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ABSTRACT
This paper deals with the modeling, analysis, performance evaluation and control
of urban bus networks characterized by conflicts, synchronization and concurrency
using two complementary formalism Petri nets (PN) and dioid algebra. We mainly
focused on conflicts and resource sharing resolution using some routing functions in
order to evaluate some passengers metrics within various stations of the bus network.
More precisely, we evaluate arrival, boarding, disembarking and waiting times of each
passenger at any network station. As a second contribution of this paper, we study
through the developed models the influence of the limited capacity of the buses on
passengers travel time. The objective is to find an optimal threshold from which the
buses capacity has no longer impact on passengers waiting time. Finally, we propose
a control approach enabling to determine a compromise between the capacity and
number of buses to use on the network in order to minimize both waiting time of
passengers and transportation company costs by using buses with suitable capacities
especially in peak periods. An illustrative example is given to show the applicability
of the proposed approach and the obtained results are promising.

KEYWORDS
Transportation systems; Modeling; Performance evaluation; Petri Nets; Dioid
Algebra; Conflicts; Resource sharing; Control

1. Introduction

The problems of congestion, pollution (atmospheric and sound) and road insecurity,
encourage public authorities and transport companies to increase efforts to maintain
and improve the quality of services offered to users, to make the collective ways of
transportation more attractive (Nait-Sidi-Moh, Manier, and Moudni (2009)). Thus,
the study and analysis of such systems have become one of the major concerns of
researchers in the field of public transport, in order to propose improvements that can
ensure the development of such networks and contribute to the efficiency of various
services proposed to users (Nait-Sidi-Moh, Manier, and Moudni (2003)).

Transportation networks can be seen as a Discrete Event System (DES). These sys-
tems are characterized by discrete events and states (such as state of buses: moving or
stopping, state of passengers: waiting or transported). Changes of system states may be
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involved by the occurrence of some discrete events and conducts the system to another
state. Among these events, we underline arrival/departure of a bus to/from a network
station, a passenger getting on/off the bus. The behavior of such systems is mainly
gouverned by specific functioning integrating some phenomena like synchronization,
concurrency and conflicts explained later in this section. In order to model, analyze
and solve these complex phenomena, many tools and methods have been developed in
the literature. Although, simulation based approaches and operational programming
are still widely used to evaluate DES performances, there is increasing demand for
a development of mathematical formulations that produce suitable solutions to these
complex phenomena. Petri nets combined with dioid algebra are two complementary
formalisms that fulfill this aim by both providing a clear graphical models for analysis
and simulation of the studied system and also a useful mathematical equations that
describes the dynamical evolution of the system. Furthermore, dioid algebra is one of
the famous linear and stationary mathematical tools developed for DES nevertheless
it is not sufficiently developed to support DES with conflicts and resource sharing.
In this work, the term of conflict refers to situations wherein it is needed to take a
decision and make a choice between many possibilities.

To overcome this lack, our study focuses on the development of (max, +) models
capable to represent the problems of conflicts, concurrency and bringing solutions for
performance evaluation and analysis of transportation networks as a sub class of DES.
Actually, we first represent the behavior of the system with a PN model, and then
translate easily the system behavior into (max, +) equations. In fact, PN are used
thanks to their powerful formalism, their conceptual simplicity and intuitive graphical
presentation for modeling DES. Moreover, using a PN model, it is easier to describe
the analytic behavior of the studied system with (max, +) algebra. In our study, this
exotic algebra is used thanks to its powerful mathematical basis that allows a linear
analytic description of DES. Our ultimate objective, is to use this algebra to handle
and analyze the conflict aspect of the considered system.

The studied system, in this paper, is a bus network composed of two lines connected
by a common station (connection station). Each bus line is composed of a finite number
of stations and served by a finite number of buses with limited capacities. This network
involves several different choices (such as a bus making a correspondence or not within
a connection stop, a passenger getting on/off a bus or not, passengers with different
origins and destinations). This is expressed formally in the equation (13) where a
conflict situation is observed between the transitions xi1,j , .., x

i
pi,j

as output transitions

of the place Pbij (see figure 4). Other phenomena are observed in our studied system
such as synchronization (i.e. meaning synchronized arrival and departure of buses at
a given station, which is expressed formally by the equation (1)), and concurrency
(i.e. boarding/disembarking of passengers with limited resources in term of buses and
their capacities, which is expressed formally by the equation (6) and (14)). Further
details on these phenomena can be found in Baccelli et al. (1992), Gaubert (1999) and
Boussahel, Amari, and Kara (2016).

In this paper, we present a modeling approach based on linear and non-stationary
(max, +) equations obtained from a PN model describing the behavior of a bus trans-
portation network. The originality of this paper lies firstly in the use of (max, +)
algebra to describe the dynamic behavior of Petri net-based models with structural
and behavioral conflicts, and secondly in the combination of the advantages of these
formal formalisms and their efficiency for the modeling and evaluation of the perfor-
mances of such DES. In fact, the presence of conflicts conducts to a non-stationary
(max, +) model that leads us to express and solve some functions called routing func-
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tions to manage and arbitrate the encountered conflicts. Afterwards, some quantitative
properties of the system are evaluated based on obtained models. We mainly focused
on arrival and departure times of buses at different stations, boarding, disembarking
and waiting times of each passenger at every station. Furthermore, the influence of
limited capacity of buses on passengers travel time is studied in order to find an opti-
mal capacity from which this capacity has no longer impact on passengers travel time.
The developed models present four main advantages. First, these models consider more
constraints related namely to buses finite capacity, random passengers arrival and the
choice of their destination. Second, this approach is extended for networks of huge
size with several lines connected by correspondence stops. Third, the particularity and
the strength of the developed models lie in their ability to be applied to any other
public transport network (such as railway networks). Finally, the proposed models can
be considered as a decision making system for transportation companies in order to
minimize their costs by using buses with suitable capacities especially in peak periods.
This will considerably participate to minimize both the number of used buses on the
network and the waiting times of passengers.

The remainder of this paper is organized as follows. In section 2, the related work
is presented. The considered public transport system is introduced in section 3. In
Section 4, PN model describing the graphical behaviour of the considered network
is proposed. A mathematical modeling using (max, +) algebra is given in section 5.
Performance evaluation and adopted control policies are presented in section 6. An
illustrative numerical example is presented in section 7. The last section concludes the
paper and presents some perspectives.

2. Related work

Public transportation networks are subject to complex phenomena which make their
study more difficult and require the use of adequate tools. In fact, this difficulty is
increased by the complexity of the studied system due for example to the diversity of
the parameters to be taken into account during the modeling, to the variable conditions
of the traffic and to the random aspect of the transport demand. Among these tools
used for the study of public transport systems, we underline Petri nets (Diaz (2001)),
multi-agent systems (Capkovic (2016), Adler and Blue (2002)), multicriteria analysis
(Yeh, Deng, and Chang (2000)), dioid algebra (Gaubert (1999), Houssin, Lahaye, and
Boimond (2013)), Markov decision process (Nuzzolo and Comi (2017)) etc, allowing
to describe the behavior of such systems in a formal way. For instance, some research
focuses on methods which can be used in real time to estimate and forecast transit
performance, especially vehicles occupancy and crowding (Nuzzolo and Comi (2016)).
For example, in order to monitor the number of passengers relative to each transit
vehicle, several passenger count technologies are applied (Nielsen et al. (2014)). These
data can be used to estimate in real time and to forecast in the short term the number
of passengers waiting at various stations and on board, which is used to estimate the
occupancy rate and crowding. Other research focuses on multi-criteria models (Borges
et al. (2016)) that provide support to managers and directors of transport systems,
offering a comprehensive view that supports the implementation of public policies for
the improvement of transport services. Later on, we focus on methods and models,
based on PN and/or dioid algebra, used for performance evaluation and control of DES
including transportation networks. The objective is to point out the lack of current
literature that we would like to overcome by proposing some original models and also

3



to allow reader to position our contribution in the literature.
Several researchers have been interested in studying various kinds of DES, including

transportation networks, based on Petri nets and dioid algebra (Gaubert (1999), Nait-
Sidi-Moh, Manier, and Moudni (2003), Nait-Sidi-Moh, Manier, and Moudni (2009),
Benarbia et al. (2012), Heidergott and de Vries (2001), Idel Mahjoub, Chakir El Alaoui,
and Nait-Sidi-Moh (2017), Houssin, Lahaye, and Boimond (2006)). Previous research
is divided into two fields: modeling and evaluation of performance on the one hand
and regulation problems on the other hand.

