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N. Verdiere! and S. Orange!

Abstract

This paper presents a method for investigating, through an automatic
procedure, the (lack of) structural identifiability of dynamical models pa-
rameters. This method takes into account constraints on parameters and
returns parameters whose estimations turn unidentifiable parameters into
identifiable ones. It is based on i) an equivalence between an extension
of the notion of identifiability and the existence of solutions of algebraic
systems, ii) the use of symbolic computations for testing their existence.
This method is described in details and is applied to two examples, the
last one involving 12 parameters.

Keywords : Relative identifiability; Nonlinear models; Algorithm; Param-
eters

1 Introduction

Over the past several years, the study of identifiability of parametrized models
has generated a growing interest in many scientific domains [34, 42]. Indeed,
when a new model is developed, some parameters may not be directly acces-
sible from the experiments. For estimating them, some numerical procedures
using real noisy data have been developed [40, 41]. The numerical identifiability
study guarantees that from these real data correspond exactly one parameter
vector. However, the model structure may not be identifiable and, in that case,
the output of the numerical procedure may not return the correct parameter
vector since several or an infinite number of parameter values can well describe
the input-output data. To study this identifiability property, a theoretical work
is in general done in a 'best-case’ version of this question, that is from noise-
free data. This property, called structural identifiability, is also inherent to the
structure of the model and constitutes a necessary condition for the numerical
identifiability propriety.
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Several methods for studying structural identifiability can be found in the
literature (see [7, 8, 13, 14, 16, 21, 25, 26, 35, 39, 43]). The identifiability
of a model depends on the measured inputs, outputs but, as it was noticed
in [14, 38, 41], also on initial conditions or, more generally, on constraints on
parameters. When the model is unidentifiable, it is common to search and
use identifiable combinations for this purpose through numerical/statistical ap-
proaches (See [6, 11, 17, 27, 44]), symbolic-numerical methods (See. [10, 12])
and algebraic approaches (See. [1, 9, 15, 19, 20, 28, 29, 30, 31, 32, 41]). In the
last papers, structural identifiability of the model is done from an input-output
formulation. In particular, authors in [20, 28, 30, 32] focus on identifiable com-
binations of parameters in order to reparametrize unidentifiable ODE models
into identifiable ones. From the combinations processing, the (un)identifiability
of some parameters can arise. In [9, 15, 19, 20, 28, 29, 30, 31, 32, 41], the authors
propose to handle the parameter combinations in using Groebner bases. Some of
these works had lead to the generation of software tools for performing structural
identifiability analysis. For example, the authors in [31] developed an accessible
web application named COMBOS which, from model output, provides identifi-
able combinations of parameters. From paper [1], parameter identifiability had
been studied via minimal observable sets and a software tool for performing
structural identifiability analysis had been developed.

In this paper, we focus on the (lack of) structural identifiability of parame-
ters which potentially leads to the structural identifiability of the model. Indeed,
biological models can contain meaningful unidentifiable parameters, important
for the experimenter, that a reparametrization may annihilate. In order to
obtain their identifiability, a tree giving the key parameters, potentially acces-
sible from measurements, may serve the modeler. For that purpose, we propose
a method and an algorithm based on the use of input-output polynomial co-
efficients. The algorithm determines a set of parameter lists. Each of these
lists gives a set of key unidentifiable parameters whose determination leads to
the structural identifiability of some particular parameters and, eventually, the
structural identifiability of the model. In order to integrate constraints on pa-
rameters, our work is based on semialgebric tools and not only on Groebner
basis as the works cited previously. Considering these constraints permits to
deal with the local identifiability of a model.

The first contribution of this paper, presented in Section 2, is a theoretical
one. Since the identifiability of a parameter can depend on the identifiability of
some other parameters, the classical identifiability definition has to be extended.
For this purpose, we propose the notion of relative identifiability, that is identi-
fiability of a given parameter when some other parameters are supposed to be
known. Then, we generalize a result established in [14] for classical identifiabil-
ity. This result links output trajectories and solutions of algebraic systems built
on input-output polynomials. More precisely, we give an equivalence between
the relative identifiability of a parameter and the emptiness of the solution set
of equations and/or inequalities system. The latter can be tested with computer
algebra softwares. This theoretical approach permits to obtain an automatized
approach for studying the (relative) identifiability of the model parameters.

The second contribution, presented in section 3, is an algorithm based on
this equivalence. It returns lists of parameters, each of these lists giving a set of



key parameters in order to obtain the identifiability of one or some parameters
and eventually the identifiability of the model. Our algorithm can take into
account the definition domain of the parameters and, possibly, some algebraic
relations, for example, those provided by initial conditions. This new tool can
help an experimenter to elaborate strategies about parameters that should be
estimated to obtain the identifiability of the model. Notice that the equivalence
we establish in section 2 ensures that the set of lists provided by our algorithm
is exhaustive for the considered model. In section 4, our algorithm is applied to
two examples. The first one revisits the identifiability of microbial growth in a
batch reactor, the second one concerns an epidemiological model and involves
12 parameters.

