As a consequence, the formulation or reformulation of food
products, under nutritional and/or environmental constraints,
needs to reversely consider rawmaterials and/or physiological
and cognitive processes that affect the hedonic dimension of
the food product, which in turn needs to be optimized to en-
sure sustainable consumption for a given segment of the pop-
ulation. The application of reverse engineering to food formu-
lation with the objective of tackling nutritional–environmen-
tal–organoleptic qualities is, therefore, clearly multi-criteria.

State of the Art

Achieving health objectives, while maintaining food pleasant-
ness, is not an easy target. Different strategies have already
been used to reduce fat, salt, and sugar content in food, known
to be associated with pleasant sensory sensations. Public health
authorities, such as the US Food and Drug Administration
(FDA), have taken a stance on the issue [30]. For instance,
sugar can be replaced using both sweeteners and bulking
agents, with good acceptability from consumers [31].

However, as adding non-nutritive sweeteners often causes
off-flavor, an alternative strategy could be to add congruent
aroma, using multi-sensory integration principles, or to modify
the food microstructure [32]. Several projects have attempted
to assess, by a direct engineering approach, the extent to which
food composition, especially a decrease in fat, sugar, and salt
content to target nutritional guidelines, can affect flavor com-
pound release and perception as well as overall food liking, and
then empirically apply reverse engineering to restore the liking
by modifying food composition and process.

For example, one study carried out with model cheeses vary-
ing in fat, salt, and aroma content clearly showed that the time-
course release of aroma compounds was affected by the lipids-
to-proteins ratio and salt content as a function of aroma com-
pound hydrophobicity [33]. As aroma perception increased by
increasing both fat and salt content, a compromise had to be
found between nutritional value and sensory acceptability. As
an example, in the TeRiFiQ EU project [34], perceptual interac-
tions between fat and salt perception have been used in a reverse
engineering process to restore the food liking of healthier prod-
ucts. It was shown that salt congruent aromas (e.g., Comté
cheese aroma), but not carrot aroma, could enhance salty taste
perception in low-salt solid-food matrices and low-salt low-fat
model cheese [35] and thus compensate for up to a 20% de-
crease in salt content in this type of food. Nevertheless, the
observed compensation effects were dependent on the compo-
sition and texture characteristics of the cheeses. The effect of
product composition and structure on the aroma-induced salt
and fat perception enhancement appeared to be complex and
mostly unpredictable, suggesting a combined influence of stim-
uli release kinetics and perceptual interactions, which would
need a lot of data on the direct effect of food composition and
process on sensory perception. In these studies, two criteria were
simultaneously considered for the development of low-fat low-
salt food that keeps sufficient overall flavor to preclude consum-
er rejection: one was level of salt and fat reduction and the other
was the taste and texture properties that dictate the acceptability
of a given food product. The data obtained can now be used to
formulate this kind of dairy product with a good nutritional
value and good acceptability for consumers. However, the rela-
tionships between fat and salt that shape food composition are so
intricate and different from one product to another that it has not
yet been possible to generalize food sensory perception and
pleasantness to several types of products.

Moreover, food acceptability is a consumer-dependent var-
iable. In order to better understand the variability in sensory
perception and liking between consumers, several projects
have set out to unravel the effect of human physiological pa-
rameters on aroma release and perception [36]. For example, a
statistical multi-block partial least squares (MB-PLS) ap-
proach was successfully applied on four model cheeses differ-
ing in fat content and firmness, consumed by 48 well-
characterized human subjects. The results indicated that all
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aroma compounds were released faster from the firmer
cheeses when food bolus was more consistent, among which
only hydrophobic aroma compounds were more persistent in
the breath for high-fat soft cheeses and subjects having a
higher amount of product remaining in the mouth after
swallowing. Another MB-PLS was conducted to explain sen-
sory perception by in vivo aroma release and physiological
parameters on the same cheeses, and 14 subjects [37] showed
that in vivo aroma release could not fully explain aroma per-
ception. The fruity aroma was mainly explained by the release
of ethyl propanoate before swallowing, whatever the cheese
composition. However, the cheese aroma was only partly ex-
plained by the release of 2-nonanone after swallowing but was
highly impacted by saliva composition and by amount of
product remaining in the mouth. It was thus concluded that
other sensory perceptions, such as saltiness and fattiness, are
expected to influence aroma perception by cross-modal inter-
action. These results on the effect of human physiology on
sensory perception can be used in reverse engineering to for-
mulate foods for specific populations, such as elderly people
with low salivary flow [38].