First of all, the main use of Petri nets and/or dioid algebra in the field of transporta-
tion systems have focused on modeling, analysis and evaluation of performances. For
instance, Bouyekhf et al. (2003) proposed an approach to schedule the public transport
hub-based network using generalized stochastic Petri nets. This approach in the public
transport field allows to improve the timetables in term of connection costs in order to
minimize passenger waiting times. Moreover, spectral theory in (max, +) algebra has
been used, in Nait-Sidi-Moh, Manier, and Moudni (2009), for evaluation of passengers
waiting times at the connection stations within a bus network. Furthermore, Benarbia
et al. (2012) used stochastic PN for modeling and analysing of the performances of
self-service bicycles. This study focused on rebalancing the distribution of bicycles in
various network stations in order to satisfy demands of users. Similarly, Labadi et al.
(2015) developed a discrete event approach for modeling and performance evaluation
of public bicycle-sharing systems using timed PN with inhibitor arcs and variable arc
weights. Lahaye, Houssin, and Boimond (2003) modeled the behavior of a urban bus
network by a min-max recursive equation which can be used for the simulation issue
in real time.

On the other hand, several studies have been considered for regulation problem in
transportation networks (Bonhomme (2013), Heidergott and de Vries (2001)). One of
the addressed issues in these studies is to find a new schedule of multiple vehicles after
the detection of a disturbance on the road at a given time. For example, Hakim (2002)
proposed a multi-agent system for regulating the correspondence in real time. Fur-
thermore, a genetic approach for scheduling a transportation network was proposed
in Dridi (2004). In addition, Ould-Sidi et al. (2006) proposed a fuzzy evolutionary
approach for regulation of an urban transport network in order to facilitate decision
making for regulators in real time. Also, Cacchiani et al. (2014) proposed an overview
of repair models and algorithms for real-time railway disturbance and disruption man-
agement, in order to increase the quality of the provided railway services. In the same
field, Kersbergen et al. (2016) presented how to model railway traffic and dispatching
actions like changing tracks and breaking or joining trains using the max-plus algebra.
A model predictive controller was proposed in order to manage the railway traffic in
real time. Furthermore, given that the dynamic behavior of traffic lights regulating a
network of intersections can be viewed as a complex discrete-event system that can be
modeled and controlled by Petri nets, List and Mashayekhi (2015) presented a mod-
ular colored stochastic PN for modeling and analysis of signalized intersections. This
study has significant promise, especially in light of the increasing demands for more
features and also real-time control.

Comparing the presented approach with other models based on PN and (max, +)
algebra (e.g, Nait-Sidi-Moh, Manier, and Moudni (2009), Lahaye, Houssin, and Boi-
mond (2003)), it may be enlightened that our contribution does not lie only in the
modeling of the dynamics associated with the buses circuits and their timetables, but
also in the evaluation of passengers random arrivals, their boarding and disembark-
ing times as well as their differentiated itineraries and destinations. In addition, some
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models in the literature such as Houssin, Lahaye, and Boimond (2013) consider a
control approach for timetables synthesis using (max, +) algebra without taking into
account buses finite capacities. However, in this paper, a control approach enabling
to determine a compromise between the capacity and number of buses to use on the
network is performed in order to minimize both waiting times of passengers and trans-
portation company costs. Furthermore, the proposed approach could also be applied
to any other public transportation system (railway,...). The developed models are val-
idated on several scenarios and configurations of the system, and the obtained results
are satisfying and promising. This paper extends and generalizes the work presented
in Idel Mahjoub, Chakir El Alaoui, and Nait-Sidi-Moh (2017) while considering any
number of stations for each bus line instead of just three. In fact, all the equations
and algorithms obtained in the initial work are now extended and generalized.

3. Studied system

In this section, we consider a bus network composed of two connected lines Li and Li+1

with a single connection station (figure 1). This system configuration can be considered
to be a generic structure for any bus transportation network. Each line Ll (l∈{i,i+1})
is represented by pl stops : departure stop (Sl1), connection stop (Slql), intermediate

stops (Sl2,..,Slql−1,Slql+1,..,Slpl−1), and an arrival terminus (Slpl). Each line Ll is supposed

to be served by a finite number nl of buses and that each bus Bl
j is characterized by its

capacity Cl
j (figure 1) (Cl

j is the maximum number of passengers that can board the

bus Bl
j). The passengers arrive to their departure stops in a random way (stochastic

law). For each line Ll, the following data are supposed to be known and fixed (for a
given period):

• The number nl of buses circulating on the line Ll ;
• The travel times (τ l2,τ l4,..,τ l2pl−2) of buses between all network stops, where τ l2

(resp. τ l4,..,τ l2pl−2) is the travel time between Sl1 (resp. Sl2,..,Slpl−1) and Sl2 (resp.

Sl3,..,Slpl).

• The stop times (τ l1,τ l3,..,τ l2pl−1) of each bus in different stops, where τ l1 (resp.

τ l3,..,τ l2pl−1) is the stop time of the buses at Sl1 (resp. Sl2,..,Slpl). These stop times
include the mean time needed for a passenger to get on and/or get off the bus
denoted δ.

We assume that the destination of each passenger is known and randomly chosen.
It means that an arbitrarily possible destination is assigned to each passenger.
Considering this destination, we can evaluate boarding, disembarking and travel time
of each passenger.

In the following section, we proceed step by step to conceive the PN model of the
studied system. The global PN model that represents our system is given in figure 5.

4. Modeling using Petri Nets

PN, namely p-timed PN, stochastic PN and free choice PN, have been proven to be
a powerful modeling formalism for various kinds of DES. In fact, this formalism is
useful in verification, validation and performance evaluation. In this section, these
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Terminus

Connection stations

Intermediate stations

Figure 1. The studied network

sub-classes of PN are used to model respectively (i) bus circuit, (ii) passengers arrival
and boarding and finally (iii) passengers destination choice and disembarking, in order
to conceive the model of the global network of figure 1. Basic concepts and further
details on PN can be found for example in Murata (1989), Baccelli, Foss, and Gaujal
(1996), Diaz (2001) and Reisig and Rozenberg (1998). For the remainder, we will only
develop models of the line Li. For the other line (Li+1), we obtain the same models
while replacing the index i (resp. j) by the index i+1 (resp. j

′
).

4.1. Modeling bus circuit using PTPN

The following figure describes the PN model of the circuit of a bus Bi
j between the

various stations of the line Li (figure 1).
Notation: In this paper, the indexes i, j and s in each notation Xi

s,j are given by: i

refers to the bus line Li, j refers to the bus Bi
j (for line Li, 1≤j≤ni) and s refers to the

station Sis (for line Li, 1≤s≤pi).

Each bus j is initially in its starting station Si1 (presence of a token in the place Pcij).

