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Introduction

It is easy to find a group of bijective transformations, each having a fixed point but without a common fixed point: for instance, in the symmetric group of {1, 2, 3, 4, 5}, the subgroup generated by the cycle (123) and the double transposition (12)(45), or the group of rotations of the two dimensional sphere, or the group of homeomorphisms of the unit disk. Such a group will be called eccentric. In addition to the existence of a fixed point for each bijection of the group, which information would imply the existence of a common fixed point? This additional information can be the invariance of a geometric structure, the commutativity of the group or another algebraic property, the uniqueness of the fixed point for each nontrivial bijection, or a combination of the former informations.

The invariance of a geometric structure can often be stated as follows: The group of bijections is a subgroup of a larger group G. The fact that this information implies the existence of a common fixed point can be seen as a property of the larger group G. We shall say that a group G of bijections of a set X is fixating if it contains no eccentric subgroup.

To our knowledge, the notion of fixating group has not been considered in earlier works. Notice that this notion is not intrinsic to the group but depends on the action as a group of bijections. We will skip the word "action" for short. The aim of this paper is to explore which groups of bijections are fixating and, to a lesser extent, to find some sufficient conditions for a group of bijections to have a common fixed point.

About fixating groups, we shall see that many things can happen, depending on the nature and the dimension of the set X, and on the nature of the bijections. We have paid particular attention to isometry groups of some classical spaces.

When X is a metric space, Isom X denotes the group of isometries of X. If moreover X can be oriented, Isom + X denotes the subgroup of isometries preserving the orientation. Given an integer n 1 we denote by R n the n-dimensional Euclidean space, Z n the lattice of integer points in R n , H n the n-dimensional hyperbolic space, S n the n-dimensional sphere, and RP n the n-dimensional projective space (we prefer to use the exponent n for cartesian products only). Our results about these spaces are the following. ⊲ The groups Isom R n and Isom + R n are fixating if and only if n 3. ⊲ The groups Isom H n and Isom + H n are fixating if n 3, and nonfixating if n 5. When n = 4, the question is open.

One could think that, for each family of spaces F n = R n , H n , S n or Z n , there exists a critical integer n 0 such that the isometry group of F n is fixating if and only if n n 0 . This holds for R n (with n 0 = 3) and H n (with n 0 = 3 or 4) but neither for S n nor for Z n : ⊲ The group Isom + S n is fixating if and only if n = 1 or 3. ⊲ The group Isom Z n is fixating for all n 1, whether Z n is equipped with the Euclidean norm or the L 1 norm.

An important ingredient for the existence of global fixed points is the median inequality, see formula (1) at the beginning of Section 4. This inequality holds in the Euclidean and the hyperbolic spaces but neither in the spheres nor in the projective spaces.

This inequality has been introduced by F. Bruhat and J. Tits in [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF] and their result is as follows: If a metric space (E, d) is complete and if the median inequality holds, then each isometry group with a bounded orbit admits a global fixed point, see Theorem 4.3 and Corollary 4. [START_REF] Borel | Free subgroups of semi-simple groups[END_REF].

Moreover, we show that an isometry group G in a complete metric space satisfying the median inequality is fixating provided that it has a normal fixating subgroup H such that G/H is cyclic, see Corollary 4.8. This is the reason why Isom R n and Isom + R n are fixating for the same dimension n; the same holds for Isom H n and Isom + H n . The median inequality is crucial for this result: We shall see that Isom + S 3 is fixating while Isom S 3 is not. Indeed: ⊲ The group Isom S n is fixating if and only if n = 1.

About the projective space we obtain:

⊲ The group Isom RP n is fixating if and only if n = 1; ⊲ The group Isom + RP n is fixating if n = 1 and nonfixating if n = 2 or n 4. We do not know whether Isom + RP 3 is fixating or not.

Another important ingredient in our study is the existence of some free subgroups in certain linear groups. It is used to construct eccentric groups. A very general result by A. Borel [START_REF] Borel | Free subgroups of semi-simple groups[END_REF] ensures this existence, although some elementary results lead to explicit examples that are enough for our need.

The article is organized as follows. Section 2 is devoted to notations and some preliminary results. Section 3 is about affine groups and Section 4 about isometry groups. Isometry groups of classical spaces are studied in detail in Section 5: first in Euclidean spaces, then in hyperbolic spaces, and at last in elliptic spaces. Section 6 is devoted to results in discrete spaces. We first deal with permutation groups, then with Isom Z n , and at last with some graphs. Concerning graphs, we first present a result by J.-P. Serre about fixed points of finitely generated isometry groups of trees [20], then we extend this result to a family of colored graphs. Section 7 provides exercises; the solutions are given in Appendix 8.4. Appendix 8.1 is a short introduction to hyperbolic geometry and Appendices 8.2 and 8.3 give details of some proofs.

We leave several questions open. It may happen that some answers already exist in the literature, or that the reader solves some of them. In that case we would be grateful to the reader who will inform us! 2 Preliminaries 

Notations

Groups. Given a group G, we denote H

G if H is a subgroup of G and H G if H is a normal subgroup of G.

If A is a subset of a group G, the subgroup of G generated by A is denoted A . When A contains a small number of elements, we skip the braces. Thus we write

f, g = f,g∈H G H = f i 1 g j 1 . . . f in g jn ; n ∈ N, i k , j k ∈ Z .
We call cyclic a group, finite or not, generated by a single element.

The commutator of f and g is [f, g] = f -1 g -1 f g. For a set X, Bij X denotes the group of bijections of X.

Metric spaces. In a metric space (X, d), an isometry f : X → X is a bijection such that d(f (x), f (y)) = d(x, y) for all x, y ∈ X. As already said in the introduction, Isom X is the group of isometries of X and Isom + X is the subgroup of those preserving the orientation if X is orientable. For an element x ∈ X and a real number r > 0, B(x, r) = {y ∈ X ; d(x, y) < r} denotes the open ball of center x and radius r and B ′ (x, r) = {y ∈ X ; d(x, y) r} is the corresponding closed ball. Given two points a and b of X, Med (a, b) denotes the mediator of a and b:

Med (a, b) = {c ∈ X ; d(a, c) = d(b, c)}.
Affine and Euclidean Spaces. Given an affine bijection f : R n → R n , #» f is the associated linear map, defined by #» f (x) = f (x)f ( #» 0 ). The mapping f → #» f is a morphism of groups. In particular we have

[ #» f , #» g ] = # » [f, g].
Similarly, if F is an affine subspace of R n then #» F denotes the associated vector subspace. For a subset A ⊂ R n , we denote by Aff A the affine space generated by A, i.e. the intersection of all affine subspaces of R n containing A. If A = {a 1 , . . . , a n }, we shall write Aff (a 1 , . . . , a n ) instead of Aff {a 1 , . . . , a n } .

Hyperbolic Spaces. We will use the model of the upper half-space with the Poincaré metric, see Appendix 8.1.

GAF, GAG and fixating group

A group of bijections (X, G) is the data of a set X and a subgroup G of Bij X. Given a bijection g : X → X, its set of fixed points is Fix g = {x ∈ X ; g(x) = x}.

A group of bijections (X, G) is called with fixed points (abbreviated as gaf) if Fix g is nonempty for all g ∈ G. We say that (X, G) is a group with a common fixed point (gag) if

Fix G := g∈G Fix g = ∅.
A gaf which is not a gag is called eccentric. With the above vocabulary we say that (X, G) is fixating if for any subgroup H G we have (X, H) gaf ⇔ (X, H) gag, i.e. if it does not contain any eccentric subgroup. Observe that any subgroup of a fixating group is fixating. We shall omit the set X when the context is clear. In the same way we will say that an action ρ of a group G on a set X is fixating if (X, ρ(G)) is a fixating group of bijections. We will use the following result several times. Proposition 2.1. Let f, g be two bijections on a set X.

a. If f and g commute then g(Fix f ) = Fix f . b. If Fix f is a singleton {x 0 } then x 0 ∈ Fix g for any g commuting with f . c. Let G be a group of bijections on X and let H G. For all g ∈ G we have g(Fix H) = Fix H.

Proof. a. If x ∈ Fix f then g(x) = g(f (x)) = f (g(x)) hence g(x) ∈ Fix f . This proves g(Fix f ) ⊆ Fix f . Besides, g -1 also commutes with f , so g -1 (Fix f ) ⊆ Fix f . We then obtain Fix f = g(g -1 (Fix f )) ⊆ g(Fix f ), hence the equality follows.

b. Results from item a. c. Let g ∈ G. For all x ∈ Fix H and all h ∈ H, we have k = g -1 hg ∈ H, hence x ∈ Fix k. Therefore we have g(x) = g(k(x)) = h(g(x)), hence g(x) ∈ Fix h. This shows that g(Fix H) ⊆ Fix H for all g ∈ G. Applied to g -1 , this gives Fix H = g g -1 (Fix H) ⊆ g(Fix H).

We immediately deduce from item b a first sufficient condition for a group of bijections to be a gag. Proposition 2.2. Let G be a group of bijections on X. If G is Abelian and if there exists f 0 ∈ G having a single fixed point then G is a gag.

We will see in Section 3 that each of the words "Abelian" and "unique" is needed.

Let us end this section with remarks of an algebraic nature. 1. The concept "fixating" is compatible with the product: If (X 1 , G 1 ) and (X 2 , G 2 ) are two fixating groups of bijections, it is easily checked that the action of the product group G 1 × G 2 on X 1 × X 2 is fixating. 2. The notion "fixating" however is not compatible with the induction of Frobenius [START_REF] Frobenius | Über Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen[END_REF]. More precisely, let G be a group, H a subgroup of G, and R a system of class representatives modulo H. An action of H on a set Y induces an action of G on X = R×Y defined by g(r, y) = (r ′ , h(y)) where r ′ ∈ R and h ∈ H are uniquely determined by gr = r ′ h. Section 6.1 on permutation groups provides an example where the action (Y, H) is fixating but the induced action is not. We consider the group G of permutations of {1, 2, 3, 4, 5} and H the subgroup of permutations fixing 5, seen as acting on Y = {1, 2, 3, 4}. As system of representatives, we choose the transposition r i = (i 5) for 1 4 and r 5 = id.

On the one hand (Y, H) is fixating by Theorem 6.1, on the other hand (X, G) is not: Let K be the subgroup of G generated by the permutations (123) and (12)(45). One finds K = {id, (123), ( 132), (12)(45), (13)(45), (23)(45)}, Fix (12)(45) = {(r 3 , 5)}, Fix (13)(45) = {(r 2 , 5)}, Fix (23)(45) = {(r 1 , 5)}, and Fix (123) = Fix (132) = {(r 4 , 4), (r 4 , 5), (r 5 , 4), (r 5 , 5)}, hence K is an eccentric subgroup of (X, G). 3. The notion "fixating" strongly depends on the set on which the group acts. In Exercise 7.2 we introduce an intrinsic notion of globalization: A group is said to be superfixating if, for any set X and any morphism ρ : G → Bij X, the pair (X, ρ(G)) is fixating. This notion finally has a rather limited interest: The result of Exercise 7.2 is that a group is superfixating if and only if it is cyclic (finite or not). On the other hand, the additive group Q is finitely superfixating in the following sense: If X is a finite set and ρ :

Q → Bij X a morphism then (X, ρ(Q)) is fixating, cf. Exercise 7.3.