Overall, these results highlighted that sensory perception of
food is not a linear combination of ingredients but results from a
complex process shaped not only by food composition but also
by the consumer’s physiological parameters, neurobiological
sensory integration mechanisms, and a host of cognitive factors
(Fig. 3). All these factors should be considered in the context of
MRE designed to optimize food nutritional, hedonic, and sus-
tainability qualities. In fact, MRE can be a powerful way to help
food producers engineer personalized food. In food perception,
simultaneously mobilizing ME and MRE appears a good way
to conceive and design target food.

Integrating Data and Knowledge Ready
for Multi-Criteria Reverse Engineering

In the context of food design or redesign under multiple intri-
cate constraints, the MRE problem can be expressed as being
the reformulation of the raw materials and processes used to
produce a food product, meeting nutritional and hedonic
criteria defined for a given segment of the population, possibly
completed by safety, price, and environmental considerations
if the process change is liable to affect them. To do this, data
and knowledge collected in various projects covering comple-
mentary issues, such as those mentioned in the previous par-
agraphs, need to be combined, aggregated, and integrated. A
relevant solution to address data and knowledge integration is
to use an ontology, which can be defined as a formal common
vocabulary of a given domain, shared by the domain experts.
This ontology allows multi-criteria querying associating the
nutritional and sensory quality of the food product, the trans-
formation process constraints, and the environmental impact
of the whole system. As a pioneering example, the BaGaTel
database already aggregates data imported from collaborative
projects conducted on dairy foods, covering technological
processes with their environmental impact (hard cheese, yo-
gurt), food composition and structure, sensory properties, and
food bolus properties, all connecting with human oral physi-
ology and nutritional properties (http://plasticnet.grignon.inra.
fr/PortailNutriSensAl/). It was built using the PO2 ontology
[39]. PO2 is a food science process and observation ontology
dedicated to the eco-design of transformation processes and
nutritional and sensory properties in the field of dairy products
[33, 35–37, 40–43]. The experimental observations are ob-
tained on a participant (e.g., food matrix or processing

Fig. 3 Food acceptability and sustainable intake are driven by food
sensory features and the individual and social context of consumption.
Food composition conditions food pleasantness, acceptability, and intake
through flavor and texture perception (multi-criteria engineering, blue

arrows), which are in turn governed by psychosocial, cognitive,
neurobiological, and physiological parameters (multi-criteria reverse
engineering, green arrows)
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equipment) at different steps of a process (e.g., product
manufacturing or the Bin-mouth^ process) and described by
their outputs (data) and the methods used to compute them.
The common vocabulary and the structure provided by the
PO2 ontology make it possible to answer different questions
related to food formulation in the field of dairy products using
data from different projects, in a reverse engineering approach
(Pénicaud et al. in revision). This kind of knowledge integra-
tion approach, which to our knowledge is the first example of
concrete application in the food composition framework, of-
fers a promising pathway for multi-criteria optimization fol-
lowing a reverse engineering approach.

Multi-Criteria Reverse Engineering for Food:
The Case of Food Eco-Packaging Design

The Decision-Making Process in the Field of Food
Packaging

Packaging is part and parcel of the food product itself: almost
all our food products are stored and sold packed in a packag-
ing material which is much more than a simple container or
support for marketing and communication. Indeed, packaging
is a key element of food preservation, as it serves to prevent
and limit the degradation reactions inherent to the biological
status of our foodstuffs and which occur throughout the pro-
cessing, storage, distribution, and in-home preparation steps
of the product. The major challenge for food packaging is to
preserve food quality and safety, reduce food waste and food-
borne diseases, and reduce the wastefully negative burden that
producing and distributing uneaten or inedible food has on our
environment and economy. Making packaging sustainable al-
so means saving resources by using renewable instead of oil-
based resources and mitigating the negative burden of accu-
mulating packaging waste. Multi-criteria decision-making is
thus particularly relevant in the field of food packaging to help
the user choose a material that complies with numerous re-
quirements and find the necessary compromise between
sometimes antagonistic expectations.

Note that inmost cases, food is a living product—its cells, the
microorganisms it sometimes contains, are continuously metab-
olizing. The role of food packaging in increasing food shelf-life
is principally related to its gas and vapor barrier properties (or
permeability) that help shroud the product in an atmosphere
suitable for its preservation (e.g., starved of oxygen to slow
down metabolism and oxidation reactions) [44]. In the specific
case of modified atmosphere packaging (MAP) for respiring
products, such as fresh fruit and vegetables, the gas (O2/CO2)
permeability of the packaging material needs to match the res-
piration properties of the product [45, 46]. Respiration is an
intrinsic food property that differs in rate from one product to
another, making it impossible to generalize the use of one

packaging film formulation to every single variety of fruit and
vegetables. To avoid having to repeat numerous experimental
tests to fit each packaging to a given product, a virtual MAP
modeling tool called BTailorpack^ has been developed that com-
putes the evolution of gas composition inside the packaging
headspace using Fick’s law for permeation and the Michaëlis–
Menten equation for gas consumption/production and using
packaging and food characteristics as input parameters [47].