The firing of the transition uij represents a departure order given to the bus j. The

firing of the transition Dptij means that the bus j begins its circuit. This bus will wait

τ i1 time units before leaving the departure station, so that waiting passengers can get
on the bus and δ refers to the average time that a person can takes to get on/off the
bus. τ i2 units of time later, the bus arrives to the second station. The firing of xai2,j
puts simultaneously a token in the place Pi2,j (which models bus waiting), and another

token in the place Pcmi
2,j (which models the authorization order for passengers to

get on the bus j) and finally another token in the place Pcdi2,j (which models the
authorization order for passengers to get off the bus j). The same operating mode is
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Figure 2. PN model of a bus circuit

Table 1. Elements of PN model of a bus circuit

For i, j and s (1≤i, 1≤j≤ni, 1≤s≤pi)

Transitions

ui
j Departure permission for bus j

Dptij Travel beginning for bus j;

xdi
s,j Departure of bus j from the station s;

xais,j The arrival of bus j to the station s;

Places

Ei
j Bus j ready to begin its circuit;

Pi
s,j The waiting of bus j at the station s;

Pdi
s,j Movement of bus j between station s and s+1;

Pcij Bus waiting at its departure station;

Pcmi
s,j Authorization for passengers to get on the bus j;

Pcdi
s,j Authorization for passengers to get off the bus j;

Temporizations

τ i2s−1 Bus waiting time at station s;

τ i2s Bus traveling time between station s and s+1;

δ Time needed for a passenger to get on/off the bus.

observed in the other stations of the model (Si3,..,Sipi). The place Pdipi,j models the

return path of the bus j from Sipi to Si1. A token in this place means that the bus j is

going back to its departure station Si1.

4.2. Modeling passengers arrival and boarding using SPN

Given that passengers arrival to their departure stations are usually random, so we
have modeled them using a stochastic transition endowed with a stochastic distribution
of rate denoted λ. In addition, we point out that the λ parameter depends on passengers
flow predicted and it differs from period to another (peak and off-peak periods for
example).
The waiting passengers at a station s get on a bus j when this bus has empty seats
inside. However, if it is full, passengers wait for the next one. As a matter of fact,
we suppose that passengers boarding is made by FIFO (First In First Out) rule. It
means that the first passenger who arrives to a station is the first one who gets on the
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bus. According to the station type, the SPN models representing passengers arrival
are illustrated in figure 3.

Figure 3. SPN model for passengers arrival and boarding

Table 2. Elements of SPN model for passengers arrival and boarding

For i, j and s (1≤i, 1≤j≤ni, 1≤s≤pi )

Places

Pcmi
s,j Authorization for passengers to get on the bus j;

Pais Passengers waiting at station s;

Pvi
j Empty seats on the bus j;

Transitions

OMi
s,j Passengers boarding to bus j at station s;

APi
s Random passengers arrival at station s;

Crpi+1
j′

Passengers correspondence (from Li+1 to Li)

- Case of terminus or intermediate stations (Sis, s=1,..,pi, s 6=qi)
The figure 3-(a) describes passengers arrival to a terminus or intermediate stations.
As explained before, the waiting passengers at a station s (tokens in Pais) can get on
the bus j (by firing the transition OMi

s,j) when they are authorized to get on (token

in Pcmi
s,j) and there are empty seats inside (tokens in Pvij).

- Case of connection station (figure 3-(b))
In a connection station, passengers can come from other lines (in our case line Li+1).
Passengers getting off a bus j

′
of line Li+1 at the connection station have two choices:

either make the correspondence with the line Li or completely leave this station (the
connection station is their destination). The transfer of passengers from line Li+1

to line Li is modeled by the transitions Crpi+1
j′

(where j
′

is a bus of line Li+1 with

1≤ j′ ≤ni+1) (figure 3-(b)).

4.3. Modeling passengers destination choice and disembarking using
FCPN

Every passenger has his own destination (among pi possible destinations). After
arriving at their arrival station, passengers can disembark and leave the station or
can make the correspondence with the other line. The PN model with conflicts that
represents destination choice criteria is given in the following figure.

When the place Pbij contains a token which models a passenger on the bus j,
there is a free choice in this place. So, the transition that will be fired can be chosen
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Figure 4. FCPN for modeling passengers destination choice and disembarking

Table 3. Elements of FCPN for modeling passengers destination choice and disembarking

For i, j and s (1≤i, 1≤j≤ni, 1≤s≤pi )

Places

Pcdi
s,j Authorization for passengers to get off the bus j;

Pmi
s,j Passengers on board who will get off at station s;

Pbi
j Passengers boarding to bus j;

Pvi
j Empty seats on the bus j;

Transitions

xi
s,j Choice of station s as a destination;

Crpi
j Passengers making correspondence with line Li+1;

Di
s Passengers getting off the bus j at station s;

OMi
s,j Passengers boarding to bus j at station s;

arbitrarily according to the passenger’s destination. A transition xis,j will be fired
when a passenger has chosen station s (Li) as his destination. Furthermore, if a
passenger wants to make a correspondence with the line Li+1, the transition xiqi,j will

be fired. The transition Di
s,j models passengers disembarking from the bus j at station

s without making correspondence. However, the transition Crpij models passengers
disembarking from the bus j at the connection station and making the correspondence
with line Li+1. Finally, passengers release their seats (by adding tokens in the place
Pvij) after getting off the bus (by firing Di

s,j or Crpij).
The following section proposes the PN model of the line Li. It combines the three

previous PN models that represent the main components of the system.

4.4. Petri net model of the line Li

The global PN model of the line Li combines all the PN models presented before (fig-
ure 2, 3 and 4). We recall that the line Li contains pi stations and served by ni buses.
The global model presented in figure 5 consists of ni sub-models. Each sub-model
represents a bus circuit with passengers destination choice. In this figure, we have

9



Figure 5. Petri net model of line Li with ni buses

represented three sub-models corresponding to j=1, j=ni and the other buses (dotted
part). The interaction of these sub-models is done by passengers waiting places Pais
associated to their upstream transitions APis (and also Crpi+1

1 ,...,and Crpi+1
ni+1

in case
of s=qi). Furthermore, we obtain the same model for the line Li+1 while replacing
the index i by the index i+1. The transfer of passengers between the two lines Li and
Li+1 can take place at the connection station (Siqi or Si+1

qi+1
). The transitions that model

passengers correspondence from Li+1 to Li (resp. from Li to Li+1) are Crpi+1
1 ,...,and

Crpi+1
ni+1

(resp. Crpi
1,...,and Crpi

ni
). The advantage of these models, compared to other

models established in the literature, is that it represents the state of all buses (moving,
stopping, etc.) and all stations (empty, full, number of waiting passengers, etc.). In
addition, all passengers arrival, boarding, destination choice, disembarking and corre-
spondence are modeled.

In the next section, a (max, +) model representing the behavior of the previous PN
model is given. Moreover, some functions called routing functions are introduced to
manage and solve all the encountered conflicts on the PN model.

5. Modeling using (max, +) algebra

In this section, the (max, +) models for both bus circuit and passengers board-
ing/disembarking are presented. We recall that (max,+) dioid is the dioid Rmax=R ∪
{−∞} with two binary operations ⊕ and ⊗, where a⊕b is the maximum of a and b,
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and a⊗b is the sum of a and b, for all a, b ∈ Rmax. The additive and multiplicative
neutral elements are respectively ε =−∞ and e = 0. For more details about dioid
algebra, especially (max, +) algebra, the reader can refer to Baccelli et al. (1992).

It’s well known that (max, +) algebra is dedicated to the management and calculus
of the occurrence dates of events (called ”daters”). So, the associated dater with a
transition x is denoted x(k) and represents the date of the kth firing of x.