Groups of affine bijections

Among the geometric structures, the affine structure is the most fundamental one. It is therefore natural to begin our study with groups of affine bijections of R n . The results are rather negative except for dimension one.

Proposition 3.1. The group of affine bijections of R is fixating.

Proof. Let H be a group of affine bijections of R which is a gaf. Since an affine bijection of R different from the identity has at most one fixed point, by Proposition 2.2 it is enough to prove that H is Abelian. If f and g are in H then the commutator [f, g], which also has a fixed point, is not a nontrivial translation. Since the linear group on R is Abelian, this commutator can only be the identity.

The commutativity of the linear group and the uniqueness of the fixed points are the two ingredients of the previous proposition. Both ingredients are characteristics of the dimension one. In larger dimension, adding only one of the hypotheses -commutativity or uniqueness of the fixed points -is not enough to prove that a gaf is a gag as shown in Examples 3.2 and 3.3 below.

Example 3.2. Let a ∈ R \ Q and let f, g be the affine transvections of R 2 given by f (x, y) = (x + y + 1, y) and g(x, y) = (x + ay, y).

Then the group G = f, g is Abelian and eccentric.

Proof. It is straightforward to prove that G is Abelian. For (m, n) ∈ Z 2 \ {(0, 0)} we have f m g n (x, y) = x + (m + na)y + m, y hence Fix (f m g n ) is nonempty: It is the straight line D m,n of equation y = -m m+na . It follows that G is a gaf. We also have D m,n ∩ D m ′ ,n ′ = ∅ provided that mn ′ = m ′ n hence G is not a gag.

Remarks.

1. If R 2 is equipped with the discrete distance given by d(a, b) = 1 if a = b and d(a, a) = 0, then the group G of the previous example is an eccentric Abelian group of isometries. Example 4.10 of the next section is an example of an eccentric and Abelian group of isometries in a Hilbert vector space of infinite dimension. On the other hand Theorem 4.9 shows that there does not exist any eccentric Abelian group of isometries of a Euclidean or hyperbolic space of finite dimension. 2. The above shows that the group of affine bijections of R 2 is nonfixating. For n 3, extending the previous maps f and g by the identity on the last n -2 components we obtain an eccentric group of affine bijections of R n . As a consequence the group of affine bijections of R n (with n 1) is fixating if and only if n = 1. 3. We have not explored whether there is an eccentric Abelian group of affine maps acting on Q 2 . On the other hand Example 3.3 below is valid with Q instead of R. 4. Given an integer d 1 and a field K, one can also ask whether the group GL(d, K) acting on

K d \ { #» 0 } is fixating.
The answer is that it is fixating only in the obvious cases GL(1, K) and GL(2, F 2 ), where F 2 = {0, 1}, cf. Exercises 7.16 and 7.17.

Example 3.3. Let b ∈ R 2 \ { #» 0 } and let f, g ∈ Bij R 2 be the affine bijections f : x → #» f (x) and g : x → #» g (x) + b,
where #» f and #» g are the elements of SL(2, R) with matrices

Mat ( #» f ) = A = 0 1 -1 3 Mat ( #» g ) = B = -1 -1 5 4 .
Then the group G 1 = f, g is eccentric. More precisely, every element of G 1 \ {id} has a unique fixed point but G 1 is not a gag.

We recall that SL(2, Z) is the set of 2 by 2 matrices with integer coefficients and determinant 1.

The proof is based on the following two results. The proof is in Appendix 8.2. We deduce that 1 is not an eigenvalue of M for any matrix

M ∈ G 0 \ {I}, since det M = 1.
Lemma 3.5. Let h be an affine bijection on R n such that 1 is not an eigenvalue of Lemma 3.4, hence h has a unique fixed point by Lemma 3.5. However there is no fixed point common to all elements of G 1 since the fixed points of f and g are distinct.

#» h . Then Fix h is a singleton. Proof. We have h(x) = x ⇔ x - #» h (x) = h( #» 0 ) ⇔ x = (id - #» h ) -1 (h( #» 0 )). Proof of Example 3.3. Let h ∈ G 1 \ {id} and let γ 1 , γ ′ 1 . . . γ r , γ ′ r ∈ Z, all nonzero except possibly γ 1 and γ ′ r , such that h = f γ 1 g γ ′ 1 • • • g γ ′ r . We have #» h = #» f γ 1 #» g γ ′ 1 • • • #» g γ ′ r = id, so 1 is not an eigenvalue of #» h according to
To finish this section, let us recall two classical results on the existence of global fixed points for groups or sets of affine applications. The first result is the Markov-Kakutani theorem and the second is the Kakutani theorem, see [START_REF] Markov | Quelques théorèmes sur les ensembles abéliens[END_REF][START_REF] Dunford | Linear operators, 1: General Theory[END_REF][START_REF] Rudin | Functional Analysis[END_REF][START_REF] Kakutani | Two fixed-point theorems concerning bicompact convex sets[END_REF]. These two results require a compactness assumption and an additional hypothesis. Exercise 7.12 presents a finite version of these results. It is due to R. Antetomaso [START_REF] Antetomaso | Un théorème de point fixe en dimension finie : application aux sousgroupes compacts de GL n (R)[END_REF]. Theorem 3.6. (Markov-Kakutani, see for example [START_REF] Rudin | Functional Analysis[END_REF] Theorem 5.23, p.140) Let K be a convex compact nonempty subset of a separated topological vector space E and let G be a set of affine and continuous maps that commute and leave K stable. Then K ∩ Fix G is nonempty. Theorem 3.7. (Kakutani, cf. [START_REF] Rudin | Functional Analysis[END_REF] Theorem 5.11, p.127) Let K be a compact convex subset of a locally convex topological vector space E and G be an equicontinuous group of affine bijections leaving K stable. Then K ∩ Fix G is nonempty.

The literature contains a large number of recent works containing supplements and extensions of these results. Among these, below is a complement to Theorem 3.6 due to Anzai and Ishikawa [START_REF] Anzai | On common fixed points for several continuous affine mappings[END_REF]: Under the assumptions of Theorem 3.6, with moreover E locally convex, if G is a finitely generated group, G = T 1 , . . . , T n , then for all

α j ∈ ]0, 1[ satisfying n j=1 α j = 1 we have Fix n j=1 α j T j = Fix G.
The theorem below can be deduced from Theorem 3.7 but we give an independent proof. Theorem 3.8. A group of affine bijections of R n having a bounded orbit is a gag.

Proof. Let G be such a group and let x be an element of R n whose orbit

O x = {f (x) ; f ∈ G} is bounded. Let K be the closed convex hull of O x . Like O x , K is invariant by all maps f ∈ G. Let F = Aff K,
the affine subspace generated by K. The interior of K relative to F is nonempty hence λ F (K) > 0, where λ F denotes the Lebesgue measure of F (in the case where K is a singleton, λ F is the counting measure). Since K is compact, we also have λ F (K) < +∞. The maps f ∈ G are affine, so send the measure λ F to a multiple of itself. Since they send K on K, they preserve λ F . The centroid of K for the restriction of λ F to K, defined by

1 λ F (K) K xdλ F (x), is therefore fixed by all f ∈ G.

Groups of isometries

The median inequality

The Bruhat-Tits fixed point theorem [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF] gives a sufficient condition for a group of isometries on a metric space to be a gag: It is enough that the space satisfies the median inequality below and that the group has a bounded orbit. Definition 4.1. We say that a metric space (X, d) satisfies the median inequality if

∀x, y ∈ X ∃m ∈ X ∀z ∈ X d(z, m) 2 1 2 d(z, x) 2 + d(z, y) 2 -1 4 d(x, y) 2 . ( 1 
)
It is easy to prove that the point m is unique and that d(x, m) = d(y, m) = 1 2 d(x, y), cf. Exercise 7.4. We say that m is the midpoint of {x, y} and we denote it m(x, y).

When X is a Euclidean space, or more generally a pre-Hilbert space, (1) is actually an equality called the parallelogram identity and m is the usual midpoint of the segment [x, y], cf. Exercise 7.5.a. Conversely, it is known that a normed vector space satisfying (1) is necessarily pre-Hilbert, cf. Exercise 7.5.b.

A combinatorial tree with its usual distance does not satisfy (1) (an edge has no midpoint) but its realization as a real metric space satisfies it. Trees are also the only graphs with this property. Complete Riemannian manifolds which are simply connected with negative sectional curvature, especially hyperbolic spaces with their usual distance, satisfy (1), see [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF]. This is a consequence of the comparison theorem of Rauch [START_REF] Cheeger | Comparison Theorems in Riemannian Geometry[END_REF], cf. Exercise 7.6.

The median inequality makes it possible to associate a single center with any bounded subset of a complete metric space. Let (X, d) a metric space and A be a nonempty bounded subset of X. For every x ∈ X, let r(x, A) = inf{r > 0 ; A ⊆ B ′ (x, r)} = sup{d(x, a) ; a ∈ A}.

We define the radius of A by r A = inf{r(x, A) ; x ∈ X}.

If there exists x 0 ∈ X such that r A = r(x 0 , A), we will say that x 0 is a center of A. In this case the closed ball B ′ (x 0 , r A ) is a ball circumscribed to A.

Lemma 4.2.

[5] If (X, d) is a complete metric space satisfying (1) then any nonempty bounded subset of X has a unique center.

Proof. Let A be a nonempty bounded subset of X, let x, y ∈ X, and let m be the midpoint of {x, y}. Writing (1) for all a ∈ A we get

d(m, a) 2 1 2 d(x, a) 2 + d(y, a) 2 -1 4 d(x, y) 2 1 2 r(x, A) 2 + r(y, A) 2 -1 4 d(x, y) 2
, from which we successively deduce

r 2 A r(m, A) 2 1 2 r(x, A) 2 + r(y, A) 2 -1 4 d(x, y) 2
, and

1 2 d(x, y) 2 r(x, A) 2 + r(y, A) 2 -2r 2 A . (2) 
We deduce the uniqueness of a possible center: If x and y are centers of A then r(x, A) = r(y, A) = r A , and (2) implies x = y.

To prove the existence, let (x n ) n∈N be a sequence such that r(x n , A) tends to r A as n tends to +∞. Taking x = x n and y = x n+p in (2) we obtain

1 2 d(x n , x n+p ) 2 r(x n , A) 2 + r(x n+p , A) 2 -2r 2 A → 0
uniformly in p as n goes to infinity. Thus the sequence (x n ) n∈N is Cauchy, therefore has a limit ℓ verifying r(ℓ, A) = r A , hence ℓ is a center of A.

The Bruhat-Tits fixed point theorem is stated as follows.

Theorem 4.3. [START_REF] Bruhat | Tits, Groupes réductifs sur un corps local[END_REF] Let G be a group of isometries of a complete metric space (X, d) verifying the median inequality (1). If there is a nonempty bounded subset of X which is invariant by all the elements of G then G is a gag.

Proof. Let A be a nonempty bounded subset of X, invariant by any g ∈ G, and let a be the center of A. Then, for all g ∈ G, g(B ′ (a, r A )) = B ′ (g(a), r A ) is the ball circumscribed to g(A) = A, therefore by uniqueness of the center, g(a) = a. As a consequence a ∈ Fix G hence G is a gag.