When packaging characteristics are unknown, the same
model can be used in a reverse manner to identify the window
of gas permeability suitable for obtaining and maintaining, at
equilibrium, the optimal internal atmosphere for the preserva-
tion. This type of modeling tool empowers all food chain
stakeholders with a more rational approach to packaging de-
sign instead of the prevailing empirical Bpack-and-pray^ ap-
proach. This modeling approach represents a successful ad-
vance of reverse engineering in the field of food packaging.

However, the choice of a packaging material for a given
application often revolves around more than just its perme-
ability characteristics, encompassing a combination of several
criteria including, in addition to permeability, the cost of the
raw material, its machinability, its sealability, its environmen-
tal impact, type of resource, end-of-life management issues,
consumer acceptability, and more. This combination of
criteria represents the desired outcomes of the food packaging
material selection process. To handle this growing complexity,
MRE is indispensable, enabling the development of a tailored
answer to a multi-criteria query and finding compromises be-
tween antagonistic aspects when necessary. MRE emerges as
a promising tool for multi-criteria decision-making in the food
packaging field, as illustrated in the following section.

Multi-Criteria Reverse Engineering
for Decision-Making in the Field of Food Packaging

MRE could be used to mimic the decision-making process of
the human brain and develop decision support systems (DSS)
like EcoBioCAP software that help users take the right deci-
sion in the field of food packaging [23]. In the subsequent
texts, we borrow the EcoBioCAP tool as our main example
to show how such tools have been developed at the junction
between different fields of expertise, such as food engineer-
ing, computer science, knowledge engineering, argumenta-
tion, and numerical simulation.

EcoBioCAP is a powerful MRE tool able to answer a com-
plex multi-criteria query such as: BI want a packaging material
that will maintain the quality of strawberries (i.e. with the per-
meability properties that match the respiration of strawberries),
at a cost of less than €3 per kg, and if possible transparent and
derived from renewable resources.^ Flexible querying method-
ologies employed in knowledge engineering were used to de-
velop this tool [48]. EcoBioCAP retrieves respiration charac-
teristics from the product database and uses this data plus other
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user-entered characteristics, such as pack geometry, to compute
the optimal permeabilities for the product. These permeabilities
are automatically considered as mandatory preferences associ-
ated to selection criteria for the query, to which are added other
mandatory or optional preferences that are determined by the
user. The flexible querying module polls the packaging data-
base to retrieve the material that best satisfies the query prefer-
ences and proposes as output a ranking of these materials. The
DSS can manage both imprecise and missing data [48]. An
answer is guaranteed even if no material satisfies the mandatory
criteria. This type of tool marks a significant breakthrough, as it
had never before been attempted in the field of food packaging.

The first step in the process of building a DSS in the field of
food packaging is to develop the numerical program that will
serve to compute the evolution of food quality in relation to
mass transfers in the food/packaging system. Several mathemat-
ical models have been developed that combine mass transfer
models (based on Fick’s laws) with food degradation models,
such as the Mickaëlis–Menten equation for respiration or first-
order reactions for oxidation [49]. In addition to the aforemen-
tioned Tailorpack application developed for fruit and vegetables,
we developed the Map’Opt application for non-respiring prod-
ucts. Map’Opt can predict microbial growth as a function of
packaging permeabilities and initial gas concentrations initially
flushed in the packaging headspace [50, 51]. The Map’Opt ap-
plication is used to adjust the packaging material to Bthe strict
minimum^, i.e., just those mass transfer properties necessary to
maintain the protective atmosphere within a given range of
values. This approach is an alternative to that currently used in
industry for MAP of non-respiring products, which is based on
the by-default use of high-barrier films to be sure of maintaining
the protective atmosphere throughout the product’s shelf life.