5.1. (Max, +) linear representations

5.1.1. (Max, +) model of bus circuit

First of all, we describe the dynamic behavior of the ni buses (figure 2 and 5), in terms
of daters (arrival and departure times at different stops), by mathematical equations in
the usual algebra and then by (max, +) equations. So, the kth firing of each transition
of our PN model (kth turn or passage of the buses), described in figure 2, is given by
the following system.
for j ∈ {1, ...., ni} and ∀k > 1,

Dptij(k) = max(uij(k), xai1,j(k − 1))
xdi1,j(k) = max(Dptij(k) + τ i1, OM

i
1,j(k

i
1,j) + δ,Di

1,j(o
i
1,j) + δ, xai1,j(k − 1) + δ)

xai2,j(k) = xdi1,j(k) + τ i2
xdi2,j(k) = max(xai2,j(k) + τ i3, OM

i
2,j(k

i
2,j) + δ,Di

2,j(o
i
2,j) + δ)

...
xaiqi,j(k) = xdiqi−1,j(k) + τ i2qi−2

xdiqi,j(k) = max(xaiqi,j(k) + τ i2qi−1, OM
i
qi,j

(kiqi,j) + δ,Di
qi,j

(oiqi,j) + δ, Crpij(o
i
pi+1,j) + δ)

...
xaipi,j

(k) = xdipi−1,j(k) + τ i2(pi−1)

xdipi,j
(k) = max(xaipi,j

(k) + τ i2pi−1, OM
i
pi,j

(kipi,j
) + δ,Di

pi,j
(oipi,j

) + δ)
xai1,j(k) = xdipi,j

(k) + τ i2pi

(1)
- For the first equation of (1): every bus j starts its kth turn (kth firing of Dptij) after

completing his k-1th turn (k-1th firing of xai1,j), and a departure permission is given

(kth firing of uij) (synchronization phenomenon).

- For buses departure daters (equations xdi1,j(k),..., xdiqi,j(k),.., xdipi,j(k) of the system

(1)): a bus j leaves a station s for the kth time (kth firing of xdis,j) after waiting τ i2s−1

time units in this station so that passengers can get on (firing of OMi
s,j) and off (firing

of Di
s,j) this bus. If several passengers are waiting, the FIFO rule is applied. The

parameter kis,j(k) (resp. ois,j(k)) represents the number of firings of OMi
s,j (resp. Di

s,j)

before the kth departure of the bus j from the station s (see section 5.2.2 for more
details). So, the expression OMi

s,j(k
i
s,j) (resp. Di

s,j(o
i
s,j)) represents the last passenger

boarding (resp. disembarking ) time to/from the bus j (kth turn) at station s.
- For buses arrival daters (equations xai1,j(k),..,xaiqi,j(k),..,xaipi,j(k) of the system (1)):

a bus j arrives at a station s for the kth time (kth firing of xais,j) after τ i2(s−1) time

units after leaving the station s-1.
Afterwards, we will try to simplify the previous system of equations in order to put

it into a matrix form and solve it. Firstly, as we have mentioned in section 3, every
bus j has to respect a scheduled timetable. So, the departure of each bus from every
station must be independent from passengers arrival. Also, we assume that δ (time
needed of get on/off a bus) is negligible compared to buses waiting times (for 1≤s≤pi,

11



δ � τ i2s−1). Hence, the following relations are satisfied.
for j ∈ {1, ...., ni}, ∀k > 1,

Dptij(k) + τ i1 > OM i
1,j(k

i
1,j) + δ

xai2,j(k) + τ i3 > OM i
2,j(k

i
2,j) + δ

...
xaiqi,j(k) + τ i2qi−1 > OM i

qi,j
(kiqi,j) + δ

...
xaipi,j

(k) + τ i2pi−1 > OM i
pi,j

(kipi,j
) + δ

(2)

Secondly, a bus j can leave a station s only after having disembarked all passengers
who have this station s as destination. So, we have the following equations:
for j ∈ {1, ...., ni}, ∀k > 1,

Dptij(k) + τ i1 > Di
1,j(o

i
1,j) + δ

xai2,j(k) + τ i3 > Di
2,j(o

i
2,j) + δ

...
xaiqi,j(k) + τ i2qi−1 > Di

qi,j
(oiqi,j) + δ

xaiqi,j(k) + τ i2qi−1 > Crpij(o
i
pi+1,j) + δ

...
xaipi,j

(k) + τ i2pi−1 > Di
pi,j

(oipi,j
) + δ

(3)

Using (max, +) notations and considering the equations of (2) and (3), the system (1)
can be simplified as follows:
for j ∈ {1, ...., ni}, ∀k > 1,

Dptij(k) = uij(k)⊕ xai1,j(k − 1)
xdi1,j(k) = Dptij(k)⊗ τ i1
xai2,j(k) = xdi1,j(k)⊗ τ i2
xdi2,j(k) = xai2,j(k)⊗ τ i3
...
xaiqi,j(k) = xdiqi−1,j(k)⊗ τ i2qi−2

xdiqi,j(k) = xaiqi,j(k)⊗ τ i2qi−1

...
xaipi,j

(k) = xdipi−1,j(k)⊗ τ i2(pi−1)

xdipi,j
(k) = xaipi,j

(k)⊗ τ i2pi−1

xai1,j(k) = xdipi,j
(k)⊗ τ i2pi

(4)

In order to solve this system, we put it in a matrix form. To do so, we define the bus
state vector Xj(k) and the input vector Uj(k):{

Xj(k) = [Dptij(k), xdi1,j(k), xai2,j(k), xdi2,j(k), xai3,j(k), xdi3,j(k), .., xaipi,j
(k), xdipi,j

(k), xai1,j(k)]T ;
U j(k) = uij(k).

Using these vectors, we can evaluate buses timetables for a given period.
The system (4) can then be written as the following matrix form:

Xj(k) = A1 ⊗Xj(k)⊕A2 ⊗Xj(k − 1)⊕B1 ⊗ U j(k) (5)

With : A1,A2 ∈ R(2pi+1)×(2pi+1)
max and B1 ∈ R(2pi+1)×(1)

max

12



A1=


ε ε . . . ε ε
τ i1 ε . . . ε ε
ε τ i2 . . . ε ε
...

...
. . .

...
...

ε ε ε τ i2pi ε

 , A2=


ε . . . ε e
ε . . . ε ε
ε . . . ε ε
...

. . .
...

...
ε . . . ε ε

 and B1=


e
ε
ε
...
ε


The strictly triangular matrix A1 is nilpotent witch means that: ∃r, ∀u≥r A⊗u1 = ε
(in this case r=2pi+1). Thereafter, the expression of the Kleene star of A1 becomes
A∗1=Id⊕A1⊕A⊗2

1 ⊕....⊕A⊗r−1
1 .

The implicit equation (5) can then be rewritten as a recurrence equation of first order
as given in what follows:
∀k > 1,

Xj(k) = A1 ⊗Xj(k)⊕A2 ⊗Xj(k − 1)⊕B1 ⊗ U j(k)

= A1 ⊗ [A1 ⊗Xj(k)⊕A2 ⊗Xj(k − 1)⊕B1 ⊗ U j(k)]⊕A2 ⊗Xj(k − 1)⊕B1 ⊗ U j(k)

= .................

= A⊗r
1 ⊗Xj(k)⊕ [A⊗r−1

1 ⊕A⊗r−2
1 ⊕ .......⊕ Id]⊗A2 ⊗Xj(k − 1)⊕A∗

1 ⊗B1 ⊗ U j(k)

= A∗
1 ⊗A2 ⊗Xj(k − 1)⊕A∗

1 ⊗B1 ⊗ U j(k)

Therefore: ∀k > 1,

Xj(k) = A⊗Xj(k − 1)⊕B ⊗ U j(k) (6)

With:

A=A∗
1⊗A2=


ε . . . ε e
ε . . . ε θ1
ε . . . ε θ2
...