We immediately deduce the following result.

Corollary 4.4. Let G be a group of isometries of a Euclidean or hyperbolic space. If G has a bounded orbit then G is a gag.

Some of the following results will be used in Section 5.

Definition 4.5. Let (E, d) be a complete metric space verifying [START_REF] Antetomaso | Un théorème de point fixe en dimension finie : application aux sousgroupes compacts de GL n (R)[END_REF]. A subset C of E is called half-convex if for all x, y ∈ C the midpoint of {x, y} is in C.

It can be easily shown that a half-convex closed subset of a normed vector space is convex in the usual sense.

The following proposition asserts the existence and uniqueness of an "orthogonal projection" on the set of fixed points of a group of isometries. We split it into three statements, each having its own interest. We recall that d(x, A) = inf a∈A d(x, a). Proposition 4.6. Let (E, d) be a complete metric space verifying (1). Proof. Let ε ∈ G be such that εH generates G/H. Denote F = Fix H. Since H is normal in G, we have g(F ) = F for all g ∈ G according to Proposition 2.1.c, in particular ε(F ) = F . Let x ∈ Fix ε. By uniqueness of the orthogonal projection and since ε is an isometry, one has ε(π

a. If C ⊂ E is a closed half-convex part of E then,
F x) = π ε(F ) ε(x) = π F x, hence π F x ∈ Fix ε. Since G = ε, H , we obtain π F x ∈ Fix G.
Corollary 4.8. Let (E, d) be a complete metric space satisfying [START_REF] Antetomaso | Un théorème de point fixe en dimension finie : application aux sousgroupes compacts de GL n (R)[END_REF] and let H G Isom E be such that G/H is solvable and finite. If H is fixating then G is fixating. In particular a group of isometries of E is fixating provided that it contains a fixating subgroup of index 2.

Proof. We first assume that the quotient G/H is cyclic. Let G 1 G be a gaf; then H 1 = G 1 ∩ H is a gaf, therefore a gag since H is fixating. Besides, G 1 /H 1 is isomorphic to a subgroup of G/H, therefore cyclic, hence G 1 is a gag according to Theorem 4.7.

Since finite Abelian groups are products of cyclic groups, under the hypothesis that G/H is solvable and finite, there exists a finite sequence H = H 0 • • • H n = G such that for each i = 1, . . . , n the quotient H i /H i-1 is cyclic. The result is then successively applied to the cyclic quotients.

For the last assertion, if H is a subgroup of G of index 2 then H is normal in G and G/H is cyclic of order 2.

Remarks.

1. Our proof is not valid if G/H is only solvable. The right notion in our context is G/H polycyclic [START_REF] Segal | Polycyclic groups[END_REF], that is, G/H admits a finite sequence {e} = H 0 • • • H n = G/H with H i /H i-1 cyclic. We do not know whether or not our result holds when G/H is only assumed solvable and of finite type. 2. The fact that the ambient space satisfies (1) is essential: We will see in Section 5.3 that Isom + S 3 is fixating while Isom S 3 is not.

Solvable subgroups: The Euclidean and hyperbolic cases

We fix an integer n 0. The notation F n will indicate either the Euclidean space R n , or the hyperbolic space H n . We know that F n satisfies (1), see Exercise 7.6 for the case of H n . Theorem 4.9. Let G be an Abelian group of isometries of F n . If G is a gaf then G is a gag.

Proof. We proceed by induction on the dimension n. For n = 0 the result is trivial. Now let n 1 and assume that the property is true for all k < n.

If G = {id} we are done. Otherwise let f ∈ G \ {id}. Then F = Fix f is a subspace (affine or hyperbolic) of F n , of some dimension k < n. Let g ∈ G. As f and g commute, we have g(F ) = F according to Proposition 2.1.a. So for all g ∈ G the restriction of g to F , denoted by g |F , is well defined from F to F and is an isometry of F which is itself isometric to F k .

By hypothesis, Fix g is nonempty. Let x g ∈ Fix g and set y g = π F x g given by Proposition 4.6. Since g is an isometry and by uniqueness of the orthogonal projection, we have g(y g ) = Π g(F ) g(x g ) = Π F x g = y g . Thus, for every g ∈ G, g |F has at least one fixed point y g .

Let

G F = {g |F ; g ∈ G}. Then G F is a gaf on a space of dimension k < n, hence is a gag by induction. Since Fix G F = F ∩ Fix G, we deduce that Fix G is nonempty hence G is a gag.
The following example shows that the finite dimension is necessary.

Example 4.10. Let E = ℓ 2 (N, R), the space of square summable real sequences; it is a Hilbert space. Let h k be the symmetry of center 1 on the k-th component, i.e. the isometry of E defined by h k (x 0 , x 1 , . . . ) = (x 0 , . . . , x k-1 , 2x k , x k+1 , . . . ).

Let G n = h 0 , . . . , h n and let G = n∈N G n . It is immediate that G is Abelian. Let (e n ) n∈N
denote the canonical basis of E and s n = n k=0 e k . We have s n ∈ Fix f for all f ∈ G n , so G is a gaf. By contradiction, if G were a gag and if x = (x 0 , x 1 , . . . ) ∈ Fix G then for all n ∈ N we would have x n = 1 but the constant sequence equal to 1 is not in E hence G is eccentric. Theorem 4.9 can be generalized by changing the assumption "Abelian" into "solvable". Theorem 4.11. Let G be a solvable group of isometries of F n . If G is a gaf then G is a gag.

Proof. Recall that a group G is called solvable if there exists a finite and increasing sequence of subgroups {e G } = H 0 H 1 • • • H p = G (i.e. each normal in the next one) such that all the quotients H k+1 /H k are Abelian. The solvability index of G is the smallest integer p 0 with this property. This integer is reached for example by taking the sequence of derived groups: We put G 0 = G and, for k 0,

G k+1 = G ′ k = [G k , G k ], the group generated by the commutators of G k . Finally we choose H k = G p-k .
The proof is by induction on the solvability index of G. The property is trivial for p = 0. Assume that it is true for any group of solvability index p -1 and let us show it for G.

Let

G 1 = [G, G]. Since G is a gaf, G 1 is a gaf hence a gag by induction hence F = Fix G 1 is nonempty. Since G 1 is normal in G we have g(F ) = F for all g ∈ G. Now the group G/G 1 acts naturally on F : If g = {gh ; h ∈ G 1 } is an element of G/G 1 and if x ∈ F , then g(x) := g(x)
does not depend on the choice of the representative g ∈ g since h(x) = x for all h ∈ G 1 .

We claim that the pair (F, G/G 1 ) is a gaf. Indeed, since G is a gaf, if g ∈ G and x ∈ Fix g then, as in the proof of Theorem 4.9, by uniqueness of the orthogonal projection, the projection π F x is also in Fix g. As a consequence F ∩ Fix g = ∅, which gives Fix g = ∅ for all g ∈ G/G 1 seen as isometry of F .

Since G/G 1 is an Abelian group and F is a space (Euclidean or hyperbolic) of finite dimension, G/G 1 is a gag according to Theorem 4.9. Any fixed global point x ∈ F of G/G 1 is then fixed by any element of G, so G is itself a gag.

Groups of isometries of the classical spaces

In the whole Section 5, n is a strictly positive integer.

The Euclidean case

Recall that Isom R n is the group of isometries of R n equipped with the usual Euclidean distance and Isom + R n is the subgroup of those preserving the orientation. It is known that the elements of Isom R n are affine applications, cf. Exercise 7.9. In this Section 5.1 we prove the following result.

Theorem 5.1. The group Isom R n is fixating if and only if n 3.

We leave to the reader the pleasure to show that Isom R 2 is fixating, see Exercise 7.1. We will show successively that Isom R 3 is fixating, then that Isom + R 4 is nonfixating, which will imply that Isom R n is not fixating for n 4.

The case of dimension 3

Let us recall that the elements f ∈ Isom + R 3 such that Fix f = ∅ are either the identity or the rotations around an axis Fix f . Those with an empty set of fixed points are the translations and the screw displacements (a screw displacement is the Abelian product of a rotation and a translation of nonzero vector parallel to the axis of the rotation).

The following lemma is a key step to prove that Isom R 3 is fixating. We will have this same step in the proof that the group of isometries of the hyperbolic space of dimension 3 is fixating, see Lemma 5.13. Proof. According to Corollary 4.8, it suffices to show that Isom + R 3 is fixating. Let G Isom + R 3 be a gaf. We must show that Fix G = ∅. Lemma 5.2 already implies Fix f ∩Fix g = ∅ for all f, g ∈ G.

Lemma 5.2. If f, g ∈ Isom + R 3 are such that Fix f ∩ Fix g = ∅, then there is h ∈ f, g such that Fix h = ∅. Proof. If Fix f , Fix g, or Fix (f -1 g) is empty we are done. Otherwise let a ∈ Fix (f -1 g) and let b = f (a) = g(a). We have b = a since Fix f ∩ Fix g = ∅. So for all c ∈ Fix f we have d(a, c) = d(f (a), f (c)) = d(b, c). Therefore Fix f is in Med (a,
We call half-turn a symmetry about a straight line, called its axis. We will use the following fact: If the product of two half-turns is a half-turn then their axes are orthogonal and secant.

If G \ {id} contains only half-turns then, either G = {id, f } where f is a half-turn, or G = {id, f 1 , f 2 , f 3 } where f 1 , f 2 , f 3 are three half-turns of axes orthogonal and pairwise secant, so secant all three in one point, hence G is a gag.

From now on we assume that there exists f ∈ G\{id} that is not a half-turn. If Fix g = Fix f for all g ∈ G \ {id} we are done: Fix G = Fix f = ∅. Let us now assume that there exists g ∈ G \ {id} such that Fix g = Fix f . Then Fix f and Fix g are two straight lines crossing at some point denoted ω. Set P = Aff (Fix f ∪ Fix g), the affine plane containing Fix f and Fix g.

P ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ Fix h ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Fix g ❇ ❇ ❇ ❇ ❇ ❇ ❇ ❇ ❇ ❇ ❇ Fix f r b r ω
We will be done if we show that ω ∈ Fix G. We proceed by contradiction. Assume that there exists

h ∈ G such that ω / ∈ Fix h. Since Fix f ∩ Fix h and Fix g ∩ Fix h are nonempty, we have Fix h ⊂ P . Let a ∈ R 3 be such that f (a) = b ∈ Fix g ∩ Fix h. We have b ∈ P and b / ∈ Fix f but f is not a half-turn, so a / ∈ P . Let g = f -1 gf . We have g(a) = a and g(ω) = ω, hence Fix g = Aff (a, ω), which is a straight line disjoint from Fix h, a contradiction.
Remark. This result can also be proved by copying the proof of Lemma 5.14.

The case of higher dimensions

Proposition 5.4. The group Isom + R 4 is nonfixating. As a consequence, the group Isom R 4 is nonfixating.

Proof. We reproduce below the construction by Wagon [START_REF] Wagon | Banach-Tarski Paradox[END_REF] of a free subgroup of rank 2 in SO 4 whose action on the sphere S 3 is without fixed point. Let θ ∈ R be such that cos θ is transcendent, for example let θ = 1, and let σ and τ be the elements of SO 4 of matrices For the convenience of the reader, we have written the proof in Appendix 8.3. Now choose the affine rotations σ and τ : x → τ x+a with a = #» 0 , for example a = (1, 0, 0, 0). Let G be the subgroup of Isom + R 4 generated by σ and τ . Then G is free and Fix g is a singleton for all g ∈ G. Since Fix σ ∩ Fix τ = ∅ we deduce that G is eccentric.