2 Relative identifiability

2.1 Class of systems

All along this paper, we consider nonlinear dynamical parametrized models
(controlled or uncontrolled) of the following form:

e { :t(tv @) = g(x(t, 9)7 u(t)v
y(ta 9) = h((B(f, @)7 u(t)a

0),
0),
where:

o z(t,0) € R™ denotes the state variables and y(¢t,0) € R® the outputs
respectively,

e the functions ¢ and h are real, rational and analytic > on M, where M is
an open subset of R™ such that z(t,©) € M for every t € [tg, T]. T is a
finite or infinite time bound,

e u is the r-dimensional input vector made of smooth functions (infinitely
differentiable),

e the vector of parameters © = (61, ...,0,,) belongs to a subset D of C R™
where D is an, a priori, known set of admissible parameters.

When an initial condition 2y € R™ is given, the supplementary equation z(0,0) =
xo can be added to System I'®.

2.2 Admissible parameters and semialgebraic sets

In many models, it is natural to work only on a subset C of the set of admissible
parameters D when considering additional constraints on the parameter vector
such as initial conditions. It may be necessary either to ensure the existence
of solutions or because of the nature of the problem. For example, in trophic
chains studies, number of preys eaten by predators can not be greater than the
total population of preys and in mechanic, a mass can not be negative.

Afterwards, we suppose that these constraints on © can be formulated by
the mean of algebraic equations and/or inequalities. This leads naturally to
consider semialgebraic sets:

2These assumptions are not restrictive since lots of models can be reduced to a rational
and analytic model by variable change (see. [2])



Definition 1. (See [3]) A set of real solutions of a finite set of polynomial
equations and/or polynomial inequalities is called a semialgebraic set.

The introduction of semialgebraic sets enables us to use efficient computer
algebra libraries developed for manipulating this kind of mathematical object
like the Maple packages Raglib (See [18]) or SemiAlgebraicSetTools (See
also [5, 45], for example).

From now on, we suppose that:

e (C(©) denotes the set of all algebraic equations and inequalities verified by
the components of the parameter vector © € D of the model

o the set C is the semialgebraic set defined by C(©).

2.3 Structural relative identifiability of parameters

Structural identifiability is a model property in the case of fault-free data/noise
depending strongly on the model inputs and outputs but also on the parameter
constraints. Given an input-output set of measurements, the structural identi-
fiability is a a priori study ensuring the uniqueness of the parameter vector ©.

More formally, let us recall classical structural identifiability definitions (See
[2, 28, 30], for example).

Definition 2. 1. Let © € D be a parameter vector and let us consider the
System T?. If y(t,0) = y(t,0), with © € D, has

e only one solution © = O, the parameter vector © is said globally
identifiable,

o finitely many distinct solutions then © is said locally identifiable,

o infinitely many solutions then © is said unidentifiable.

2. A component 0; of © is globally identifiable if for all © € D such that
y(t,©) = y(t,0) we have 0; = 0;.

3. The model T? is said globally identifiable if, for all parameter vector O,
the model is globally identifiable.

Afterward, we extend the notion of structural identifiability of one compo-
nent of © in introducing the definition of relative identifiability. This definition
is centered on the identifiability of one particular parameter when some other
parameters, and eventually none, are supposed to be identifiable. This defini-
tion appears naturally when one wants to determine which parameters should
be estimated in order to turn one or some given parameters into identifiable
one(s) and, eventually, the model into an identifiable one.

Definition 3. 1. The parameter O,, ., is said to be relatively identifiable with
respect to a set of parameters {0a,,...,04,.} if there ewists an input u
such that, for all © = (0y,...,0,,) € D whose components satisfy Oa, =
Ouys - - Oa, = 0a,, the equation y(t,0) = y(t,©) implies Oappr = 0aryy -



2. The relative identifiability study of system T'© is the determination of the
relative identifiability of any parameter relatively to any set of parameters

taken among 61, ...,0,,.
By definition, §,,_, is not relatively identifiable with respect to a set of pa-
rameters {0,,,...,0,,} (resp. not identifiable) if, for all input u, there exists

0 = (01,...,0m) € D whose components satisfy 0., = 0u,, ..., 0o, = 0a,,
0o, =ba,., and y(t,0) = y(t,0).

Remark 1. 1. If the parameter 0,, , is relatively identifiable with respect to
the empty set of parameters, we recover the notion of the identifiability of
this parameter. Consequently, identifiability of System T'© can be seen as
a particular case of the relative identifiability of any component of ©.

2. Definitions 2 and 3 can be extended to the local case by imposing that ©
belongs to a neighborhood v(©) C D of © instead of D.

The following proposition is a direct consequence of Definition 3.

Proposition 1. If §; is relative identifiable with respect to an eventually empty
subset P C {61,...,0m} then 6; is relatively identifiable with respect to any
subset of {01,...,0m} containing P.