. . .
...

...
ε . . . ε θ2pi

, B=A∗
1⊗B1=


e
θ1
θ2
...

θ2pi


where:

θl =
l⊗

k=1

τ ik for l∈{1,..,2pi}.

5.1.2. (Max, +) model for passengers boarding

In this section, (max, +) equations for passengers boarding time are presented. The
difficulty in expressing these equations appears in finding the different relations be-
tween the firing of the concerned transitions (see figure 3), namely OMi

s,j and APis
(and Crpi+1

1 ,.., Crpi+1
ni+1

in case of s=qi). To overcome this main problem, we introduce

some functions called routing functions (namely αis,j(k), βis,j(k) and δiu,j(k) (∀u ∈
{1,..,ni+1+1})) to manage and solve the conflicts related to passengers boarding.

First of all, in case of terminus or intermediate stations (s6=qi)(figure 3-(a)), the kth

firing of the transition OMi
s,j occurs after the αi

th

s,j(k) firing of the transition APis and

βi
th

s,j (k) firing of the transition xais,j . Besides, in the connection station, passengers

may come from the other line. For that reason, the kth firing of the transition OMi
s,j

occurs after βi
th

s,j (k) firing of the transition xais,j and either the δi
th

1,j(k) firing of APis
or the δi

th

2,j(k) (resp. or δi
th

3,j(k),.., or δi
th

ni+1+1,j(k)) firing of the transition Crpi+1
1 (resp.

Crpi+1
2 ,.., Crpi+1

ni+1
). The mathematical expression of these routing functions are given
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by the algorithm in figure 7 (equations (a), (b) and (c)).

The following formula allows to evaluate boarding time of each passenger at every
station s.
For s ∈{1,..,pi} and j ∈ {1,2,....,ni}
∀k ≥ 1,

OM i
s,j(k) =

{
AP i

s(αi
s,j)⊕OM i

s,j(k − 1).δ ⊕ xais,j(βi
s,j).δ.1max

s 6=1 ⊕Dpt
i
j(βi

s,j).δ.1max
s=1 if s 6= qi,

AP i
qi

(δi1,j)⊕
ni+1+1⊕
m=2

Crpi+1
m−1(δim,j)⊕OM i

qi,j
(k − 1).δ ⊕ xaiqi,j(βi

qi,j
).δ if s = qi.

(7)

With:

• αi
s,j(k) and δiu,j(k) (∀u ∈ {1,..,ni+1+1}) represent the routing functions (given

by the algorithm in figure 7, equations (a), (b) and (c)).
• βi

s,j(k) represents the turn of the bus j that will transport the kth passenger to
his destination.
• The indicator function is given by the following equation.

1maxc1=c2 =

{
e if c1 = c2,

ε if c1 6= c2.
(8)

The routing functions mentioned earlier depend on some counters kis,j(k) that

represents the number of firings of OMi
s,j before the kth departure of the bus j from

the station s. Let us first express these counters in what follows.

- Calculation of parameters kis,j :
First, the buses are sent from their departure station one after the other (buses passage
sequence is bus 1,2,..,ni,1,2...). Second, given that buses have limited capacities then
the counters kis,j depends on Ci

j (∀j ∈ {1,..,ni}). For instance, if waiting passengers
at station s exceeds the number of empty seats on the bus arriving to this station,
then the number of passengers that are going to get on is the number of empty seats
inside this bus (which justifies the operator ”min” in equations below). The number
of passengers arriving at station s from the beginning of buses journey (or number of
firing of the transition APis with s 6=qi) before the kth departure of a bus j is given
by a(k)=sup

p
{AP i

s(p) < xdis,j(k)}. However, in a connection station, passengers can come

from buses of line Li+1, so the number of these passengers at this station is given by

b(k)=sup
p
{AP i

qi
(p) < xdiqi,j(k)}+

ni+1∑
r=1

sup
p
{Crpi+1

r (p) < xdiqi,j(k)}.

So, the equations of the counters kis,j are given by: ∀k ≥ 1
For s 6=qi (case of terminus or intermediate stations),

kis,j(k) =

min
[
a(k), Ci

j +
s∑

m=1
kim,ni

(k − 1)−
s−1∑
m=1

kim,j(k) +
s∑

m=1
Dtim,j(k)

]
if j = 1,

min
[
a(k), Ci

j +
s∑

m=1
kim,j−1(k)−

s−1∑
m=1

kim,j(k) +
s∑

m=1
Dtim,j(k)

]
if j 6= 1.

(9)
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For s=qi (case of connection station),

kiqi,j(k) =

min
[
b(k), Ci

j +
qi∑

m=1
kim,ni

(k − 1)−
qi−1∑
m=1

kim,j(k) +
qi∑

m=1
Dtim,j(k)

]
if j = 1,

min
[
b(k), Ci

j +
qi∑

m=1
kim,j−1(k)−

qi−1∑
m=1

kim,j(k) +
qi∑

m=1
Dtim,j(k)

]
if j 6= 1.

(10)

With:

• k represents the kth turn of the bus j. We recall that ∀k ≤0 ki
s,j(k)=0

• Dtis,j(k) represents the number of passengers who want to get off the bus j (in

its kth passage) at station s. It includes the number of passengers who want to
move from line Li to line Li+1 (in case of s=qi). This parameter is deduced from
passengers destination choice.

The number of waiting passengers who will get on a bus j6=1 (resp. j=1) (in its kth

passage) at a station s is given by kis,j(k)-kis,j−1(k) (resp. kis,1(k)-kis,ni
(k-1)) and denoted

Ni
s,j(k).
The algorithm, given by figure 6, allows to manage occurred conflicts in figure 3 by

computing the routing functions mentioned above. It is triggered when a bus j arrives
to a station s. First of all, we compute the number of passenger who will get on the
bus j (in its rth passage) given by Ni

s,j(r). Afterwards, according to the type of station
s (correspondence or intermediate or terminus), we compute the considered routing
functions. The figure 7, represent the same algorithm with more details. The expression
of these routing functions are explicitly developed with mathematical equations.

In the next section, the (max, +) equations describing passengers disembarking
times are evaluated.

Figure 6. Flowchart for computing the routing functions related to passengers boarding

5.1.3. (Max, +) model for passengers disembarking

Passengers get off the bus j at station s (by firing the transitions Di
s,j or Crpi

j) when
these passengers have chosen station s as their destination (firing of transitions xi

s,j).
So the (max, +) equations describing passengers disembarking times from the bus j
are given by:
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Figure 7. Detailed version of flowchart of Fig. 10 with explicit expressions of routing functions

∀k ≥ 1,

Di
1,j(k) = xi1,j(k)⊕ xai1,j(ξi

p2i+1,j
)⊗ δ ⊕Di

1,j(k − 1)⊗ δ
Di

2,j(k) = xi2,j(k)⊕ xai2,j(ξi
p2i+2,j

)⊗ δ ⊕Di
2,j(k − 1)⊗ δ

....

Di
qi,j

(k) = xiqi,j(ξi
pi(pi+1)+2,j

)⊕ xaiqi,j(ξi
p2i+qi,j

)⊗ δ ⊕Di
qi,j

(k − 1)⊗ δ ⊕ Crpij(ξi
pi(pi+1)+4,j

)⊗ δ
.....