S 4 =     cos θ -sin θ 0 0 sin θ cos θ 0 0 0 0 cos θ -sin θ 0 0 sin θ cos θ     and T 4 =     cos θ 0 0 -sin θ 0 cos θ -sin θ 0 0 sin θ cos θ 0 sin θ 0 0 cos θ     . (4 
Remark. The existence of free subgroups of SL(2, R) and SO 4 whose elements, apart from identity, never admit 1 as eigenvalue, is the essential ingredient of constructions of eccentric subgroups of affine applications or of affine isometries (Example 3.3 and Proposition 5.4). We have used explicit examples of such subgroups. These subgroups, although sometimes difficult to exhibit, are not exceptional. Indeed it can be shown thanks to the Baire theorem that, if G is a closed subgroup of GL(n, R), then the set of pairs of elements of G generating a free group is either empty or contains a dense G δ , i.e. a countable intersection of dense open subsets of G × G. The same result holds with the additional constraint on the eigenvalue 1. Let us add that A. Borel has proved a very general result encompassing our constructions, see [START_REF] Borel | Free subgroups of semi-simple groups[END_REF]:

If G is a semi-simple linear algebraic group defined on R then the set of n-tuples of G(R) n generating a free group contains a dense G δ subset.

Proposition 5.6. For any integer n 4, the group Isom R n is nonfixating.

Proof. For n 5, let σ n and τ n be the elements of Isom + R n of matrices

S n = S 4 0 0 id n-4
and

T n = T 4 0 0 id n-4
respectively, where S 4 and T 4 are defined in (4). Let G be the subgroup of Isom R n generated by σ n and τ n :

x → τ n x + a with a ∈ R n \ { #» 0 }.
It is easy to check that G is free and eccentric.

The case of non Euclidean norms.

Let us endow R n with an arbitrary norm, and let G denote the group of isometries associated with this norm. According to the Mazur-Ulam theorem, the elements of G are affine maps, cf. [START_REF] Mazur | Sur les transformations isométriques d'espaces vectoriels normés[END_REF] or Exercise 7.11 and its solution. The group #» G of the linear parts of the elements of G is closed and bounded in the vector space of endomorphisms of R n , so #» G is compact. By a classical argument we can construct a scalar product which is invariant by the elements of #» G. Therefore G can be seen as a subgroup of Isom R n and G is thus fixating if n 3. When n 4, Proposition 5.6 does not apply and indeed G may be fixating for some norms: Proposition 5.7. Let N be a norm on R n and let G be the group of isometries associated with N. If the linear group associated with

#» G is finite then G is fixating. In particular, if N is one of the usual N p norms with p ∈ [1, +∞] \ {2} then G is fixating. Proof. Let H be a subgroup gaf of G. Since the only translation in H is id, the morphism ϕ : H → #» G, f → #» f is injective, so H is finite. We check that the point ω = 1 |H| h∈H h( #» 0 ) is fixed by all elements of H hence H is a gag. If N = N p then #»
G contains all the permutations of the axes, so a scalar product invariant by the elements of #» G is necessarily proportional to the usual Euclidean scalar product. The Euclidean unit sphere touches the unit ball for N p exactly at the vertices of the hyper-octahedron

E = {± #» e 1 , . . . , ± #» e n }. The set E is invariant by #» G, so #» G is finite.

The hyperbolic case

We use the Poincaré model of the half-space: We conjecture that the group Isom H 4 is nonfixating.

H n = R >0 × R n-
We will show first that Isom H n is nonfixating if n 5 and then show that Isom H 2 and Isom H 3 are fixating. The case n = 1 is obvious.

The case of dimensions higher than 5 Proposition 5.9. For any n 5, the group Isom H n is nonfixating.

Proof. With each isometry of the Euclidean space of dimension n -1 we associate an isometry of the hyperbolic space of dimension n in the following way: If f is an isometry of R n-1 then the map

F : R n-1 × R >0 → R n-1 × R >0 defined by F (x, t) = (f (x), t) is an isometry of H n . The mapping f ∈ Isom R n-1 → F ∈ Isom H n
is a morphism of groups and we have Fix F = Fix f × R >0 . Therefore the image by this morphism of an eccentric subgroup of Isom R n-1 is an eccentric subgroup of Isom H n . Since, for n 5, Isom R n-1 is nonfixating, Isom H n is nonfixating.

The case of dimension 2

Although this case can be deduced from the 3-dimensional case (cf. Exercise 7.8) we prefer to present proofs specific to dimension 2 because they are more elementary and they provide a good introduction to hyperbolic geometry. We use the model of the complex half-plane

H 2 = {z ∈ C ; Im z > 0}. The positive isometries of H 2 are the homographies h a,b,c,d : z → az + b cz + d with a, b, c, d ∈ R, ad -bc = 1.
The other isometries of H 2 , called negatives, are the homographies composed with the symmetry z → -z. The group Isom + H 2 of positive isometries is called the Möbius group. We recall that the mapping

Φ : Isom + H 2 → PSL(2, R), h a,b,c,d → {M, -M} with M = a b c d
is an isomorphism of groups. We call matrices associated with an isometry h the elements of Φ(h). We define the trace of an isometry h by tr h = |tr M| where M ∈ Φ(h). We will use the following result, the proof of which is in Appendix 8.1.4.

Lemma 5.10. Let h ∈ Isom + H 2 \ {id}.

a. We have Fix h = ∅ if and only if tr h < 2. Moreover, in that case, Fix h is a singleton.

b. In the case where Fix h = {i}, the associated matrices M and -M ∈ Φ(h) are the orthogonal

matrices R θ 2 = cos θ 2 -sin θ 2 sin θ 2 cos θ 2
and R θ 2 + π . We then say that h is a rotation of center i and angle θ ∈ R/(2πZ), and we denote h = r θ .

c. In the general case, if

Fix h = {z 0 } and if ϕ ∈ Isom + H 2 is such that ϕ(i) = z 0 then ϕ -1 hϕ
fixes i hence is a rotation r θ , and the angle θ does not depend on the choice of ϕ. We will say that h is a rotation of center z 0 and angle θ.

d. For every x > 0 and every θ ∈ R/(2πZ), the rotation of center ix and angle θ is associated

with the matrices ± cos θ 2 -x sin θ 2 x -1 sin θ 2 cos θ 2 . An element h ∈ Isom + H 2 is called elliptic if tr h < 2, parabolic if tr h = 2, and hyperbolic if tr h > 2.
We divided by 2 the angle in the matrices so that the angle defined in the statement above corresponds to the usual notion of angle: The rotation r θ : z → cz-s sz+c with c = cos θ 2 and s = sin θ 2 turns approximately the points very close to its center i by an angle θ and not θ 2 .

In addition we will use that two segments of H 2 of the same length are positively isometric: If x, y, x ′ , y ′ ∈ H 2 are such that d(x, y) = d(x ′ , y ′ ) then there exists f ∈ Isom + H 2 such that f (x) = x ′ and f (y) = y ′ ; see Section 8.1.4 for a proof.

As a preliminary we show the following result. 

= ϕgϕ -1 . We have [f, g] = ϕ -1 [ f , g]ϕ, hence tr [f, g] = tr [ f , g].
Now we write the commutator of f and g in the form

[ f , g] = f h, with h = g f -1 g -1 .
The isometry f is the rotation of center i and angle θ = 0; it is associated with the matrices ± cos tsin t sin t cos t with t = θ 2 ≡ 0 mod π. The isometry h is conjugated to f -1 , hence has an angle -θ, and fixes the point ix. By Lemma 5.10.d, it follows that h is associated with the matrices ± cos t x sin t -x -1 sin t cos t . As a consequence, the product f h is associated with the matrices

± cos 2 t + x -1 sin 2 t (x -1) cos t sin t (1 -x -1
) cos t sin t x sin 2 t + cos 2 t .

We then have

tr [f, g] = tr f h = 2 cos 2 t + (x + x -1 ) sin 2 t > 2.
The proof of Lemma 5.11 is based on the computation of a trace. A geometric proof is also available by an adaptation of the proof of Lemma 5.13 in the sequel.

Proposition 5.12. 

The case of dimension 3

We start with the hyperbolic analogue of Lemma 5.2 on

Isom + R 3 . Lemma 5.13. Let f, g ∈ Isom + H 3 . If Fix f ∩ Fix g = ∅ then there exists h ∈ f, g such that Fix h = ∅.
Proof. The proof is done in several steps by proving that one of the isometries f , g, f -1 g, gf g -1 f -1 , or gf gf -1 has no fixed points. Let h = f -1 g. If Fix f , Fix g, or Fix h is empty we are done, otherwise let x 0 ∈ Fix h. We have f (x 0 ) = g(x 0 ) and since Fix f ∩ Fix g is empty one has f (x 0 ) = g(x 0 ) = x 0 . Let P 0 = Med (x 0 , f (x 0 )); it is a hyperbolic plane by Lemme 8.6. Since f and g are isometries, Fix f and Fix g are included in P 0 .

We claim that Fix g ∩ f (Fix g) is empty. Otherwise let x 1 ∈ Fix g be such that y 1 = f (x 1 ) ∈ Fix g. According to Lemma 8.10, the sets of fixed points of elements of Isom + H 3 are hyperbolic lines when they are nonempty. Therefore, according to Lemma 8.8 on the projections, there is a single point z 1 = π Fix f x 1 realizing the distance from x 1 to Fix f . The three points x 1 , y 1 , and z 1 are distinct since Fix f ∩ Fix g is empty.

Let γ denote the geodesic passing through x 1 and z 1 . Since x 1 and Fix f are in the plane P 0 , γ is a hyperbolic line of the plane P 0 , orthogonal to Fix f at the point z 1 according to Lemma 8.8. Since f (x 1 ) ∈ Fix g ⊂ P 0 , the plane P 0 is stable by f . Therefore f (γ) is a hyperbolic line of P 0 . It is also orthogonal to Fix f at z 1 because f preserves angles. As a result, f (γ) = γ and the restriction of f to γ is a symmetry of center z 1 . Since y 1 = f (x 1 ) ∈ f (γ) = γ, y 1 is the symmetric on γ of x 1 with respect to z 1 . It follows that γ = Fix g, and therefore z 1 belongs to Fix g and Fix f , in contradiction with Fix f ∩ Fix g empty.

Let g = f gf -1 ; it is a hyperbolic rotation of the same angle θ as g up to the sign (the angle is only defined up to the sign). We have Fix g = f (Fix g) so Fix g ∩ Fix g = ∅ from above. As before, if Fix (g g -1 ) is empty we are done; otherwise, with x 1 ∈ Fix (g g -1 ), the plane P = Med (x 1 , g(x 1 )) contains Fix g and Fix g.