In the next section, we show how to reduce the relative identifiability study
to a semialgebraic set problem.

2.4 A differential algebra method to perform relative iden-
tifiability analysis

2.4.1 Computation of the exhaustive summary

The input-output approach consists in this paper, from system I'® and the
Rosenfeld-Groebner algorithm, to obtain specific differential polynomials of the
following form

R(yv u, @) = mi,O(ya u) + Z ci,j(@)mi,j (ya U) = 07 1= 17 ey S (]-)
j=1

where (¢;;(0))1<j<n, are rational in © such that ¢; ;(©) # ¢;1(©) if j # I,
(mi;(y,u))1<j<n, are differential polynomials relatively to y and u and m; o(y, u) #
0.

The computation of these polynomials does not require any consideration of
the admissible parameter set D C R”. Moreover, the number of input-output
polynomials, detailed in [14, 41], is equal to the number of outputs of System (1).
Polynomials P; are classically known as input-output polynomials and in the lit-



By construction of the input-output polynomials, the functional determinant
given by the Wronskian

7;L¢,1(y, w) . My, (Yy 1)
mi"l(y’ u (1) s Mg n, (y7 u)(D
ARy = : : 2)
mz‘,1(y, u)(m—l) e i, (v, u)(”i_l)

is nonsingular for a generic solution according to [22].

2.4.2 Characterization of the relative identifiability of a parameter

In [15], the a priori structural identifiability study was brought back to the
injectivity study of the function

$: D — RN
© — (¢i;(0))1<i<s,1<j<n:

S

where N = Z ;.

i=1
In the first version of the method described in [15], initial conditions were ignored
and few developments were proposed to consider them (see [14, 38, 41]).
In this paper, in order to take into account initial conditions or supplementary
constraints on parameters, we restrict the domain of ¢ to a subset C of the set
of admissible parameters D (see Section 2.2).
The next proposition extends, to the case of relative identifiability, the link given
in [15, 41] between identifiabilty and result summary.

Proposition 2. The parameter 0,, ., is relatively identifiable with respect to
the eventually empty set of parameters {0q,,...,04,} if and only if, for any
0= (Gj)j=1 ,,,,, m € R™ and © = (ej)jzl,m,m cR™:

©cC
OccC
90,1 = éal ~
. = ear+1 = ear+1 (3)
ear = éar~
?(O) =¢(O)

_ Proof- Sufficiency Suppose that there exists © € C such that 0o, = éal, viiyba, =
0a, and y(t,0) = y(t,O©) for all t € [0,T]. The last equality implies that for all
jeN, yi(t,0) =y (t,O) for all t € [0,T]. By definition of the input-output
polynomials P;(y,u, ©) and P;(y,u, ©), the difference P;(y, u,©)— P;(y,u,0) =
Zz;l (€i.k(©)—c;i k(0))my s (y, u) is equal to 0. Since the functional determinant

of the last difference is not identically equal to zero, we have ¢; (0)—¢; x(0) = 0
which proves that the exhaustive summaries ®(0) and ®(O) are equal. Accord-
ing to (3), Oa,, = ba,,, and O, is relatively identifiable with respect to the
set {0ay, ..., 00, }

Necessity By contrapositive. Let us consider two vectors of parameters © =



(61 ..., 04,)and © = (01 ..., 0,,,) such that 4, = 04y, ..., O, =04, 0a,,, #
éa7‘+1 and ¢; ;(©) = ¢, (©). These equalities imply that, for all i € {1, ..., s},
Pi(y,u,0) = P,(y,u, (:)) Therefore, the input-output polynomials, and conse-
quently their sets of solutions, are equal. According to Definition 3, 6 is not
relatively identifiable with respect to the set {fq,,...,60q, }.

Ar41

Remark 2. Proposition 2 can be extended to a local version if we suppose that
© belongs to a semialgebraic neighborhood Ve of ©: if Vg is the solution set
of a set Vo(O) of polynomial equations and inequalities® then it is sufficient to

substitute © € C in Implication (3) with © € C U Ve.

In the case of an identifiability study, some approaches had been proposed
in the literature to solve the real system ¢(0) = #(0) [4, 15, 37, 41]. But these
tools use Groebner basis algorithms which are not adapted for the resolution of
general real algebraic systems. Moreover, the eventual inequalities satisfied by
parameters can not be considered by these approaches whereas the identifiability
result may depend heavily on them.

In this paper, we propose an automatic procedure to prove Implication (3)
including the parameter constraints. This procedure is based on semialgebraic
tools. Some of these tools, already implemented in computer algebra systems
have never been used to certify the structural identifiability of models.

From the system composing the left side of Implication (3), it is possible to
construct a system composed of polynomial equations and inequalities defining
a semialgebraic set. Indeed, C is assumed to be a semialgebraic set and system
¢i;(0) = ci’j(@), i=1,...,s,j=1,...,n; is equivalent to an algebraic system
by handling the numerators and the denominators of these rationnal fractions
in order to obtain polynomial equations. Polynomial inequations corresponding

to non vanishing denominators are then added to C(0) and C(0).