Di
pi,j

(k) = xipi,j(k)⊕ xaipi,j(ξi
pi(pi+1),j

)⊗ δ ⊕Di
pi,j

(k − 1)⊗ δ
Crpij(k) = xiqi,j(ξi

pi(pi+1)+3,j
)⊕ xaiqi,j(ξi

pi(pi+1)+1,j
)⊗ δ ⊕ Crpij(k − 1)⊗ δ ⊕Di

qi,j
(ξi

pi(pi+1)+5,j
)⊗ δ

(11)
The routing functions ξiu,j (u∈{1,..,pi(pi+1)+5} are proposed to solve all the conflicts
and concurrency in figure 4. These functions depends essentially on passengers desti-
nation.
In the first equation of (11), the kth passenger, who has chosen departure station as
his destination (by firing of xi1,j), get off the bus j at the departure station (kth firing

of the transition Di
1,j) when the bus j, in its ξi

th

p2i +1,j passage, arrives to this station.

Furthermore, if several passengers want to get off, the FIFO rule is applied. The other
equations are expressed in the same way.
The firing dates of xis,j depends on passengers destination and boarding times and
they are given by the following equations: ∀k ≥ 1,

xi1,j(k) = OM i
1,j(ξi1,j)⊕OM i

2,j(ξi2,j)⊕OM i
3,j(ξi3,j)⊕ ...⊕OM i

pi,j
(ξipi,j)

xi2,j(k) = OM i
1,j(ξipi+1,j)⊕OM i

2,j(ξipi+2,j)⊕OM i
3,j(ξipi+3,j)⊕ ...⊕OM i

pi,j
(ξi2pi,j)

....
xiqi,j(k) = OM i

1,j(ξi
pi(qi−1)+1,j

)⊕OM i
2,j(ξi

pi(qi−1)+2,j
)⊕OM i

3,j(ξi
pi(qi−1)+3,j

)⊕ ...⊕OM i
pi,j

(ξipiqi,j)

....

xipi,j(k) = OM i
1,j(ξi

pi(pi−1)+1,j
)⊕OM i

2,j(ξi
pi(pi−1)+2,j

)⊕OM i
3,j(ξi

pi(pi−1)+3,j
)⊕ ...⊕OM i

pi,j
(ξi

p2i ,j
)

(12)

16



So : for s ∈ {1,..,pi} and j ∈ {1,..,ni}, ∀k ≥ 1,

xis,j(k) = OM i
1,j(ξipi(s−1)+1,j)⊕OM i

2,j(ξipi(s−1)+2,j)⊕ ...⊕OM i
pi,j

(ξis.pi,j) =

pi⊕
d=1

OM i
d,j(ξipi(s−1)+d,j)

(13)
The system (11) can then be expressed as follows:

Di
s,j(k) =

{
xiqi,j(ξi

pi(pi+1)+2,j
)⊕ xaiqi,j(ξi

p2i+qi,j
).δ ⊕Di

qi,j
(k − 1).δ ⊕ Crpij(ξi

pi(pi+1)+4,j
).δ if s = qi,

xis,j(k)⊕ xais,j(ξi
p2i+s,j

).δ ⊕Di
s,j(k − 1).δ if s 6= qi.

(14)
With passengers correspondence dates are given by the following equation:

Crpij(k) = xiqi,j(ξipi(pi+1)+3,j)⊕ xaiqi,j(ξipi(pi+1)+1,j).δ ⊕ Crpij(k − 1).δ ⊕Di
qi,j

(ξipi(pi+1)+5,j).δ (15)

To evaluate disembarking of passengers at different stations, we have to solve the
system of equations (14) and (15). To do so, the algorithm, presented in figure 8, is
suggested to manage the conflicts and resources sharing in figure 4. In this algorithm,
the random destination of kth passenger, who get on a bus j at station s, is given by
destis,j(k). From this destination we can compute all the routing functions appearing
in the equations (14) and (15). The algorithm in figure 9 is presented in order to give
more details about the mathematical expression of these routing functions.

Figure 8. Flowchart for computing the routing functions related to passengers disembarking

In brief, the methodology adopted to evaluate the performances of the studied
network is presented in figure 10. It consists of three related models: (i) buses circuit,
(ii) passengers arrival and boarding and finally (iii) passengers destination choice and
disembarking. In the first part, we developed a (max, +) equation to evaluate buses
timetables given by the vectors Xi

j (∀j ∈ {1,..,ni}). In the second part, given that
passengers arrival are random, we introduce some routing functions to manage and
solve the conflicts in figure 3, in order to express passengers boarding by (max, +)
equations. Finally, the last part is dedicated to manage passengers destination choice
in order to evaluate their disembarking times.
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Figure 9. Detailed version of flowchart of Fig. 12 with explicit expressions of routing functions

6. Performance evaluation and system control

In this section, we are going to evaluate the performances of the bus network described
in figure 1. More precisely, traveling time of each passenger is evaluated. Furthermore,
the influence of the limited capacity of buses on passengers travel time is studied, in
order to find an optimal capacity from which this capacity has no longer impact on
passengers waiting time.

6.1. Passengers traveling time evaluation

As described before, for each passenger of the bus network presented in figure 1, we
are able to determine the bus he will take and also his boarding and disembarking
time (see equations (7), (14) and (15)). Moreover, the waiting time of the kth arriving
passenger who will take a bus j at his departure station s is given by: ∀ k≥1,

T i
s,j(k) = xdis,j(β

i
s,j)/AP

i
s(k) (16)

where: Apis(k) is the arrival time of kth passenger and xdis,j(β
i
s,j) represents the depar-

ture time of the bus j that will transport this passenger. We recall that the operator
”/” expressed in (max, +) algebra is equivalent to the subtraction in the usual algebra.
However, if a passenger wants the make the correspondence with line Li+1, the waiting
time of this passenger at the connection station is given by: ∀ k≥1,

Tj,j′ (k) = xdi+1
qi+1,j

′ (β
i+1
qi+1,j

′ )/xa
i
qi,j(β

i
qi,j) (17)
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Figure 10. Interaction between the established models

where: xaiqi,j(β
i
qi,j

) is the arrival time of the bus j (bus of line Li) to the connection sta-

tion to let this passenger making the correspondence and xdi+1
qi+1,j

′ (βi+1
qi+1,j

′ ) represents

the departure time of the bus j
′

(bus of line Li+1) that will transport this passenger
from the connection station.
Finally, passengers traveling time is deduced from their arrival time (APis) and their
disembarking time Di

s,j (or Di+1
s′,j′ if a passenger wants to make a correspondence).

6.2. Calculation of buses optimal capacity

The optimal capacity refers to the maximum number of places considered in a bus to
reach a point from which the capacity has no longer impact on passengers waiting time.
As a result, if several types of bus with different capacities are available, this parameter
indicates the one that will ensure the transportation service. The ultimate objective is
choosing a bus corresponding to the number of passengers to be transported especially
in peak periods. This will impact positively the transportation company costs and
passengers waiting times.
Before determining the optimal capacity, we first simplify the expression of the counters
kis,j . These parameters are calculated such a way that they no longer depend on buses
capacities. It means that every passenger who come to a station s can get on the
arriving bus (like if the capacity is infinite) regardless of the capacity. As described
before, from these counters, we can deduce the number of waiting passengers at every
station s including the connection one.
For j∈ {1, ...., ni} and s∈ {1, .., pi},
∀k ≥ 1

kis,j(k) =


sup
p
{AP i

s(p) < xdis,j(k)} if s 6= qi,

sup
p
{AP i

qi(p) < xdiqi,j(k)}+
ni+1∑
r=1

sup
p
{Crpi+1

r (p) < xdiqi,j(k)} if s = qi.
(18)

The number of passengers on board of the bus j at the station s is expressed as follows
:
∀k ≥ 1

yis,j(k) =

{
yis−1,j(k) + kis,j(k)− kis,j−1(k)−Dtis,j(k) if j 6= 1,

yis−1,1(k) + kis,1(k)− kis,ni
(k − 1)−Dtis,1(k) if j = 1.