We will show that Fix (g g) or Fix (g g -1 ) is empty. Let σ P be the reflection about the plane P . According to Lemma 8.12, there is a hyperbolic plane S containing the line Fix g and making an angle ± θ 2 with P such that g = σ S σ P . Since Fix g is also included in P , we can find two hyperbolic planes S and S ′ containing Fix g and making the angles ± θ 2 with P . According to Lemma 8.12, g or g -1 = σ P σ S . It can be assumed without loss of generality that g = σ P σ S ; then we have g -1 = σ P σ S ′ .

We claim that at least one of the intersections S ∩ S or S ∩ S ′ is empty. Indeed, conjugating by an element of Isom H 3 if necessary, we can assume that Fix g is a vertical half-line of endpoint a in the horizontal plane ∂H 3 ; P and S are then vertical half-planes containing the half-line Fix g. The boundary of P is an affine straight line ∆ of the horizontal plane that contains a as well as the endpoints b and c of the hyperbolic line Fix g (it may occur that the hyperbolic line Fix g has only one endpoint; it is then vertical and the sequel becomes simpler). Since the hyperbolic lines Fix g and Fix g do not cross, the points b and c are on the same side of a on the line ∆, so one of the points, say b, is between a and c. Let V be the vertical plane containing b and parallel to the plane S. Since the angles of the hyperbolic planes S and S ′ with the plane P are ± θ 2 , one of the planes S or S ′ is tangent to V . Suppose it is S; if this is not the case simply replace g by g -1 . The plane S does not cross S because it is located on one side of V and its closure contains c while S contains a. We have g g = σ S σ P σ P σ S = σ S σ S .

We conclude by showing that Fix (σ S σ S ) is empty. Assume by contradiction that there exists x ∈ Fix (σ S σ S ) hence σ S (x) = σ S (x). Since Fix σ S ∩ Fix σ S = S ∩ S = ∅, we have σ S (x) = x hence the hyperbolic planes S and S are both contained in the plane Med (x, σ S (x)), so coincide, in contradiction with S ∩ S = ∅. Lemma 5.14. Let G Isom + H 3 be such that Fix f ∩ Fix g = ∅ for all f, g ∈ G. Then G is a gag. Proof. If Fix f = Fix g for all f, g ∈ G \ {id} we are done. Otherwise let f, g ∈ G \ {id} with Fix f = Fix g, let Π be the hyperbolic plane containing the hyperbolic lines Fix f and Fix g, and let ω ∈ Π be the point of intersection of these lines. It remains to prove that ω ∈ Fix G. Assume by contradiction that there exists h ∈ G such that ω / ∈ Fix h. Let α be such that Fix f ∩ Fix h = {α} and β such that Fix g ∩ Fix h = {β}. Therefore we have α = β and α, β ∈ Π ∩ Fix h hence Fix h ⊂ Π. By the way, we have shown

∀k ∈ G (ω / ∈ Fix k ⇒ Fix k ⊂ Π). (5) 
With the same h, let δ ∈ Fix (f h) \ {α}. We have δ / Isom + H 3 be a gaf. According to Lemma 5.13, we have Fix f ∩ Fix g = ∅ for all f, g ∈ G hence G is a gag by Lemma 5.14.

∈ Fix h (otherwise δ ∈ Fix f ∩ Fix h, but δ = α) hence Fix h ⊂ Med (δ, h(δ)). Similarly Fix f = Fix f -1 ⊂ Med (δ, f -1 (δ)) = Med (δ, h(δ)), which yields Med (δ, h(δ)) = Π. It follows that δ / ∈ Π, hence Fix (f h) ⊂ Π. Now the contraposition of (5) implies ω ∈ Fix (f h) but this implies ω ∈ Fix h,

The spherical case

The sphere S n is endowed with the spherical distance d(x, y) = arccos x | y , where | is the usual scalar product. Since the function arccos is bijective, the isometries of S n for the spherical distance coincide with the isometries of S n for the distance induced by the Euclidean distance of R n+1 . It is known that an isometry of S n is the restriction to S n of a vector isometry of R n+1 , see [START_REF] Berger | Cedic-Nathan[END_REF], Chap.18 or Exercise 7.13. More precisely, if O n+1 denotes the group of vector isometries of R n+1 then we have a group isomorphism

ϕ : O n+1 → Isom S n which maps any element f ∈ O n+1 to its restriction to S n . We have Fix f = { #» 0 } if and only if Fix ϕ(f ) = ∅.
By abuse of language, we will say that a subgroup G of O n+1 is a gaf, resp. a gag, resp. eccentric, if its image ϕ(G) is a gaf, resp. a gag, resp. an eccentric subgroup of Isom S n . In other words we consider O n+1 as acting on R n+1 \ { #» 0 }. Observe that Corollary 4.8 does not apply here because the median inequality does not hold in elliptic spaces. The proof of Theorem 5.16 is split into several parts.

For n = 1, the only gaf of Isom S 1 are the trivial group {id} and the groups {id, s} where s is any fixed reflection along a straight line, which are obviously gag. Proposition 5.17. If n 2 then Isom S n is nonfixating.

Proof. We use the framework of O n+1 . Let us start with n = 2. Let (

#» i , #» j , #» k ) be an or- thonormal basis of R 3 . Let f, g, h ∈ O 3 be the vector isometries of matrices respectively Mat f = diag(1, -1, -1), Mat g = diag(-1, 1, -1) and Mat h = diag(-1, -1, 1). The set G = {id, f, g, h} is a group isomorphic to the Klein group (Z/2Z) 2 : We have f 2 = g 2 = h 2 = id, f g = gf = h, gh = hg = f and hf = f h = g. We therefore have Fix k = { #» 0 } for all k ∈ G but Fix G = { #» 0 }. For n
3, we complete the matrices of f and g by -1 and the matrix of h by 1: In an orthonormal basis, one chooses Mat f = diag(1, -1, . . . , -1), Mat g = diag(-1, 1, -1, . . . , -1), and Mat h = diag(-1, -1, 1, 1, . . . , 1). We check that {id, f, g, h} is still isomorphic to the Klein group and that it is eccentric.

Let us now treat the case of Isom + S n . The isomorphism ϕ : O n+1 → Isom S n induces by restriction an isomorphism from SO n+1 into Isom + S n which will also be denoted by ϕ. Proposition 5.18. If n is even then Isom + S n is eccentric.

Proof. Let g ∈ Isom + S n and let f = ϕ -1 (g) ∈ SO n+1 . All the eigenvalues of f are of modulus 1 and their product is equal to 1. Moreover, if λ is an eigenvalue of f then λ too, with the same multiplicity. Since n + 1 is odd, we deduce that 1 is an eigenvalue of f hence Fix f = { #» 0 }. It follows that Isom + S n is a gaf but is obviously not a gag.

It remains to treat the case when n is odd. For n = 1, Isom + S 1 is obviously fixating. We now treat the case n 5 and we will end up with n = 3. Proposition 5.19. If n is odd and n 5 then Isom + S n is nonfixating.

Proof. For n = 5, let f, g, h ∈ SO 6 be the isometries of block diagonal matrices Mat f = diag(I 2 , -I 2 , -I 2 ), Mat g = diag(-I 2 , I 2 , -I 2 ) and Mat h = diag(-I 2 , -I 2 , I 2 ) respectively. Similarly to the proof of Proposition 5.17, we verify that {id, f, g, h} is isomorphic to the Klein group and eccentric.

For n odd, n 7, we expand the matrices of f and g by -I 2 and the matrix of h by I 2 as in the proof of Proposition 5.17. The group {id, f, g, h} is still isomorphic to the Klein group and eccentric.

Proposition 5.20. The group Isom + S 3 is fixating.

Proof. By contradiction, let G SO 4 be an eccentric group. An element of G \ {id} has a plane (i.e. a subspace of dimension 2) of fixed points.

Step

1. One has Fix f ∩ Fix g = { #» 0 } for all f, g ∈ G. Let #» u ∈ Fix (f -1 g) \ { #» 0 } (which is nonempty, as G is a gaf). If #» u ∈ Fix f ∩ Fix g we are done. Otherwise we have f ( #» u ) = g( #» u ) = #» u .
Then Fix f and Fix g are two planes included in the hyperplane (i.e. three dimensional subspace)

Med ( #» u , f ( #» u )) hence intersect each other. Now set f 0 ∈ G \ {id}. Since Fix G = { #» 0 }, there exists g 0 ∈ G \ {id} such that Fix f 0 = Fix g 0 . From
Step 1, Fix f 0 ∩ Fix g 0 is a straight line denoted by D and Fix f 0 + Fix g 0 is a hyperplane denoted by H.

Step 2. For all f ∈ G \ {id}, one has Fix f ⊂ H.

Indeed, let h 0 ∈ G be such that Fix h 0 does not contain D. Such an element h 0 exists since Fix G = { #» 0 }. We have Fix f 0 = Fix g 0 = Fix h 0 . From Step 1, Fix f 0 ∩ Fix h 0 is a straight line denoted by D ′ and Fix g 0 ∩ Fix h 0 is a straight line denoted by D ′′ . We have D ′ = D ′′ (otherwise D ′ = D ′′ = D, in contradiction with D ⊂ Fix h 0 ) and Fix h 0 is two dimensional hence Fix h 0 = D ′ + D ′′ ⊂ H. Also notice that the three straight lines D, D ′ , and D ′ are not coplanar (otherwise we would have Fix f 0 = Fix g 0 = Fix h 0 ) hence H = D + D ′ + D ′′ , so that f 0 , g 0 and h 0 play symmetrical roles. Now let f ∈ G \ {id}. Therefore Fix f , which is a plane, cannot contain at the same time D, D ′ and D ′′ hence, from the above, Fix f is included in one of the three subspaces Fix f 0 + Fix g 0 , Fix g 0 + Fix h 0 or Fix h 0 + Fix f 0 , all of which in fact coincide with H.

Let ∆ denote the line orthogonal to H: ∆ = H ⊥ .

Step 3. One has f (∆) = ∆ for all f ∈ G.

Otherwise let f ∈ G be such that f (∆) = ∆ and let g ∈ G \ {id}. Let us show that (Fix g) ⊥ = ∆ + f (∆). We have ∆ ⊂ (Fix h) ⊥ for all h ∈ G \ {id} and, since f is an isometry,

f (∆) ⊂ (f (Fix h)) ⊥ . For h = f -1 gf , this gives f (∆) ⊂ (f (Fix h)) ⊥ = (Fix g) ⊥ . Therefore ∆ + f (∆) ⊂ (Fix g) ⊥ ,
which have the same dimension hence are equal. Since this holds for all g ∈ G \ {id}, we get

Fix G = (∆ + f (∆)) ⊥ = { #» 0 }, a contradiction.
To sum up we found a hyperplane H such that Fix f ⊂ H and f (H ⊥ ) = H ⊥ for all f ∈ G\{id}. It follows that the restriction of f to H ⊥ is -id, thus the only possible eigenvalues of f are 1 and -1, hence f 2 = id for all f ∈ G, so G is Abelian (we have id = f 2 g 2 = (f g) 2 hence f g = gf for all f, g ∈ G).

Since G is Abelian, the elements of G are diagonalizable in a common basis, denoted by

B = ( #» i , #» j , #» k , #» ℓ )
, with 1 and -1 as double eigenvalues (these are positive isometries of R 4 ). Consider the endomorphisms f 1 , f 2 and f 3 whose matrices in the basis B are respectively diag(1, 1, -1, -1), diag(1, -1, 1, -1), and diag(1, -1, -1, 1). Thus G is a subgroup of G 0 = {±id, ±f 1 , ±f 2 , ±f 3 }.