Mathematical models for food engineering do allow
some technical outputs to be computed but are not suffi-
cient for decision making in an industrial world where
choice of a packaging material is a multi-criteria decision.
To take into account this aspect, the EcoBioCAP tool was
developed to choose the most suitable packaging material
for respiring produce from a dedicated database by an-
swering bipolar multi-criteria querying (currently four
criteria considered in the first prototype). Bipolarity refers
to the human reasoning that combines information on pros
with information on cons to make decisions, choices, or
judgments. Some preferences are modeled as constraints
for which satisfaction is mandatory, while others are
Bnice-to-haves^ for which satisfaction is optional. Any
packaging material that fails to satisfy the constraints is
definitively discarded, while preference for a packaging
increases the more it satisfies the optional nice-to-haves.
It is, thus, natural, in this context, for the querying process
to make use of a bipolar approach, since as it can enable
to handle compound preferences made of mandatory con-
ditions and optional conditions.

Practical Implementation and Description of the Tool

The DSS was implemented as a web application accessible at
http://pfl.grignon.inra.fr/EcoBioCapQuerying/. Short demo
videos are available for download at http://umr-iate.cirad.fr/
axes-de-recherche/ingenierie-des-connaissances/themes-de-
recherche/ecobiocap-dss.

The application interface is made of three parts as presented
on Fig. 4:

– The upper part is dedicated to the permeability simulation
and can be used to set the fresh food and packaging pa-
rameters. It plugs into the product database to retrieve the
characteristics associated with the selected fresh food.
Figure 4 (upper part) displays the optimal permeability
properties for a soft cheese from raw ewe’s milk, comput-
ed by the DSS, for a shelf life of 21 days in ambient
temperature (20 °C), a food mass of 0.25 kg, a volume
of 0.5 l, and a surface area of 350 cm2.

– The middle part allows the user to express his/her prefer-
ences. In this version, the user can specify his/her prefer-
ences on O2/CO2 permeabilities, storage temperature,
biodegradability, and transparency of the packaging ma-
terial. The text of the multi-criteria querying shown in
Fig. 4 would be: BI want a suitable packaging material
for my product, a soft cheese from raw ewe’s milk (e.g. its
O2 and CO2 permeabilities match the soft cheese require-
ment) for a 14 °C–26 °C temperature range and is ideally
biodegradable and translucent or transparent.^Note that
the optimal permeabilities computed by the DSS are au-
tomatically replicated in the middle part with a predefined
deviation for the min–max and enlarged min–max inter-
vals. These values correspond to the fuzzy preferences
associated with permeabilities as presented on Fig. 5
and can be modified by the user before launching the
querying of the packaging database. The use of fuzzy
preferences allows to deliver a set of discriminated an-
swers, which are ranked from most to least preferred.

– The lower part is dedicated to the result of the query, as
shown in Fig. 4, again in the case of soft cheese. Note
that, in this example, the process can rank the packaging
with unknown values for mandatory criteria (the highest
percentage of known values in the ranking is 60%).

Discussion

The Brief on Both Cases Studied

In the first case, which includes sensorial and nutritional as-
pects of food, expressing the properties expected from the end
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food product is no trivial task. The need to take into account
considerations as complex as cultural impact, inter-individual
variations in preferences and needs, and the Bdilution^ effect
of each food product in the whole diet with the huge number
of possible and existing combinations involved [52], express-
ing the expected properties is an ill-defined problem. In this
situation, a main input criterion (e.g., nutrition) is generally
considered as a priority, after which other criteria are

consecutively explored. The multi-criteria integration is thus
at an earlier stage of completion, but still addressed through
the building of a shared ontology. In contrast, in the second
case concerning food eco-packaging, the expected properties
of the packaging are well-defined through criteria describing
physical properties of the materials, which are themselves de-
pendent on the gas exchange characteristics of the food prod-
uct considered. In this case, the MRE can be re-expressed as a

Fig. 4 Permeability values obtained in the case of a soft cheese and
associated packaging solution fitting all the mandatory criteria and one
of the two optional criteria. The upper part is dedicated to the permeability
simulation and can be used to set parameters for the fresh food and
packaging. It plugs into the fresh food database to retrieve the

characteristics associated with the selected fresh food. The middle part
allows users to express their preferences on the O2/CO2 permeances,
storage temperature, biodegradability, and transparency of the
packaging material. The lower part is dedicated to the results of the
query—for a soft cheese in this example
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query-answering problem and handled through an advanced
search engine that distinguishes between constraint- and
preference-expressing search criteria.