Let us define, for ©® = (0y,...,60,,) € R™ © = (51,...,9~m) € R™ and
0 < r < n, the following set of equations and inequalities:

S6u. 0., =C(O) U C(O) U {04, =0, | 1<i<r}

gy

U{eij(©) =ci5(0) | 1<i<s, 1<j<ni}.

In order to use semialgebraic tools for proving Implication (3), the following
corollary is based on the classical tool of computer algebra techniques called
the Rabinowitsch trick (See [3, 36]): to show that an algebraic system has a
solution with u # 0, where u is one of its indeterminates, this trick consists in
adding the equation uv — 1 = 0 to the system, where v is a new indeterminate,
and to prove that the new system has a solution. By this way, computer al-
gebra packages testing the emptiness of semialgebraic sets can be used such as
HasRealSolution of the Maple package Raglib [18] for example.

Corollary 1. Let (01,...,0m) and (01,...,0,) in C. The following conditions
are equivalent:

1. the parameter 0, , of System I'® is relatively identifiable with respect to
the eventually empty set of parameters {0q,,...,0q,};

3For example, algebraic constraints defining V@(é) can be of the form —e; < g, —éa7; < €
for some given non negative ¢;.
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2. the system Sy, . .0, U {’U (9ar+1 —§GT+1> —1= O}, where v s a new

variable, has no real solution (0a,,...,0a, 64,504, ,v) € RZFL

Proof-1. = 2. By contrapositive. If system Sy, . g, U {v (9%“ — 9~GT+1> —1= 0},
where v is a new variable, has a real solution, then this solution satisfies 6

éar .1 # 0. According to Proposition 2, the parameter 6
identifiable with respect to {f4,,...,0q, }

Arg1

.41 1S Dot relatively

2. = 1. By contrapositive. If ,,,, of System S, . ., is not relatively
identifiable with respect to {f,, . .., fa, }, there exist two solutions (0, - - -, 0a,,)

and (0a,,...,0a,,04,.1---,0a,,) of this system such that 6, ,, # 6,,,, (See
Proposition 2). This inequality is equivalent to the existence of a real v such

that v (9% +1 —§ar +1> — 1 = 0. Consequently, the 2m + 1 t-uplet of real

0., U

T

yeens

(Oars-sbap 001y 500,500, 15 0a,,v) is a solution of system Sp,
{v (eam - aaM) 1= 0}.

Remark 3. In the same way as in Proposition 2, Corollary 1 can be extended

to a local version by substituting C(0©) with C(©)UVe(O) in this corollary where

Vo(0) is defined in Remark 2.

3 Relative identifiability algorithm

In this section, we present our algorithm for the relative identifiability study of
parameters of System I'®.

3.1 Useful concepts

In order to describe our algorithm and its outputs, we recall the following no-
tations and definitions of computer science.

Notation 1. [0,,,...,04,] is the list* of r distinct elements (1 < r < m) taken
among {01, ...,0n}.

Definition 4. 1. Let[0ay,---,04,] be alist of r distinct elements of {01, ...,0m}.
The empty list and any list [04,,...,00;] (1 <i <1 —1) are called prefix
of [0ays---»0a,]

2. Letly and ly be two lists. The concatenated list l1 cat ly is the list obtained
by joining the two lists 1 and lo end-to-end.

In order to distinguish identifiable parameters to non identifiable ones in a
list, we introduce the notation hereafter.

Notation 2. Letl = [04,,...,04,.] be a list of r elements taken among {01, ...,0m}.
If the parameter 04, is not identifiable, it will be written fl,, in the list I.
More generally, if 0., (2 < i <r) is not relatively identifiable with respect to

{04y, 0a;_,}, we write it fa, inl.

4In computer science, a list is a finite sequence of elements of a set.



From now on, in order to lighten the text, a parameter will be said relatively
identifiable with respect to a list of parameters if it is relatively identifiable with
respect to the corresponding set of parameters.

3.2 Relative identifiability study

A way to obtain an exploitable output for an algorithm is to use lists of param-
eters rather than sets and naturally to consider a tree traversal algorithm in
order to avoid useless emptiness tests of semialgebraic sets and also redundant
information in this output. Such an algorithm consists in constructing all the
possible lists of 64, ..., 8,, and in indicating non identifiable parameters of these
lists. This approach leads to the following definition which is the output of our
algorithm.

Definition 5. The identifiability tree T of T'© is the set of all possible lists of
parameters taken among {61, ...,0m} such that, for all listb € T and any prefic
p of b, p is followed in b by an identifiable parameter relatively to p if there exists
one.

Note that if lists of 7 have a common prefix, tests performed for this prefix
will be computed only once. Moreover, in order to avoid some useless tests, the
following remarks are used in our algorithm.

Two important remarks to improve the efficiency of the identifia-
bility tree algorithm.