(19)
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Where: k represents the kth turn of the bus, Dtis,j(k) represents the number of passen-

gers who want to get off the bus j at the station s and kis,j(k) represents the counters
defined above. The number of passengers on board depends on arrival dates of passen-
gers (expressed by APis). So, the optimal capacity of the bus j is given by the following
equation :

Coptij(k) =

pi⊕
s=1

yis,j(k) (20)

Given that passengers arrival suffers from a strong variation in real-time (peak and
off-peak periods), the above-mentioned parameter is developed for each turn of the
bus. The aim of calculating the optimum capacity is to determine the bus (from the
fleet) that will transport all passengers waiting at every line station. This will enables
all passengers to get on the bus without being constrained to wait the next one.

In order to illustrate the proposed approach, a numerical example is presented in
the following section and the obtained results are reported and analyzed.

7. Numerical example

In this section, we consider the following numerical example (table 4) of the bus net-
work of figure 1. It is important to note that the studied case is a sub-system of a
global bus network. This sub-system is a zoom of a real-world example. Without losing
the generality, the proposed approach can be applied on more complex transportation
systems (bus, train, subway, ....) with more connected lines and correspondence sta-
tions. Our current research work in this direction, is about the generalization of this
approach. Preliminary obtained results are satisfying and promising. The table below
includes the data of the studied network.

Table 4. Data of the considered network

Data Line Li Line Li+1

Number of stations pi=3 pi+1=4

Bus waiting time(min) τ i1=3,τ i3=2,τ i5=1 τ i+1
1 =4,τ i+1

3 =3,τ i+1
5 =1,τ i+1

7 =1

Bus traveling time(min) τ i2=23,τ i4=25,τ i6=45 τ i+1
2 =15,τ i+1

4 =10,τ i+1
6 =10,τ i+1

8 =40

Number of buses ni=2 ni+1=3

Buses capacity Ci
1=40, Ci

2=40 Ci+1
1 =35,Ci+1

2 =35,Ci+1
3 =50

Buses starting time(min) ui
1(1)=0, ui

2(1)=50 ui+1
1 (1)=0,ui+1

2 (1)=35,ui+1
3 (1)=70

Other parameters δ=0.1min, qi=2 and qi+1=2

To simplify this study, we assume that: ∀k ≥ 1, uij(k) = xai1,j(k-1) which means
that as soon as a bus arrives to its departure station (achievement of a circuit), it will
begin a new one. As a result, the equation (6) becomes:
∀k ≥ 1 and j∈ {1, .., ni}

Xj(k) = A⊗Xj(k − 1) = A⊗(k−1) ⊗Xj(1) (21)

The characteristic matrix A of line Li is given by:
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A=



ε ε ε ε ε ε e
ε ε ε ε ε ε 3
ε ε ε ε ε ε 26
ε ε ε ε ε ε 28
ε ε ε ε ε ε 53
ε ε ε ε ε ε 54
ε ε ε ε ε ε 99


After implementing the proposed algorithms while using the numerical data of table
4, we obtain the results reported in what follows.

7.1. Time passage of the buses

In the following, the departure and arrival times of buses at different stations are
presented. For j =1 (first bus), the dates of the first five passages at network stations
are given by (equation (6)):

X1(1)=



e
3
26
28
53
54
99

,X1(2)=



99
102
125
127
152
153
198

,X1(3)=



198
201
224
226
251
252
297

,X1(4)=



297
300
323
325
350
351
396

,X1(5)=



396
399
422
424
449
450
495


The same calculus is applied for the other bus by replacing j by 2 in the equation
(6). Next, we evaluate boarding, disembarking and waiting time of passengers at every
station of the line.

7.2. Arrival, boarding and waiting time of passengers

In this section, we are going to evaluate passengers arrival, boarding and waiting time
in both departure and connection station (table 5 and 6).
The arrival of passengers to their departure station are random according to a ex-
ponential distribution of parameter λ=0.7. Also, the destination of each passenger is
given randomly. In the following table, we present passengers arrival in a period where
there is not much traffic (off-peak period).
Legend:

• kth (first column) means the kth passenger who arrives to this station.
• Arrival time means the arrival of each passenger to the departure station.
• Jth bus with bus j = 1,2 represents the bus that will transport the kth passenger

(first column).
• βis,j represents the turn of the bus j.

As indicated in table 4, the departure clearance of bus 1 is given at t = 0. This bus
leaves the departure station at t = 3 min (waiting time =3 min). The arrival date of
the first passenger is 1,083455 less than 3, so he can take the bus 1. The second, third,
fourth, fifth and sixth passengers will take also the first bus. However, the seventh one
will wait 22,88 min to take the second bus which starts at t = 50 min. At t=99, the
first bus is back to the starting station and begins a new circuit.

Besides, passengers arrival and waiting times and also buses departure times in
a peak period (arrival rate is high compared to the previous table) are presented in
figure 11. We notice from this figure that passengers waiting time is very high (average
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Table 5. Passengers boarding and waiting time at the departure station

kth
Arrival

time(min) Destination
jth

bus

Bus
depar-

ture(min) βi
1,j

Boarding
time

OMi
1,j(min)

Waiting
time (min)

1 1,083455 Si
3 1 3 1 1,083455 1,92

2 2,123235 Si+1
3 1 3 1 2,123235 0,88

3 2,523236 Si
2 1 3 1 2,523236 0,48

4 2,632148 Si
2 1 3 1 2,632148 0,37

5 2,650012 Si
3 1 3 1 2,732148 0,35

6 2,782523 Si
3 1 3 1 2,832148 0,22

7 30,12356 Si+1
3 2 53 1 50,1 22,88

8 32,20326 Si
2 2 53 1 50,2 20,80

9 35,23569 Si
2 2 53 1 50,3 17,77

10 50,23546 Si
2 2 53 1 50,4 2,77

11 52,23254 Si
3 2 53 1 50,5 0,77

12 55,23254 Si+1
3 1 102 2 99,1 46,77

13 60,00023 Si+1
3 1 102 2 99,2 42

14 65,23564 Si
3 1 102 2 99,3 36,77

15 70,25648 Si
3 1 102 2 99,4 31,75

16 75,25255 Si
2 1 102 2 99,5 26,75

of 26 min), because the number of buses used (ni=2) is too small for arrival rate of
passengers. Later on, the influence of capacity and number of buses on passengers
waiting time are presented.

Figure 11. Passengers arrival and waiting time at the departure station

The table 6 describes arrival, boarding and waiting time of passengers at the connection
station. The first bus (in its first passage) arrives at the connection station with six
passengers on board (see table 5) and finds five waiting passengers. Only three of them
get off the bus (passenger 2, 3 and 4 in table 5). We notice that the fourth and fifth
passengers of table 6 have made the correspondence. In fact, the first bus of line Li+1

arrives at the connection station at t=19 and puts down two passengers who want
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Table 6. Passengers boarding and waiting time at the connection station

kth
Arrival

time(min) Destination
jth

bus

Bus
depar-

ture(min) βi
2,j

Boarding
time

OMi
2,j(min)

Waiting
time (min)

1 16,02365 Si
3 1 28 1 26,1 11,98

2 17,32567 Si
3 1 28 1 26,2 10,68

3 18,00035 Si
3 1 28 1 26,3 10

4 19,1 Si
3 1 28 1 26,4 8,9

5 19,2 Si
3 1 28 1 26,5 8,8

6 50,01235 Si
3 2 78 1 76,1 27,99

7 52,14589 Si
3 2 78 1 76,2 25,86

8 56,14567 Si
3 2 78 1 76,3 21,86

9 70,00123 Si
3 2 78 1 76,4 8

10 75,23784 Si
3 2 78 1 76,5 2,77

to make the correspondence. At t=28, the first bus of line Li leaves the connection
station and goes to the arrival terminus with eight passengers on board. Furthermore,
the same approach is applied for the arrival terminus.