This highlights the linkage between MRE and data man-
agement issues. One way to implement MRE in the food sec-
tor is to take data management into account. Indeed, a DSS is
nothing without its data, which are input parameters for the
system to provide answers to the question asked. In order to
design MRE systems, data management is required to param-
eterize numerical models. If numerical models are not avail-
able, we have to reason based on what data there is, by using
database as well as descriptive data (e.g., text) querying tech-
niques for example. Data sources in the food domain are het-
erogeneously structured and notoriously scattered. To break
this deadlock, a recent initiative aims to gather shared vocab-
ularies and data structures into a common open repository
[53]. Other initiatives aim to adopt shared vocabularies and
data structures for specific agriculture subdomains (see for
example [54] for the wheat community). This effort has
prompted proposals for new open data platforms
implementing FAIR—a set of guiding principles to make data
Findable, Accessible, Interoperable, and Re-usable—to re-use
and manage these shared vocabularies and data structures [55,
56]. Before re-using data, it should first be assessed for data
quality. Note that models have already been proposed to as-
sess data-source reliability [57] and have already been imple-
mented in data management platforms [55, 56]. Note too that
re-using the huge amount of text-format data in the scientific
literature relevant to populating MRE systems remains a

challenging task, although there are proposals to semi-
automatically extract relevant data using text-mining tools
guided by ontologies [58]. Although the aim of this research
is to also apply to complex situations, in real-world case stud-
ies, if the problem is too complex and computation time be-
comes prohibitively long, it is not unusual for practitioners to
resort to problem-dependent heuristics, i.e., calculation
methods that quickly provide feasible, although not necessar-
ily optimal, solutions [59, 60] or to explore the space of pos-
sible combinations with expert knowledge. This point is ad-
dressed further in the BMRE Through Multi-Objective
Optimization^ section.

The MRE Problem in Different Food Sectors

Example of the Cheese Sector

To our knowledge, no real MRE application has been devel-
oped before in the cheese sector either. Nevertheless, there has
been an effort [25] to rise in collective competence at the
supply chains level. A DSS was recently created to link qual-
ity and default descriptors with guidelines for maintaining
quality or actions to be undertaken to solve the default, all
within a decision tree. Moreover, explanatory mechanisms
are included in the decision tree in order to make the explicit
link between descriptors and guidelines. For example, in the
Comté food chain, the default Bsalt uptake of the ripening
cheese is low^ may be explained by Blow salt uptake after
fifteen days^which can be solved by Bcheese moistening with

Fig. 5 Fuzzy preferences can be associated with diverse parameters. Here, the fuzzy preferences associated with CO2 permeability, the fuzzy set
BCO2perm^ corresponding to the optimal permeances computed by the DSS and presented on Fig. 4, are presented
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brine.^ A complete methodology has been proposed in three
steps to apply mono-criterion RE to Bsalt uptake of the ripen-
ing cheese is low^:

1) Knowledge structuring in decision trees using mind map
tools (like the Freeplane open source software for exam-
ple, www.freeplane.org) based on interviews with domain
experts (scientists, technical center engineers,
cheesemakers, etc.);

2) Knowledge translation into a knowledge representation
formalism that enables automatic reasoning: the concep-
tual graph model has been chosen, as its graphical repre-
sentation is easily understandable by non-specialists;

3) Reasoning on the decision trees encoded in conceptual
graphs to find the actions associated with a given descrip-
tor and, inversely, to find the descriptors impacted by a
given action.

This current application is only a mono-criterion RE app,
but the current tools will be almost certainly extended toMRE
applications in the near future, as each cheese food chain has
to manage a huge number of decision trees (more than 60 just
for Comté cheese alone; see Fig. 6 for an excerpt of a decision
tree).

Within machine learning models, dynamic Bayesian net-
works (DBNs) [61] have been used to develop a simulation of
the dynamics of microorganism behavior influenced by tem-
perature coupled to the sensory changes of cheese during rip-
ening [62]. DBNs provide a practical unifying mathematical
formalism that makes it possible to describe complex dynam-
ical systems tainted with uncertainty. They rely on probabilis-
tic graphical models where the network structure provides
both an intuitively appealing interface, enabling humans to
model highly-interacting sets of variables, and a qualitative
representation of knowledge. Uncertainty tied to the system
is taken into account by quantifying dependencies between
variables in the form of conditional probabilities. This use of
probabilistic networks, known as inference, consists in a que-
ry expressed as conditional probabilities. The most common
task we wish to solve is to estimate the marginal probabilities
P(XQ|XE = xE), where XQ is a set of query variables to be
predicted and XE is a set of evidence variables which are
observed. In the MRE framework, the model established is

able to compute the most likely explanation given observed
evidence [63] and to answer questions such as what tempera-
ture control inside the ripening room is likely to accelerate the
process while preserving the organoleptic properties of the
cheeses [62]. More generally, the probabilistic graphical
models framework can help guide stakeholders towards stra-
tegic decisions and actions.