Remark A (Consequence of Proposition 1) If a prefiz p of a list of T is
followed by successive identifiable parameters, these identifiable parameters can
be permuted in this list since it refers to the same information: each of them
are relatively identifiable with respect to p.

Remark B If lists completing a given prefix p1 into elements of T are
known, these lists complete any permutation of p1 into elements of T. Indeed,
the relative identifiability of a parameter relatively to a prefix p depends only
on the set of parameters appearing in p.

This last remark leads naturally to a pre-order tree traversal (see [23]) in
order to complete prefixes with lists of 7 already computed. By this way, some
emptiness tests of semialgebraic sets can be avoided which decrease the global
cost of the computation of 7 essentially due to these tests.

3.3 Algorithm for studying the relative identifiability

In this section, we describe our recursive algorithm called IdentifiabilityTree
which returns the identifiability tree 7. The complete pseudo-code of this al-
gorithm is the object of the appendix of this paper. Identifiability tests are
realized by applying Corollary 1.

This algorithm takes as input any prefix p of a list of 7 and computes all
the lists of 7 admitting p as prefix. Lists of 7 produced by the algorithm are
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stored in the set 77. In particular, the entire identifiability tree is returned by
the call IdentifiabilityTree(p), with p =[] and 7" initialized to 0.

During any recursive call, the prefix p is completed first with all the identi-
fiable parameters with respect to p in any order (see Remark A) and, after, by
each of the non identifiable parameters. Generated prefixes are then completed
by recursive calls of the algorithm. When it is possible, Remark B is used to
complete prefixes using 7’ avoiding useless semialgebraic emptiness tests.

Let us summarize the different steps of the algorithm applied to a prefix p.

IdentifiabilityTree(p)

1. While there exists some identifiable parameters relatively to p do

1.1 Complete p with an identifiable parameter 6 ;

1.2 Check whether Remark B. can be applied to complete p cat [f] into
new lists of the identifiability tree. If it is the case, add these new lists to 77,
stop this While loop and do not proceed to step 2.

2. If there exists some non identifiable parameters relatively to p, for each of
these parameters, do

2.1 Complete p with a non identifiable parameter # ;

2.2 If Remark B. can be applied to complete p cat [#] into new lists of
the identifiability tree, add these new lists to 7’. Otherwise, do a recursive call
of the algorithm with p cat [f] as input.

The following proposition gives the complexity of our algorithm.

Proposition 3 (Complexity). The number of emptiness tests of semialgebraic
sets performed by our algorithm is bounded by (2m—v+2)2"~1 where m (resp. v)
is the number of parameters (resp. of non identifiable parameters) of System S.

Proof. Let T, the set of prefixes of minimal length of lists of 7 admitting exactly
r non identifiable parameters (0 < r < v). Let C, be the subset of T, composed
of prefixes for which the non identifiability of parameters requires exactly r
emptiness tests of semialgebraic sets.

For each prefix of C, constructed by the algorithm, at least r! prefixes of 7,
are completed into lists of 7 using Remark B that is without any tests. Since
there is at most v(v — 1)--- (v — (r — 1)) prefixes, up to a permutation of non
identifiable parameters, C, contains at most (’;) prefixes.

This implies that the number of tests needed for the last non identifiable
parameters appearing in the lists of C, is bounded by (i) and, consequently,
that the number of tests performed by our algorithm for the determination of
the non identifiable parameters is bounded by Y7 _, (V) =2¥.

Moreover, for each prefix p of 7., there are m — r identifiable parameters
in the list of 7 corresponding to p. Consequently, at most (m — r)(¥) tests
are performed for the identifiable parameters of lists of 7 completing lists of
T-. This implies that the number of tests realized by our algorithm for the
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identifiable parameters is bounded by

i(m =) (:) = (2m —v)2r L.

r=0

Therefore, the number of test realized by our algorithm for computing the
identifiability tree is bounded by (2m — v + 2)2V L. O

3.4 Steps of the method

The step for studying relative identifiability of System I'® are summed up below:

Step 1. Determination of the set of conditions C(0), including eventually the
initial conditions.

Step 2. Elimination of unobservable state variables using the Rosenfeld-
Groebner algorithm in order to obtain the input output polynomials of the
system.

Step 3. Construction of the exhaustive summary.

Step 4. Computation of the relative identifiability tree by our algorithm.

4 Examples

The examples presented in this section had been treated by an implementation
of our algorithm in the computer algebra system Maple. In order to test relative
identifiability using Corollary 1, emptiness tests of semialgebraic sets had been
realized with the function IsEmpty of the Maple package SemiAlgebraicSetTools.

The first example revisits the identifiability of the model introduced by [24]
and describes the microbial growth in a batch reactor. The identifiability tree
study shows that, for this example, initial conditions do not change the iden-
tifiability of the model contrary to parameter constraints. Moreover, with a
supplementary observation, we deduce the identifiability of the model from the
output of our algorithm.