The list of the sixteen subgroups of G 0 splits into

⊲ eleven gag: {id}, {id, f n } with 1 n 3, {id, -f n } with 1 n 3, {id, f 1 , f 2 , f 3 } which fixes #» i , {id, f 1 , -f 2 , -f 3 } which fixes #» j , {id, -f 1 , f 2 , -f 3 } which fixes #» k , {id, -f 1 , -f 2 , f 3 } which fixes #» ℓ ,
⊲ and five containing -id hence not gaf: {id, -id}, {id, f n , -id, -f n } with 1 n 3, and G 0 .

As a consequence G 0 contains no eccentric subgroup, a contradiction.

The projective case

Usually RP n is the set of vector lines of R n+1 . In this article we identify RP n with the quotient of S n by the equivalence relation Given an isometry f of S n and x ∈ S n , the class of f (x) in RP n is the same as f (-x) = -f (x), so we can define a function from RP n to RP n , denoted by ψ(f ), which maps ẋ = {x, -x} to the class of f (x). It is known that the mapping ψ : Isom S n → Isom RP n defined in this manner is a surjective morphism of kernel {±id}, cf. [START_REF] Berger | Cedic-Nathan[END_REF], Chap.19. Thus the group Isom RP n is the image of Isom S n by ψ and similarly Isom + RP n is the image of Isom + S n by ψ. When n is even, -id : S n → S n reverses the orientation, so Isom + RP n is equal to Isom RP n .

x ∼ y ⇔ x = y or x = -y.
Theorem 5.21. The group Isom RP n is fixating if and only if n = 1. The group Isom + RP n is fixating if n = 1 and nonfixating if n is odd and greater than or equal to 5.

Remarks.

1. We do not know whether Isom + RP 3 is fixating or not. 2. Notice that the rotations of RP 2 have a single fixed point. Thus the rotation group RP 2 is another example of a nonfixating group which is not Abelian and such that all elements have a single fixed point.

Proof. It is easy to check that Isom RP 1 is fixating.

If n is even and ḟ = ψ(f ) ∈ Isom RP n then the matrix of f , seen as the vector isometry of R n+1 , is odd-sized, so always admits 1 or -1 as eigenvalue, hence there exists x ∈ S n such that f (x) ∈ {x, -x}. Thus any isometry of RP n has at least one fixed point ẋ but no point of RP n can be fixed by all the elements of Isom RP n . The group Isom RP n is therefore eccentric itself hence nonfixating.

We now study the case when n is odd. For n = 5, set

I = 1 0 0 1 and R = 0 -1 1 0 ,
and consider the isometries f, g, h of S 5 whose matrices are the following block diagonal matrices Mat f = diag(I, R, R), Mat g = diag(R, I, R) and Mat h = diag(R, R, I).

These are positive isometries. Let G 5 denote the subgroup of Isom + S 5 generated by f, g and h. One finds for G 5 the following group of order 32:

G 5 = {diag(±I, ±I, ±I), diag(±I, ±R, ±R), diag(±R, ±I, ±R), diag(±R, ±R, ±I)} and ones checks that its image ψ(G 5 ) in Isom + RP 5 is eccentric. The verification is somewhat tedious but without difficulty. It follows that Isom + RP 5 is nonfixating hence so is Isom RP 5 .

For n odd, n 7, we consider the positive isometries f, g, h of S n whose matrices are the block diagonal matrices: Mat f = diag(I, R, . . . , R), Mat g = diag(R, I, R, . . . , R) and Mat h = diag(R, R, I, R, . . . , R). We verify similarly that the image ψ(G n ) of the subgroup G n of Isom + S n generated by f, g, and h is eccentric, so neither Isom + RP n nor Isom RP n are fixating.

It remains to treat the case n = 3. Let f, g ∈ Isom S 3 of matrices

Mat f =      0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0      and Mat g =      0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 1 0      .
For simplicity, we write f and g as signed permutations: f = (1 2 3 4) and g = (1 2 -3 -4).

The computation gives f g = ( 13)(2 -4) = -gf and f 2 = (1 3)(2 4) = -g 2 . Therefore the group generated by ±f and ±g is

G 3 = {±id, ±f, ±f 2 , ±f 3 , ±g, ±f g, ±f 2 g, ±f 3 g}.
By checking one by one all the elements of G 3 , we easily verify that ψ(G 3 ) is eccentric in Isom RP 3 hence Isom RP 3 is nonfixating. We did not find any eccentric subgroup of Isom + RP 3 , nor were we able to adapt to the projective case the proof that Isom + S 3 is fixating (Proposition 5.20).

6 Groups acting on discrete sets

Symmetric groups

The aim of this section is the following result. b. The alternating group A n of even permutations acting on {1, . . . , n} is fixating if and only if n 4.

Proof. a. We split the proof for the symmetric group into five steps. We use the decomposition in cycles with disjoint supports. A cycle of order n is called an n-cycle.

Step 1. S n is fixating when n 3.

For n = 1 and n = 2, there is nothing to prove since there is no nontrivial subgroup. For n = 3, the nontrivial subgroups of S 3 are A 3 = (123) , which is not a gaf, and the three subgroups of order 2 generated by each transposition, which are gag, hence S 3 has no eccentric subgroup.

Step 2. S 4 is fixating.

Let G S 4 be a gaf. So G contains neither a double-transposition nor a 4-cycle (since these permutations have no fixed points), so G \ {id} contains only transpositions and/or 3-cycles. Two cases occur.

⊲ If G contains no 3-cycle then G = {id, τ } where τ is a transposition and we are done.

⊲ If G contains a 3-cycle γ, say γ = (123), let us show by contradiction that Fix G = {4}.

Otherwise there exists g ∈ G such that g(4) = 4, say g(4) = 1. If g = ( 14) then gγ = (1234) which has no fixed points. If g is a 3-cycle, say g = (124), then gγ = (14)( 23) which has no fixed points either.

Step 3. S 5 is nonfixating.

Let G = f, g with f = (123) and g = ( 12)(45). We verify that G = {id, f, f 2 , g, h, k} with h = f g = (13)(45) and k = gf = (23)(45), and that G is eccentric. Remark. We can see G as (S 3 ×S 2 ) + , the set of even permutations acting separately on {1, 2, 3} and on {4, 5}. We also can interpret G as the group of isometries of the "double tetrahedron", i.e. the hexahedron obtained by gluing two regular isometric tetrahedra on one of their faces.

Step 4. S 6 is nonfixating.

Let G = f, g with f = (12)(34) and g = (12)(56). We verify that G = {id, f, g, h} with h = (34)(56) and that G is eccentric.

Remark. Again G can be interpreted as a set of even permutations: those acting separately on {1, 2}, on {3, 4}, and on {5, 6}, and also as a group of isometries: the half-turns of axes the coordinate axes in R 3 .

Step 5. S n is nonfixating when n 7.

Let G = f, g with f = (123)(6 . . . n) and g = (12)(45)(6 . . . n). We check that G is eccentric.

b. For n 4, A n is fixating, as a subgroup of a fixating group. For n = 5 and n = 6, both eccentric subgroups built in steps 3 and 4 are precisely subgroups of A 5 , resp. A 6 , which shows that A 5 and A 6 are nonfixating. For n 8, n even, the cycle (6 . . . n) is even, so the eccentric subgroup of Step 5 is still in A n . For n 9, n odd, the cycle (7 . . . n) is even, so we complete as in Step 5, but with the group of Step 4 : We choose G = f, g with f = (12)(34)(7 . . . n) and g = (12)(56)(7 . . . n). We verify that G is an eccentric subgroup of A n . We leave to the reader the pleasure to explore the most interesting case A 7 , see Exercise 7.15.

Remark. Theorem 6.1 shows that the groups S n and A n are nonfixating when n > 4. Some of their subgroups however may be fixating. For example, given d 1 and q = p n integers with p prime, let G = GL(d, F q ) denote the group of isomorphisms of the d-dimensional vector space on the q-element finite field F q . Then G acts naturally on X = F d q \ { #» 0 } and can be identified with a subgroup of S X , the group of permutations of X. One can then ask in which cases G is fixating. The answer is that only GL(1, F q ) and GL(2, F 2 ) are fixating, see Exercises 7.16 and 7.17. We did not study in detail the case of the affine group G = GA(d, F q ) acting on F d q .

Isometries of Z n

Let n 1 be an integer. We equip Z n with the Euclidean norm . Any f ∈ Isom Z n can be extended into an isometry of R n , denoted by the same notation f , cf. Exercise 7.14 and its solution.

Theorem 6.2. The group Isom Z n is fixating.

Proof. By contradiction, let G be an eccentric subgroup of Isom Z n with n minimal.

Step 1. G is finite. Let C n = {x = (x 1 , . . . , x n ) ; x i = -1, 0 or 1} be the unit hypercube in Z n . Since the only translation of G is id, the morphism from G to Isom C n which maps any isometry f to its linear part #» f is injective. Now Isom C n is finite, so G is finite too.

Denote by N the cardinality of G and by ω the centroid of the orbit of

#» 0 by G, i.e. ω = 1 N f ∈G f ( #» 0 ).
Step 2. All coordinates of ω are congruent to 1 2 modulo 1. Indeed, ω is fixed by all the elements of G. Since G is eccentric, ω / ∈ Z n . Let

Ω = {x ∈ Z n ; ω -x = d(ω, Z n )}.
Let I = i ∈ {1, . . . , n} ; ∃x, y ∈ Ω, x i = y i . We have

ω i ≡ 1 2 mod 1 ⇔ i ∈ I. Indeed, if x, y ∈ Ω are such that x i = y i then |x i -y i | = 1 and |x i -ω i | = |y i -ω i | = 1 2 . Conversely, if ω i ≡ 1
2 mod 1 and x ∈ Ω then x i = ω i ± 1 2 and the point y with the same coordinates as x except the i-th coordinate equal to ω i ∓ 1 2 is also in Ω. In summary we have

Ω = (x 1 , . . . , x n ) ∈ Z n ; x i = ω i ± 1 2 if i ∈ I and x i = ⌊ω i ⌉ if i / ∈ I ,
where ⌊ω i ⌉ is the unique integer such that | ω i -⌊ω i ⌉| < 1 2 (recall that ω i ≡ 1 2 mod 1 when i / ∈ I). Let E = Z n ∩ Aff Ω. It is a " lattice" isometric to Z k , where k is the cardinality of I. Precisely, let us set E i = Z if i ∈ I and E i = {⌊ω i ⌉} otherwise; then we have

E = E 1 × • • • × E n .
For all f ∈ G we have f (Ω) = Ω, so f (Aff Ω) = Aff Ω, and in addition f (Z n ) = Z n , so f (E) = E. This allows to define G E , the set of all restrictions to E of the elements in G. These are isometries of E. Since G is not a gag, G E is not a gag either. Moreover, for all f ∈ G and all x ∈ Fix f , the orthogonal projection π E x is also in Fix f , so that G E is a gaf. By minimality of n we deduce that k = n hence I = {1, . . . , n}.