Example of the Meat Sector

Studies on meat and meat products have clearly recently
switched from one-criterion optimization, often on only one
product quality during processing, to full multi-criteria deci-
sion analysis that combines sensory, health–hygiene, and nu-
tritional product qualities [64]. Indeed, the past ten years have
seen a number of very interesting studies based on modeling
and on emerging analytical approaches (analytical chemistry,
toxicogenomics, etc.), particularly in the field of chemical
safety for meat products [64–70]. These studies focused on
the whole meat chain, from livestock exposure to
micropollutants during farming [67] to meat digestion in the
human gut [68, 71]. In terms of processes applied to meat,
several papers have demonstrated the relevance of combining
analytical techniques, such as multi-dimensional gas chroma-
tography, olfactometry, and mass spectrometry, to investigate
both the heat-induced toxicants and odor-active compounds
formed when cooking meat [69, 70].

The most successful MRE-type application on meat and
meat products was recently developed in the field of dry-
cured meat products by Harkouss et al. [72] and Mirade [73]
who used Comsol® Multiphysics software to create a 3D
multi-physical finite element-based model that predicts prote-
olysis (i.e., the degradation of meat proteins that determines
the final texture of the product), water activity, salt and water
content distributions, and total weight loss during the different
stages of dry-cured ham manufacture. This Bnumerical ham^
model can also be used to calculate mean values of all the
predicted parameters in different groups ofmuscles previously
identified in the ham geometry during its construction, and in
the whole ham volume. This numerical model constitutes a
multi-criteria numerical tool that can help industrial operators
define ambitious technological scenarios, used in MRE to fit
expected end-product properties, for the manufacture of low-

Fig. 6 Short excerpt of a decision tree created to link quality and default descriptors with guidelines for maintaining quality or actions to undertaken to
solve the default. Here, the guideline to correct the default of humidity of pre-ripening room in the case of Comté cheese is presented
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sodium dry-cured hams without impairing final microbial and
product sensory qualities. Set with the objective of reducing
salt content in dry-cured hams [74] by a 25% cut in duration of
the salting stage, this model recently estimated three weeks as
the extra time needed to be added to the duration of the low-
temperature post-salting stage to arrive; first, at the end of
post-salting with the samewater activity as for normally salted
dry-cured hams and, second, at the end of dry-cured ham
manufacture with similar proteolysis and texture values.

Example of the Cereal Sector

In cereal processing, the early BVirtual Grain^ system [75]
used a database to gather heterogeneous information
concerning the properties of cereal grains and the technical
and agronomical routes to their production. The aim was to
identify influential factors and potential relationships between
morphological, biochemical, histological, mechanical, and
technological properties that are usually studied separately.
The database is connected to statistical and numerical com-
puting tools, notably a wheat grain mapping tool developed
using Matlab. Based on wheat grain properties and informa-
tion on the distribution of wheat grain components, it proposes
a local representation of the properties in each tissue. The
Virtual Grain project was devised to explain grain behavior
during fractionation and, in the longer term, in a MRE ap-
proach, to optimize the fractionation process so as to best meet
structural and textural criteria in future food products.

In the overlapping domain of breadmaking technology,
BBread Advisor^ was a pioneering knowledge software tool
for the baking industry [76, 77]. BBread Advisor,^ a tool ex-
clusively based on expert knowledge stored in a database,
does not propose experimental data or dynamic prediction,
but it does provide three kinds of information: text informa-
tion on processing methods, a list of possible defects and their
causes, and generic messages on the effects of process
changes.

The cereal sector has built up from these first attempts to
develop a mature MRE approach, and is now probably one of
the most MRE-advanced food sectors. To illustrate,
Thomopoulos et al. [2] proposed a reverse engineering deci-
sion support method guided by the objectives defined for the
end-products of the food chain. The Breverse^ approach is
materialized by Bbackward chaining^ logic-based computa-
tion and uses argumentation. The maturity of this approach
in the cereal sector is demonstrated by the fact that all of the
three following aspects, mentioned separately in the BPivotal
Steps Towards Multi-Criteria Reverse Engineering^ section,
are considered simultaneously:

– Reverse engineering implies having defined a desired
outcome of the decision process. This multi-actor process
aims to identify several alternative scenarios (e.g., mass

consumption vs nutrition-informed consumer) to be
considered;

– Besides the positive consequences that the alternatives
will generate (e.g., enhanced nutritional value), the deci-
sion process also has to anticipate unexpected negative
impacts (e.g., safety impacts), even if not explicitly
expressed in the defined goals;

– The feasibility of simultaneously achieving several goals
depends on their inter-compatibility (e.g., the action
Bincreasing flour extraction rate^ improves nutrition but
undermines safety). We, thus, search for Bbest^ sets of
actions rather than exact answers to the problem [11].