The second example of this section, dealing with the epidemiological model
taken from [33], is more complex in term of number of parameters. Despite the
cost of the computation, the size of the exhaustive summary and implicitly the
number of algebraic polynomials involved in the input-output polynomial, our
algorithm provides the identifiability tree of this model.

4.1 Microbial growth in a batch reactor

The model of a microbial growth in a batch reactor studied by [8, 19] is consid-
ered. It is known as the first unidentifiable real-life nonlinear model from the
only measure of concentration of microorganisms. We propose to revisit this
model in introducing a supplementary parameter: the maintenance factor m.
It corresponds to the mass of substrate that one unit of biomass requires for
non-growth functions in one unit time.
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The dynamic model for the growth process is also governed by the two following
equations:
. ps(t) x(t)
r(t) = ———— 2 — Y x(t
z(¢) Ks 1 () mY x(t),
e . —ps(t) x(t) (4)
S

y=x.
and where x is the concentration of microorganisms, s the concentration of
growth-limiting substrate, p the maximum velocity of the reaction, Kg the
Michaelis-Menten constant and Y the yield coefficient. Due to the nature of
the parameters, u, Kg, m and Y are supposed to be positive reals. Since it is
easier to measure z(t) than s(t) within the reactor, we consider that the mea-
sured output is y = 2. The model studied in [8] is a particular case in setting
Kd =mY.
We now apply the different steps of the method proposed at Section 3.4.

Step 1. The significations of the parameters lead to the set of conditions
CO)={n>0,Ksg>0,m>0,Y > 0}.

Step 2. The Rosenfeld-Groebner algorithm applied to System 4 with the elim-
ination order induced by y < < s returns the following input-output polyno-
mial:

(V3m? —2Y2m2u + Ymp2)y® + (3Y%2m?2 — 4Ymp + 1?)y2y
+uKsY (yij — 7) + BYm — 2u)yi® +5° = 0.
Step 3. From this differential polynomial, we obtain the exhaustive summary
(V3m?® — 2Y2m2u + Ymu®, 3Y*m? — 4Ymp + p?, pKsY, 3Y'm — 2u)

which is also the image of © = (u, Kg,m,Y) by ¢ (See Section 2.4.2).

Step 4. The relative identifiability tree can then be computed by Algorithm
IdentifiabilityTree. The algorithm runs through the full tree of Figure 1.

/ s Y "
H Y Ks m
w Kg Y

Figure 1: Tree transversal realized by Algorithm IdentifiabilityTree

The output of the algorithm is 7~ = {[u, K5, Y, m], [, Y, Ks,m], [, 27, K5, Y]}
These lists show that u is identifiable and that none of the three other parame-
ters are identifiable. Remark that if one parameter among Kg, m or Y is known
then the system is identifiable.

Remark 4. 1. In this example, the role of the constraints imposed on the
parameters plays a crucial role for establishing the identifiability of Sys-

tem 4. Indeed, if constraints C(©) are not considered, i.e. if C(©) =0,
we obtain

T = {lm 5. X o), [, 5 ot X, (1, X 5 o, (10, X o, S, o ot 5 XY, (st X IS}

Contrary to the previous situation, the tree parameters have to be identi-
fied to turn the model into an identifiable one.
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2. In order to evaluate the role of initial conditions, we introduce the new
unknown parameters o, so, TPy, Spo corresponding respectively to x(0),
s(0), ©(0), $(0) and we add to C(O) equations obtained from System (4)
evaluated at t = 0.

Computation of T shows that in any list, the parameter p is identifiable
and either

e two parameters among xo, So, Spo, TPy are not identifiable and ex-
actly one parameter among Ky, Y and m is not identifiable or

e three parameters among g, So, Spy, TPy are not identifiable.

The output of our algorithm gives all the possible choices involving model
parameters and initial conditions in order to obtain identifiability of any
parameter without considering their feasibility.

3. In the same way, without considering the initial conditions, when outputs
x and s are supposed to be observed, the identifiability tree is reduced to
{[Ks,Y,m,u]}. This means that the model is identifiable.

4. The authors in [8, 19] prove that in the case K4 = mY, the parameters
and parameter combinations z(0), KgqmY, s(0)/Y and s(0)/Ks are iden-
tifiable, while individual parameters m, Y, s(0) and K, are unidentifiable.
Furthermore, using the parameter combinations, they deduced that, if s(0)
or K were known, then all the parameters become identifiable. With the
help of Algorithm IdentifiabilityTree, we obtain the same result.

4.2 Chikungunya model

The following model I'® is an epidemiological model describing the propagation
of the Chikungunya disease to human population proposed in [33]. In [46], an
identifiability study had been done on this model assuming that some param-
eters are known. In this section, we assume that none of the parameters are
known and we propose to find lists of key parameters which turn I'® into an
identifiable model.