Step 3. One is reduced to ω = #» 0 and one changes Z n into (2Z + 1) n . Let ϕ : Z n → (2Z + 1) n be the map defined by x → 2x -2ω and let f ∈ G. Then the isometry f = ϕf ϕ -1 fixes #» 0 and maps (2Z + 1) n into (2Z + 1) n . In addition, a small calculation shows that f = #» f , the linear part associated with f , so ϕ also globally fixes the lattice Z n , and the entries of its matrix are only 0, 1 or -1.

To avoid multiple notations, we still denote by G the conjugate of G by ϕ. For each f ∈ G, the matrix of f , denoted Mat f = (a i,j ) 1 i,j n , is thus a matrix of a signed permutation: There is one and only one nonzero entry on each row and each column and this entry is equal to 1 or -1.

Step 4. The diagonal coefficients of Mat f are never -1. Since G is a gaf, Fix f is a nonempty subset of (2Z + 1) n . Let x = (x 1 , . . . , x n ) ∈ Fix f . It is an element of (2Z + 1) n , hence x i = 0 for all i = 1, . . . , n. If a i,i = 0, the i-th coordinate of the equality f (x) = x gives a i,i x i = x i hence a i,i = 1.

Denote by σ : G → S n , f → σ f the function which maps f of matrix (a i,j ) 1 i,j n to the permutation matrix (|a i,j |) 1 i,j 1 . This is clearly a group homomorphism which is injective by

Step 4 (its kernel is reduced to id).

Step 5. Towards the construction of a global fixed point. Let (e 1 , . . . , e n ) denote the canonical basis of R n and consider the two relations on {1, . . . , n}: i ∼ j if there exists f ∈ G such that f (e i ) ∈ {e j , -e j }, i ≈ j if there exists f ∈ G such that f (e i ) = e j .

It is easy to check that they are equivalence relations. Let p be the number of classes for the relation ∼. For each k = 1, . . . , p, the class C k for ∼ is partitioned into two classes for ≈ (possibly, one of the classes is empty). Let C + k be one of these classes (arbitrarily chosen) and

C - k = C k \ C + k . Denote C + = C + 1 ∪ • • • ∪ C + p and C -= C - 1 ∪ • • • ∪ C - p .
According to Step 4, given i ∼ j, the equality f (e i ) = e j is not possible for one f ∈ G and g(e i ) = -e j for another, so we have i

≈ σ f (i) ⇔ f (e i ) = e σ f (i) .
Let f ∈ G be fixed and denote

C ++ f = C + ∩ σ -1 f (C + ), C +- f = C + ∩ σ -1 f (C -), C -+ f = C -∩ σ -1 f (C + ), C -- f = C -∩ σ -1 f (C -).
Thus we have f

(e i ) = e σ f (i) when i ∈ C ++ f ∪ C -- f and f (e i ) = -e σ f (i) when i ∈ C +- f ∪ C -+ f . We also have C + = C ++ f ∪ C +- f , C -= C -+ f ∪ C -- f and σ f (i) ∈ C + ⇔ i ∈ C ++ f ∪ C -+ f , σ f (i) ∈ C -⇔ i ∈ C +- f ∪ C -- f . Step 6. The point x = (x 1 , . . . , x n ) defined by x i = 1 if i ∈ C + and x i = -1 if i ∈ C -is
fixed by all elements of G. Indeed, for any f ∈ G, we have

f (x) = f i∈C + e i -f i∈C - e i = i∈C ++ f e σ f (i) - i∈C +- f e σ f (i) - i∈C -- f e σ f (i) - i∈C -+ f e σ f (i) = σ f (i)∈C + e σ f (i) - σ f (i)∈C - e σ f (i) = j∈C + e j - j∈C - e j = x.
It follows that Fix G is nonempty, a contradiction.

Isometries of trees

All the results of this section are taken from J.-P. Serre's book [20]. A combinatorial tree X is a simple connected undirected graph without cycles. The following fundamental property is easy to check: Given two vertices P and Q, there exists a unique injective path joining them. We denote by [P, Q] this path and by d(P, Q) its length, i.e. the number of its edges. The map d : X × X → N is the combinatorial distance on X and (X, d) is a discrete metric space. Two vertices are joined by an edge if and only if their distance is 1. We recall that an isometry of X is a bijection of X that preserves the distances. Lemma 6.3. Let s be an isometry with at least one fixed point. Then, for every vertex x of X, the distance d(x, s(x)) is even and the midpoint z of the path [x, s(x)] is a fixed point of s. Moreover, z is the unique element of Fix s such that d(x, z) = d(x, Fix s).

Proof. The uniqueness of the geodesic path between two vertices and the fact that the image of an injective path by the isometry s is an injective path with the same length ensure that Fix s is connected hence is a subtree of X.

If x ∈ Fix s then the statement is clear. Suppose that x / ∈ Fix s. Then there exists b ∈ Fix s such that n = d(x, Fix s) = d(x, b)

1. If b were not unique, one could construct a nontrivial cycle thanks to the connectedness of Fix s. Let [x 0 , x 1, x 2 , . . . , x n ] be the geodesic path joining b = x 0 to x = x n . By definition of b, s(x i ) = x i for all i > 0. The two paths [x, b] = [x n , x n-1 , . . . , x 0 ] and [b, s(x)] = [x 0 , s(x 1 ), s(x 2 ), . . . , s(x n )] have no common vertex except x 0 = b. Indeed, if x j = s(x i ) with i = j, one could construct a path of length strictly smaller than n joining b either to x or to s(x). It follows that the geodesic path [x, s(x)] is the concatenation of the geodesic paths

[x, b] = [x n , x n-1 , . . . , x 0 ] and [b, s(x)] = [x 0 , s(x 1 ), s(x 2 ), . . . , s(x n )]. Therefore, the distance d(x, s(x)) is even and b is the midpoint of [x, s(x)].
Theorem 6.4. [20] If G is a finitely generated group of isometries of X which is a gaf then G is a gag. Moreover, Fix G is a nonempty subtree of X.

Proof. We proceed by induction on the number of generators of G. Suppose G is generated by an isometry s that fixes a vertex, and a subgroup G 0 having a global fixed point x 0 . If s(x 0 ) = x 0 then, according to Lemma 6.3, the midpoint z of the geodesic path [x 0 , s(x 0 )] is a fixed point of s. Similarly, for all t ∈ G 0 , st has a fixed point and [x 0 , s(x 0 )] = [x 0 , s(t(x 0 ))]. Therefore, z is fixed by all the isometries belonging to the set sG 0 . Since s and sG 0 generate G, the point z is fixed by G.

Remark.

The assumption "G is finitely generated" is necessary. Indeed, let [x 0 , x 1 , . . . ] be an infinite geodesic path in a tree X. Let k be an integer and let

N(k) = {s ∈ Isom X ; ∀ℓ k, s(x ℓ ) = x ℓ }.
The sequence (N(k)) k∈N is a nondecreasing sequence of subgroups of Isom X whose intersection is a subgroup of G. Any element s in G admits fixed points but in general there is no global fixed point. Especially, when X is a homogeneous tree of degree 3, the group G has no global fixed point and so Isom X is nonfixating. In fact the group G admits a kind of fixed point at infinity: the equivalence class of geodesic paths ending as [x 0 , x 1 , . . . ].

We now give an explicit condition to obtain a gaf operating on a tree. Proposition 6.5. Let f and g be two isometries of a tree. Assume that f , g and h = f g have fixed points. Then any element of the group generated by f and g has fixed points.

Proof. It is enough to show that Fix f meets Fix g. If Fix f ∩ Fix g = ∅, let [P, Q] be the geodesic joining Fix f to Fix g, with P ∈ Fix f and Q ∈ Fix g. According to Lemma 6.3, P is the midpoint of the geodesic [Q, f (Q)]. Also f (Q) = f (g(Q)) = h(Q) and
, as Fix h is nonempty, Lemma 6.3 also implies that P is fixed by h. We deduce (f g)(P ) = P hence g(P ) = f -1 (P ) = P , contradicting P / ∈ Fix g.

Bounded orbits in a tree

The median inequality (1) almost holds for combinatorial trees but an edge has no midpoint! This is why isometries whose fixed points should be midpoints of edges play a special role. Lemma 6.6. If X is a finite tree then there exists either a vertex fixed by every element of Isom X or an edge stable by every element of Isom X.

Proof. We proceed by induction on the number of vertices. If there are one or two vertices, the result holds. If there are strictly more than two vertices, the set of the vertices of X having at least two neighbors is a nonempty subtree X ′ stable by the elements of Isom X. Since there is at least one vertex that has a single neighbor in a finite tree, the induction assumption can be applied to X ′ . Definition 6.7. An isometry g of X is called an inversion if there exists an edge {a, b} such that g(a) = b and g(b) = a. Proposition 6.8. Let X be a tree whose all vertices have a finite degree. Let G be a subgroup of Isom X without inversion. If G has a bounded orbit then G has a global fixed point.

Proof. Suppose G has a bounded orbit ∆. Consider the set T (∆) of vertices in X that are in a geodesic joining two vertices of ∆. Since ∆ is finite, T (∆) is finite too. In addition T (∆) is the smallest subtree containing ∆, the convex hull of the orbit. Since an isometry sends a geodesic segment to a geodesic segment, the subtree T (∆) is stable by the elements of Isom X. Therefore, according to Lemma 6.6 applied to T (∆), there is either a vertex or an edge invariant by all elements of G. If an edge {a, b} is stable by G then necessarily G fixes a and b because G does not contain an inversion.

The following result is an easy consequence. Corollary 6.9. An element of finite order in the group of isometries of a tree which is not an inversion has a fixed point.

Application. Consider the Schwartz group G defined by two generators a and b related by the relations a A = b B = (ab) C = 1, where A, B, and C are integers greater than or equal to 2. Any action by isometries without inversion of G on a tree X has a global fixed point. Indeed, according to Proposition 6.8 about bounded orbits, each of the isometries of X defined by the actions of a, b and ab has fixed points. Then thanks to Proposition 6.5 we conclude that the group generated by a and b has a global fixed point.

By a similar argument Serre proves that the group SL(3, Z) has the same property: Each action by isometries of G on a tree has a global fixed point.

Generalization. One can define a notion of Λ-tree where Λ is a totally ordered Abelian group. Then Theorem 6.4 still holds [START_REF] Morgan | Valuations, Trees and Degenerations of Hyperbolic Structures I[END_REF].

Questions about isometries of finite graphs

In the subsection we call graph a simple unoriented connected graph. The set of the vertices is equipped with the distance d defined by the minimum number of edges joining vertices. Several simple and natural questions arise in this context:

1. Which are the finite graphs whose isometry group is fixating? 2. Which are the finite groups admitting a generating system defining a Cayley graph whose isometry group is fixating? 3. Find infinite families of finite graphs whose isometry group is fixating.

The first two questions are ambitious and probably difficult. On the other hand, the third question admits simple partial answers. Consider the complete graph K n on n vertices. Its isometry group is the symmetric group S n . Therefore, according to Theorem 6.1, it is fixating if and only if n 4.

Let C n be the graph associated with the n-dimensional hypercube {0, 1} n of R n . The set of vertices of C n is {0, 1} n and the edges are the pairs of vertices of which exactly one coordinate differs. Proposition 6.10. The group Isom C n is fixating for all integer n 1.