The MRE Issue Shared by Sectors Other than Food

Feedback from Other Application Domains

The term reverse engineering often carries a different conno-
tation in sectors other than food, chiefly mechanical engineer-
ing, electronics, and computer science. Whereas both food
case studies presented start out from the assumption of having
information on the process under study, in other contexts,
reverse engineering treats a target phenomenon as a black
box where only inputs and outputs are considered as observ-
able. Starting from available data defined as combinations of
inputs and outputs, these approaches attempt to recreate a
predictive model of the target phenomenon with no prior in-
formation. For example, most machine learning approaches
can be classified as reverse engineering, as they use generic
families of models (artificial neural networks, Bayesian net-
works, decision trees, support vector machines, etc.) whose
parameters are automatically tuned to reproduce the phenom-
enon represented by a given training dataset.

The civil engineering and urban planning sector offers
a particularly interesting case, since (a) it also deals with
basic needs (housing); (b) it shares common issues re-
garding multi-criteria, multi-constraints, multi-stake-
holders, and uncertainties; (c) some criteria are common
(like pollution, energy consumption, cost, and security)
while others share a common goal with the food sector,
but translated in a different form (sensory/comfort, nutri-
tive quality/quality of use, etc.); and (d) participatory ap-
proaches and consultation are well-developed. Moreover,
reverse engineering is also required. Indeed, building de-
sign traditionally relies on a forward-path process in
which a first design is made by an architect based on
expert rules, then progressively refined by engineers,
and the final building design is assessed against various
different criteria using physical model simulations (me-
chanics, thermal, acoustics, and so on). However, this
process makes it difficult to ensure optimality or even
relevance, because each decision is taken locally without
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considering the final global performance. To address this
problem, researchers have proposed various methods and
approaches, often in combination, from multi-objective
optimization [78, 79] and multi-criteria decision support
[80, 81] to network visualization [82], model reduction
[83], and Bayesian networks [84]. A more complex vari-
ant of this problem is maintenance/refurbishment in a real
property context, which adds uncertainty on the initial
state and combinatorial issues, since different unitary ac-
tions can be proposed for each building, leading to an
exponential set of solutions. The scholarship has proposed
solutions based on multi-objective multi-dimensional
knapsack optimization [85], typological analysis [86],
and multi-criteria interactive approaches [87] which ex-
ploit interactivity in order to keep the goals to be reached
by the decision-makers constantly in focus throughout the
process and thus succeed in meeting the MRE objective.
This domain also provides different approaches for partic-
ipatory decision-making (notably in urban planning), i.e.,
dialog-based [88, 89], multi-criteria [90], and argumenta-
tion [91]. Although these approaches were developed in
the area of civil engineering and urban planning, most of
them can be transposed to the food sector and thus add to
the researcher’s arsenal for addressing the MRE issue
(Fig. 7).

MRE Through Multi-Objective Optimization

In the field of computer science, but differently from black
box approaches, multi-objective optimization can be an ef-
fective approach when dealing with multiple contrasting ob-
jectives to be simultaneously satisfied. As they usually sto-
chastically explore the search space of all solutions, multi-
objective optimization algorithms require support from

explicit mathematical models (empirical or principle-
driven) relating inputs and outputs, to evaluate every candi-
date solution with regard to all the considered objectives.
While traditional optimization methodologies focus on find-
ing the best values to maximize (or minimize) a single ob-
jective, multi-objective optimization focuses on obtaining a
set of non-comparable compromises comprising a Pareto
front (Bnon-dominated^ solutions) and leaving the final
choice to the user. However, finding the Pareto front for a
given problem is no trivial task, and the best attainable result
often remains an approximation. Multi-objective evolution-
ary algorithms (MOEAs) [92] currently represent the state of
the art in multi-objective optimization, with NSGA-II [93]
the most prominent, being implemented for several program-
ming languages, from MatLab to C++ to Python (see, for
example, http://pythonhosted.org/inspyred/ for a Python
implementation). MOEAs thus count as a promising family
of algorithms for computing MRE. Starting from a set of
randomly generated solutions, a MOEA will create new
candidate solutions for the problem, randomly changing
and merging the existing ones. Ideally, the MOEA will
push the solutions far apart in the objective space, in order
to explore the compromises as far as possible and eventually
approximate the Pareto front. MOEAs have successfully
been used in multiple real-world problems, ranging from
the optimization of thermal sterilization in food processing
[94] to the selection of materials for sustainable products
[95] and on to the exploration of milk gel models [96]. In
this milk gel application, the learning task was to find the
optimal parameter setting for a complex model involving
different scales of organization of a milk gel: from the nano-
scale of a whey protein to the macroscale of a network of
colonized fat droplets. Combining multi-objective optimiza-
tion with a visual exploration of the model offers an