E(t) =bA(t) (1 - E]%) —(s+d)E(t)
P L(t)=sE(t) (1 - %?) — (sp +dp)L(t)
A(t) = spL(t) — dp A(t)
1'*@ .
Su(t) = — (bu + Buln(t)) Su(t) + by
To T (t) = Balm()Su(t) = (v + bu) Lu (t)
: L(t)
In(t) = — <8Lm + ﬁmIH(t)) Ly (t) + B lu(t)
y1=1L, yo=Su, y3=1In

Let us explain briefly this system. Equations appearing in I'P correspond
to the three biological steps in the life cycle of the mosquito transmitting the
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disease : E is the number of eggs, L the number of pupae and F the number
of adult females. Assuming that the number of larvae can be counted weekly
by biologists, this variable is considered as one of the measured variable of the
model. In System Fg'), Sy corresponds to the number of humans susceptible to
be infected, Iz to the number of infected humans and I; to infected mosquitoes.
In ', Sy and Iy can be supposed to be measured variables.

As in [46], the model outputs are defined as the number of pupae, y; = L,
the number of humans susceptible to be infected yo = Sy and the number of
infected humans y3 = I.

The unknown parameter vector is © = (kg, k1, b, 8w, fm, dr, dm, 7, b,d, 8, S1.)
where

e b is the intrinsic rate of eggs, s (resp. syp,) is the transfer rate from E to L
(resp. from L to A);

e kg (resp. kr ) is the carrying capacity of F (resp. carrying capacity of
L);

e d, d; and d,, are the rates of natural deaths for eggs, larvae and adults;
e by the human birth;
e v is the transfer rate between infected humans and recovered humans;

e By (resp. Bu) is the infectious contact rate between susceptible humans
and vectors (resp. susceptible mosquitoes and humans).

Naturally, real parameters of System I'® are supposed to be positive which leads
to set C(0) = {bg >0, g >0,v>0,8 >0, B >0,d>0,dr >0, dp >
0,6>0,s>0,kg >0,k >0, by >0}.

In order to apply the Rosenfeld-Groebner algorithm to system I'®, the last
equation of T'9 is multiplied by function A. This algorithm used with the
elimination order induced by

W1, v2,93) < [Su,Iu, L, In, E, A]

returns three differential equations linking unknown parameters and functions
Y1, Y2, ¥3. One of these equations does not have a constant coefficient c;; and
therefore its coefficients can be estimated uniquely up to a multiplicative con-
stant from experimental values (see [41]). This equation is divided by one of
these coefficients, kgky,, to obtain a polynomial of the form (1).

From these three input-output polynomials written in the form (1), we obtain
an exhaustive summary containing 74 algebraic polynomials depending on the
parameters. Our algorithm applied to the system obtained from C(®) and
function ¢ returns the following set®:

5Despite the size of the semialgebraic system, the time needed for the computation of the
identifiability tree is 1634 s with Intel(R) Core(TM) i7 2.5 GHz processor with 8 GO of RAM.



{[kLv bHa ﬂHa ﬂmv dm, Y5 %Ea d7 S ¢7 dLa SL]?

(kL, br, B, Bmy dm, v, FE, d, s, #r, b, di],
kL, bi, Brr, Bms dms vs by fy ke, diy s, st
[kL7 bHa /BHv /Bm» my Y, ¢ )‘{ kEv d dLv 'SL]:
[kLv bHa ﬂHa ﬂmv dm, Y5 ﬂ kE: S, ¢7 dL? SL]?
(kL. b, Bu, Bm, dm, 7, f, ke, s, fr, b, di],
[kL» bHa /BH: /Bm» my Vs dLv SL, &5 kEv ) 'S]:
[kLv bHa ﬂHa ﬂmv dm, s dLa SL; /5( kE: b d]a
kL, b, Bi, By dm, Vs #y ki, d, AL, b, L)
[kLa bu, Bu, Bm, dm, 7, }4L7 dr, %E7 b, d, S]
[kL7 bHa /BHy /Bm» my Yy )B(L, dL, d kE, b 8]

)
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[k[m bHa ﬁHa ﬁ’ﬂh dm, s %Ea d7 S, dLa ba SL]?
[kL, bH, ,BH, ,Bm, dm, s ¢, %E, d, dL, S, SL],
[kLa bH7 ﬁH7 ﬁma dm7 Y ¢7 dln kE? d7 S, SL]7
[k, b, B, By dmy 7, b AL, ke, d, dL, s,
[kLa bH7 ﬁH7 ﬁma dm7 Y d: kE? S, ﬂ/ln b7 SL]7
[kLa bH7 ﬁH7 ﬁma dm7 Y dln Sla %E7 b7 d, S]7
(kL, b, Bi, Bmy dmy v, AL, si, 4, ke, b, 8],
[kLa bH7 ﬁH7 ﬁma dm7 Y }47 kEa d7 ¢7 dL7 SL]7
[kz, bm, Br, Bm, dm, 7, §, kz, d, #r, b, dr],
[kLa br, Br, Bms dm, s }4L7 dr, ¢7 ke, d, S]7
(kz, bw, B, Bm, dm, 7, fr, dr, §, ke, b, d|}

For the given set of outputs, yi, y2 and ys, this set of lists shows that
kr,by, B, Bar, dm, 7y are identifiable and indicates also which pairs of other
parameters have to be estimated to turn the model into an identifiable one.
Many other information can be extracted from these lists. For example, if an
experimenter wants an estimation of the unknown unidentifiable parameter kg
from the model and from the estimation of only one parameter, these lists show
that he must estimate either d or s.