7.3. Passengers disembarking time

To evaluate disembarking time of passengers at different stations, we use the equation
(14) and (15). To illustrate our approach, we are going to calculate disembarking times
for passengers who took the first bus (in its first passage) at the departure station (see
table 5). In the following table, some routing functions are computed in order to
evaluate the daters related to passengers disembarking (see the algorithm in figure 9).
We recall that ”-” in table below means that the parameter is not computed. The first
passenger arrives to the departure station at t=1,083455 min and gets on the first bus
(j=1). The destination of this passenger is station three (destination is Si3 as given in
table 7), so the transition xi3,1 will be fired. Using the equation (13), we have:

• xi3,1(1)= OMi
1,1(ξi7,1)⊕ OMi

2,1(ξi8,1)⊕ OMi
3,1(ξi9,1)=OMi

1,1(1)=1,083455 min.

Firing times of the other transitions are deduced in the same way using the equations
(14) and (15) and the algorithm of figure 9 to compute the routing functions. Further-
more, the first bus arrives at t=26 min to the connection station and puts down three
passengers. As a result, disembarking times of these passengers are 26,1 min, 26,2 min
and 26,3 min. The second passenger want to make correspondence, so the travel time
calculated in the bottom of table 7 is just his traveling time on line Li. After getting
off, this passenger waits for a bus of line Li+1 to make a correspondence and travel to
station three of line Li+1.

7.4. Influence of buses capacity on passengers waiting times

In order to show the influence of buses capacity on passengers waiting times, we
simulate the evolution of waiting times at the connection stop for many capacity
values of circulating buses on the line Li. For instance, we consider mini bus with Ci

1

= 7 seats instead of a big bus with 40 seats (figure 12). The first bus (j=1) arrives at
the connection station with six passengers on board and finds five waiting passengers.
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Table 7. Passengers traveling time on line Li

kth 1 2 3 4 5 6

OMi
1,1 1,083455 2,123235 2,523236 2,632148 2,732148 2,832148

Destination Si
3 Si+1

3 Si
2 Si

2 Si
3 Si

3

ξi4,1 - 2 3 4 - -

ξi5,1 - ε ε ε - -

ξi6,1 - ε ε ε - -

ξi7,1 1 - - - 5 6

ξi8,1 ε - - - ε ε

ξi9,1 ε - - - ε ε

xi
2,1 - 2,123235 2,523236 2,632148 - -

xi
3,1 1,083455 - - - 2,732148 2,832148

ξi11,1 - - 1 1 - -

ξi12,1 1 - - - 1 1

ξi13,1 - 1 - - - -

ξi14,1 - - 2 3 - -

ξi15,1 - 1 - - - -

ξi16,1 - - 1 1 - -

ξi17,1 - ε - - - -

Di
1,1 - - - - - -

Di
2,1 - - 26,2 26,3 - -

Di
3,1 53,1 - - - 53,2 53,3

Crpi
1 - 26,1 - - - -

Travel time(min) 52,016545 23.976765 23,676764 23,667852 50.549988 50,517477

Only three passengers get off the bus at this station. Since the capacity of the bus does
not exceed 7, only four among the waiting passengers can get on the bus. As a result,
the fifth passenger waits 58.8 min instead of 8.8 min (figure 12). So, the average of
passengers waiting time increases. Moreover, in figure 12, we notice that passengers,
who have too high peaks (5th, 18th, 29th...), find the bus full and saturated (no empty
seats inside). For that reason, they have to wait getting on board the next bus. As a
result, their waiting times increases by 50 minutes representing the passage frequency
of buses at the considered station.

Furthermore, we can observe on the figure 13 for peak periods scenarios that the
two buses could become saturated. Therefore, the average of passengers waiting time
increases. These observations allow concluding that this type of buses are not adapted
to peak periods. So, in order to eliminate the influence of the limited capacity on
passengers waiting time, we calculate the optimal capacity.

7.5. Optimal capacity

In this regulation study we consider both criteria that influence passengers waiting
time: the capacity of buses and their number on each network line. So, the figure 14
describes the influence of these criteria on passengers waiting time. Our objective to
find a compromise between the capacity of buses to use on the line, their number and
an acceptable waiting time for passengers. We notice in figure 14 that when we increase
the capacity of the bus or number of used buses, passengers waiting time decreases

24



Figure 12. The influence of capacity on passengers waiting time

Figure 13. Number of buses occupied seats in a given period

to reach a stable point from which the capacity has no longer impact on passengers
waiting time. So, to eliminate the influence of capacity on passengers waiting time,
we calculate the parameter Coptij (optimal capacity) presented in equation (20). For

instance, we notice in figure 14 using only one bus with a capacity Copti1=45 the
average waiting time becomes stable at 17 min. So, to minimize transportation costs,
we have to use a bus of 45 seats rather then a bus of seats higher than 45. On the
other hand, it is better to use only one bus with 45 seats with a maximum of 17 min as
waiting time (for some passengers) rather then two buses with 30 seats and an average
waiting time reaching 13 min. The figure 14 shows the result of other scenarios using
more than two buses and associated average waiting times.
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Figure 14. The influence of capacity and number of buses on passengers waiting time

8. Conclusion and perspectives

In this study, we proposed a modeling approach using the two complementary tools
Petri nets and (max, +) algebra to describe the behavior of a bus network with the
aim to evaluate, analyze and control its performances. The studied system is subject
to complex phenomena such as conflicts and choice situation, synchronization and
concurrency. Using (max, +) algebra for modeling such phenomena is not obvious.
Our objective through this paper is to bring our contribution by proposing a (max, +)
modeling approach for this type of DES with conflicts and enrich the current emergent
theory in this research field. A non stationary (max, +) model is then proposed in this
paper and routing functions enabling to manage all encountered conflicts in the system
are explicitly developed with mathematical equations.

Simulations are performed and obtained results are reported and analyzed. Firstly,
we evaluate some system metrics such as arrival and departure time of buses at dif-
ferent stations of the network and also waiting, boarding, disembarking times of each
passenger. Furthermore, we study the influence of limited capacity of buses on pas-
sengers waiting time. Then, we propose a control approach enabling to determine a
compromise between the capacity and number of buses to use on the network in order
to minimize both waiting times of passengers and consequently engaged transporta-
tion company costs. A mathematical expression of optimal capacity is proposed and
illustrated. Obtained results are promising.

Although Petri nets provide a good paradigm for modeling transportation networks,
there are some improvements to be addressed as a future work. Modeling large net-
works with more details could conduct to a combinatorial problem. Our perspectives
can then include the use of Colored Petri Nets (CPN) in order to reduce and simplify
the proposed graphical model. We intend also to develop and extend the (max,+)
theory for translating CPN models to (max, +) equations. Moreover, some theories
in (max, +) algebra can be developed to improve the quality of services offered to
passengers in terms of traveling and waiting times. This improvement will also be
benefit to the transportation companies while reducing their costs and environmental
impact (gas emissions) by minimizing the number of buses to deploy on the network.
Furthermore, we intend to generalize in our future models the stochastic aspect of

26



the system by integrating other stochastic parameters such as buses travel times often
variable.
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