Fig. 7 Presentation of the methods and approaches (in blue) developed to ensure relevance for decision-making in civil engineering and which can be
transposed to the food sector, as well in direct as reverse engineering
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interesting exploration of this complex food model, and a
way to simplify it without denaturing the knowledge input.

Interactive Visualization for MRE

As mentioned previously for several families of models,
visual exploration offers the advantage of facilitating hu-
man intervention in MRE, which is often necessary as
even today, decision-making remains an essentially hu-
man task: for example, while Pareto fronts are generated
automatically, the final decision on what makes the best
solution is left to the human authority. Due to the com-
plexity of the search space in the presence of multiple
objectives, interactive visualization can help humans nav-
igate this trade-off space and act as a DSS.

To this end, the EvoGraphDice [97] visualization tool
was used to explore the Pareto front of a wine fermentation
model [98]. In this case, domain experts were interested in
finding fermentation control strategies to obtain a target
aromatic composition, while minimizing the amount of en-
ergy required to regulate the optimum temperature. The
methodology consisted of bringing together experts from
agronomy, modeling, optimization, and visualization do-
mains in order to interactively explore the fitting of the
model on a large tactile display. There are a number of
visualization techniques available for multi-dimensional
Pareto-optimal fronts [99], but the EvoGraphDice ap-
proach stands out as it enables domain experts to explore
competing objectives and articulates new requirements
with regard to the underlying model, the optimization con-
straints, and the visualization software. More generally, the
dynamic confrontation of model simulations, multi-
objective optimization, and visualization offers interesting
perspectives for exploring, validating, and, ultimately,
tuning MRE-implementing models.

Conclusion

This conclusion starts by sketching out a set of guidelines for
setting up an efficient MRE approach in the food sector. The
guidelines are structured in three key steps, and their associ-
ated questions, for practical implementation of a MRE
approach.

1st step Problem statement: Setting the objectives and the
scope of the study.

1) What is the food product, or part of it, to be optimized?
2) What is the target population of the MRE process?
3) Which criteria are considered? What are the variables

describing them? Are they numerical or qualitative?

4) What data are available, and what data are missing, on the
expectations of the target population for the considered
criteria?

5) Are there any food formulation alternatives already
envisioned?

2nd step Identification of the method(s) to be used.

1) Are numerical models of the variables to be optimized
available? If so, multi-objective optimization could be a
candidate method.

2) Are descriptive data of the variables to be optimized avail-
able? If so, database querying could be a candidate
method.

3) Can the variables be predicted from existing data? If so,
machine learning approaches could be candidate
methods.

4) Have opinions of the target population and/or other stake-
holders been expressed on certain food alternatives and
their associated variable values? If so, multi-criteria deci-
sion-making and social choice approaches could be can-
didate methods.

5) Have stakeholders provided explanations for their prefer-
ences? If so, argumentation theory could be a candidate
method.

3rd step Model analysis.

1) Provide a synthetic presentation of the different outcomes
of the model.

2) Compare and discuss them: do some of the alternatives
considered make innovative solutions?

3) Study how the model outcomes support/undercut stake-
holders’ expectations.

4) If possible, iteratively determine new cases to be
modeled.

5) Identify how these assessments help improve food mate-
rials and process reformulation.

There are several cues and clues that MRE holds great
promise for the future and is likely to develop further in the
coming years and in various disciplines. On one hand, there is
rising demand for multi-performance products, which de-
signers have to respond to, creating a need for MRE tools.
On the other hand, MRE seamlessly aligns with the booming
open data initiatives as well as big data acquisitions that make
the necessary data available.

Managing food quality issues hinges on simultaneously
accounting for various criteria, whereas meeting target
consumers’ expectations hinges on defining the desired
characteristics of the end product first. Since this is exactly
the scope of MRE, the approaches proposed are expected
to meet the needs of food industries and food chain
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stakeholders, enabling both to move forward. With the
forthcoming provision of standardized tools, it is, thus,
more than likely that food sector enterprises will use
MRE and will have the capacities to reap the benefits.
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