5 Conclusion

The introduction of the relative identifiability definition permits to elaborate
strategies for studying parameters identifiability of nonlinear models. The pro-
posed algorithm does not require any experimental values of inputs and outputs
and gives a mean for studying a priori relative identifiability of differential mod-
els. This method enables the user to take into account inequalities satisfied by
parameters and initial conditions.

This method is composed of two steps. The first one consists in the determi-
nation of algebraic relations between the outputs, the inputs and the unknown
parameters by a classical elimination method used in differential algebra. The
second step consists in using the algorithm proposed in this paper in order to
determine the identifiability of any parameter relatively to any set of other pa-
rameters by testing the emptiness of semialgebraic sets.

The output of this algorithm can be used, in particular, to determine which
parameters must be known to make the model identifiable for the given set of
observations or outputs. A future work consists in establishing the link be-
tween the output of the algorithm presented in this paper and the parameter
combinations studied in [28, 30, 31].
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Appendix
The function IdentifiabilityTree takes as input the system
and returns the identifiability tree (See Definition 5).

In order to avoid useless computations, Remark B is used in the auxiliary
function CompletionWithComputedBranches. When this function permits to
complete a prefix [ into branches of the identifiability tree, the set 7’ returned
by this function contains all the branches of the identifiability tree admitting I
as prefix.

Function CompletionWithComputedBranches(l,7);
/* Inputs: .A set T of branches of the identifiability tree
.A list | of parameters taken among {01, ..., 0,,} */
/* Outputs: .A boolean HasBeenCompleted equal to True if the sets of parameters of | and of
one prefix of at least one element of 7 are equal ; False otherwise.
. The set 7' containing 7 and all the branches of the form I cat s where s is
the suffix of a branch of 7 admitting as prefix a permutation of I. */
HasBeenCompleted := False;
T =T;
For I’ € T do
If a permutation of a prefiz of ' is equal to | then
1" :=1 cat UI'[Length(l) + 1, ..., m];

T =T u{l'};
HasBeenCompleted := True;
End If
End For

. Return [ HasBeenCompleted; 7" ;
End Function ;

Corollary 1 is used in the next function to complete a prefix [ first with
identifiable parameters relatively to [. For each non identifiable parameter rel-
atively to [, if there exists, [ is completed by this non identifiable parameter. A
recursive call of the function CompletionWithComputedBranches is then used
to complete this new prefix into branches of the identifiability tree.

Note that, the function CompletionWithComputedBranches is called as soon
as a prefix is constructed in order to complete it, if this is possible, without any
semialgebraic emptyness test.
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Function ConstructTheBranches(S, {61, ..., 6m},0.,7);
/* Inputs: .the system S
.the set {01, ..., 0,,} of parameters of system S
.a tuplet L of {01, ..., O}

.a set of branches T of the identifiability tree
Output: The set T of all the branches of the identifiability tree already computed and
the one(s) admitting ! as prefix
SPP := {61, ..., Om} \ Set(l) ;
/*SPP is the set of possible parameters to complete the prefix I */
hbc := False ;
/*hbc is set to True when [ is completed by function CompletionWithComputedBranches*/
If SPP # 0 then
For 0 € SPP do
If hbc = False and SetOfRealSolutions(S U {v* (6 —6") =0}) = () then
. /* The parameter 6 is identifiable relatively to I (See Corollary 1) */
l:=1 cat [0];
[hbc, T] := CompletionWithComputedBranches(l,T);
/* If Remark B can be applied, I is completed with the branches of T already computed */
SPP := SPP \{0};
. S=85u{e=0}
End if
End for
End If

/* SPP contains now only non identifiable parameters relatively to I. */

If SPP = () then

T=TU{l}
/* In this case, [ is a branch of the identifiability tree */
else

For § € SPP do
/* Adjoining to T the set of branches admitting [ cat [ﬂ] as prefix*/
SPP := SPP \{6};
[hbe, T] := CompletionWithComputedBranches( [ cat [#],T);
If hbc = False then
/* 1 cat [ﬂ] can not be completed with the branches of 7 already computed*/
. T := T UConstructTheBranches(S U {0 = 0'}, {01, ..., O}, [ cat [4], T);
End if
End for
End If
Return T
End Function ;

This last function returns the identifiability tree from System S and from the
set of parameters {61, ..., O}

Function IdentifiabilityTree(S, {01, ..., Om});
/* Inputs: The system S and the set of all the parameters {61, ..., 0} */
/* Output: The set of branches of the identifiability tree */
La=[0;
7T =Al}
. Return ConstructTheBranches(S, {01, ..., Om}, I, T);
End Function ;