Proof. The proof is analogous, in simpler form, to that of Theorem 6.2 on Z n . It is easy to prove that an isometry of C n is the restriction to C n of a unique isometry of the Euclidean space R n , cf. Exercise 7.14. The center of the cube ω = ( 1 2 , . . . , 1 2 ) is fixed by all the isometries of the cube. Conjugating by the map x → 2x -2ω, we reduce to the case where the isometries are linear maps whose matrices are matrices of signed permutations. We find that the matrices of the isometries of a subgroup gaf never have -1 on the diagonal, which implies the existence of a global fixed point as in Steps 5 and 6 of the proof of Theorem 6.2.

A result about infinite graphs

Let X = (S, A) be a simple undirected connected graph whose edges are colored. The color of an edge is given by a map with values in a color set C, defined on the set A of edges. Recall that a cycle is called simple if no edge occurs more than once, and elementary if no vertex occurs more than once except the beginning and the end. It is easy to see that an elementary cycle of length at least 3 is simple and that a cycle, simple or not, always contains at least one elementary cycle. We make the following assumptions:

• The edges of an elementary cycle of the graph all have the same color,

• For each c ∈ C, the connected components of the partial graph X c obtained by keeping only the edges of color c are complete graphs.

For every c ∈ C, we will call any connected component of the partial graph X c a cell of color c. Each edge of X belongs to a single cell. Notice that the Cayley graph of the free product of two groups G 1 and G 2 satisfies the above assumptions if we choose (G 1 ∪ G 2 ) \ {e} as set of generators and if we color in blue the edges {w, wg}, g ∈ G 1 , and in red the others.

Here is a generalization of Theorem 6.4 on finitely generated groups of isometries of trees. Theorem 6.11. Suppose that each cell of the graph X has at most four vertices. Let G be a finitely generated subgroup of Isom X. If G is a gaf then G is a gag.

Observe that the hypothesis about the cardinality of the cells is necessary: If X is a complete graph with at least five vertices then Isom X contains an eccentric subgroup by Theorem 6.1. It is the same for the Cayley graph of the free product of two groups of which one at least has more than five elements. The proof of Theorem 6.11 needs some preliminary lemmas. Lemma 6.12. Given two vertices x and y of the graph X, there is a unique path joining them such that two consecutive edges on this path never have the same color. Moreover this path is the only geodesic from x to y. Therefore a path is a geodesic if and only if two consecutive edges never have the same color.

Proof. Let x and y be in S. Since X is connected, there is a path joining x to y, and therefore at least one geodesic. Since the cells of the graph are complete graphs, this geodesic cannot have two consecutive edges of the same color. This proves the existence. the geodesic going from x 0 to s(x 0 ). Observe that it is also the geodesic going from x 0 to st(x 0 ) = s(x 0 ) for any t ∈ G 0 .

If this geodesic has an even length then, according to Lemma 6.13, its midpoint z is a fixed point of s but also of all st, t ∈ G 0 . Since s is injective, s(t(z)) = z = s(z) implies t(z) = z, so z is a fixed point of t. Thus z is a global fixed point of G.

If this geodesic has an odd length then, again according to Lemma 6.13, the cell Y containing the middle edge of this geodesic is stable by all st, t ∈ G 0 . It is therefore stable by G. In addition, the cell Y contains fixed points of st. Therefore the group H of restrictions to Y of elements of G is a gaf. Now Isom Y is the group of permutations of the vertices of Y and by hypothesis the cell Y has at most 4 vertices so, according to Theorem 6.1, Isom Y is fixating. Therefore H is a gag hence G is a gag too.

Exercises

Exercise 7.1. Show that the group Isom R 2 is fixating.

Exercise 7.2. A group is called superfixating if, for any set X and any morphism ρ : G → Bij X, the pair (X, ρ(G)) is fixating. By considering the action of a group on all of its nontrivial parts, show that a group is superfixating if and only if it is cyclic (finite or not).

Exercise 7.3. Show that the additive group Q is finitely superfixating in the following sense: If X is a finite set and ρ : Q → Bij X a morphism then (X, ρ(Q)) is fixating.

Exercise 7.4. Prove that, in a metric space verifying the median inequality (1), the point m is unique and satisfies d(x, m) = d(y, m) = 1 2 d(x, y).

Exercise 7.5. Let (E, ) be a normed vector space verifying the median inequality (1).

a. Prove that E satisfies the so-called parallelogram identity

∀x, y ∈ E x + y 2 + x -y 2 = 2 x 2 + y 2 . (6) 
b. Deduce that E is a pre-Hilbert space (a result of M. Fréchet, P. Jordan and J. von Neumann [START_REF] Fréchet | Sur la définition axiomatique d'une classe d'espaces vectoriels distanciés applicables vectoriellement sur l'espace de Hilbert[END_REF][START_REF] Jordan | On inner products in linear, metric spaces[END_REF]).

Exercise 7.6. According to the comparison theorem of Rauch [START_REF] Cheeger | Comparison Theorems in Riemannian Geometry[END_REF], the classical cosine law becomes an inequality in hyperbolic trigonometry: In a hyperbolic triangle of side lengths a, b, c and angle γ opposite to the side of length c, we have

a 2 + b 2 -2ab cos γ c 2 . (7) 
From this inequality, show that H n satisfies the median inequality (1).

Exercise 7.7. On the set R = R ∪ {∞}, consider the Möbius group

M( R) = ϕ : R → R, x → ax+b cx+d ; a, b, c, d ∈ R, ad -bc = ±1 .
Show that this group is nonfixating. Hint: Consider the matrices A and B of Example 3.3 and use Lemma 8.16.

Exercise 7.8. Using only the fact that Isom H 3 is fixating, prove that Isom H 2 is fixating.

Exercise 7.9. Show that a map, a priori surjective or not, from R n to R n which preserves the Euclidean distance is an affine bijection of R n .

Exercise 7.10. Show that a function between two normed vector spaces which is continuous and preserves the midpoints is affine.

Exercise 7.11. Mazur-Ulam theorem. This exercise is inspired by [START_REF]A proof of the Mazur-Ulam theorem[END_REF].

Let E be a real normed vector space. (i) Prove that λ ab .

(ii) Let s m be the symmetry of center m, i.e. such that s m (x) = 2mx for all x ∈ E.

For g ∈ W a,b , we set g * = s m g -1 s m g. Prove that g * (m) -m = 2 g(m) -m .
(iii) Show that any isometry that fixes a and b fixes m.

b. Let f be an isometry of E.

(i) Let a, b ∈ E. Denote by m the midpoint of [a, b] and by m ′ the one of [f (a), f (b)]. Prove that h = s m f -1 s m ′ f ∈ W a,b and deduce that f (m) = m ′ .
(ii) Prove that f is affine. Hint: Use Exercise 7.9.

Exercise 7.12. Kakutani Theorem in finite dimension. This exercise is inspired by R. Antetomaso [START_REF] Antetomaso | Un théorème de point fixe en dimension finie : application aux sousgroupes compacts de GL n (R)[END_REF]. Let E be a normed vector space of finite dimension, G a compact subgroup of GL(E), and K a nonempty compact convex subset of E. We assume that g(K) ⊆ K for all g ∈ G and we aim to show that (K, G) is a gag.

a. Let 2 be the Euclidean norm on E. For any x ∈ E, we set x = sup{ g(x) 2 ; g ∈ G}. Show that this defines a strictly convex norm on E for which every element of G is an isometry.

b. Let f be an endomorphism of E such that f (K) ⊆ K. Let x 1 ∈ K and let (x n ) n>0 be the sequence defined by x n+1 = f (x n ). Considering the sequence (σ n ) of Cesàro means of the sequence (x n ), show that f has a fixed point in K.

c. For g ∈ G, denote V g = {x ∈ K ; g(x) = x}. By contradiction, assume that for every x ∈ K there exists g ∈ G satisfying g(x) = x.

(i) Show that there exist g 1 , . . . , g N ∈ G such that K ⊂ V g 1 ∪ • • • ∪ V g N .
(ii) Show that there exists a ∈ K such that (g

1 + • • • + g N )(a) = Na.
(iii) Show that g k (a) = a for all k ∈ {1, . . . , N}. Conclude.

Exercise 7.13. The isometries of the sphere extend into isometries of the Euclidean space.

We equip the sphere S n with the spherical distance d(x, y) = arccos x | y . We want to prove that every isometry of S n is the restriction of a unique isometry of R n+1 endowed with the Euclidean distance. Let f be an isometry of S n .

a. Show that f preserves the scalar product.

b. We define 

f on R n+1 by f (x) = x f x x if x = #» 0 and f ( #» 0 ) = #» 0 .
⊲ either d = 1, ⊲ or d = 2 and K = F 2 = {0, 1}.

Appendices

A short introduction to hyperbolic geometry

Let n 2 be an integer. A model of the n-dimensional hyperbolic space is the upper half-space

H n = {(x 1 , . . . , x n ) ∈ R n ; x n > 0}
endowed with the Poincaré metric

ds 2 = 1 x 2 n dx 2 1 + • • • + dx 2 n .
A calculation shows that the geodesic distance associated with the Riemannian metric is given by

d(x, y) = argcosh 1 + x -y 2 2x n y n (8) 
where x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ).

Theorem 8.1.( [START_REF] Cannon | Flavors of Geometry[END_REF], Theorem 9.

3) The geodesics in H n are the half-lines (affine lines) and the half-circles (Euclidean circles), the endpoints of which are in the horizontal hyperplane

∂H n = {(x 1 , . . . , x n ) ∈ R n ; x n = 0},
and orthogonal to this hyperplane at their endpoints. 

a map f in M( R n ) which fixes ∞ then the restriction f to R n is a similarity in R n .
A second consequence of Theorem 8.2 is that isometries of H n are smooth. On the one hand it follows that the Poincaré metric is invariant, on the other hand it follows that the sign of the Jacobian of an isometry is constant. This latter fact leads to the usual decomposition of the group Isom H n : It is the union of the subgroup Isom + H n of isometries with positive Jacobian and its complementary Isom -H n .

Subspaces of H n .

A hyperbolic subspace of H n is a subset X of H n of one of the following forms: ⊲ the empty set, dim X = -1, ⊲ a single point, dim X = 0, ⊲ the intersection of H n with a vertical affine subspace A, dim X = dim A, ⊲ the intersection of H n with a vertical affine subspace A and a sphere S centered at a point of ∂H n , dim X = dim(A ∩ S) (A = R n is permitted).

By abuse of language, subspaces of dimension 1 will be called lines and those of dimension 2 planes. Using that the image of a sphere by an inversion is an affine subspace provided that the pole of the inversion belongs to the sphere, we see that a p-dimensional hyperbolic subspace is isometric to

{(x 1 , . . . , x n ) ∈ H n ; x 1 = x 2 = • • • = x n-p+1 = 0}
and therefore to H p . By definition, the geodesics are the lines of the hyperbolic space. Moreover, a hyperbolic subspace is totally geodesic, which means that if it contains two points x and y then it contains the geodesic joining x to y.

Lemma 8.4. Every intersection of hyperbolic subspaces in H n is a hyperbolic subspace.

Proof. Every intersection of spheres and/or affine subspaces is a sphere S (or an affine subspace if there is no sphere) of the affine subspace A generated by the intersection. Observe that this subspace A can be empty or reduced to a single point. We need to check that, if the affine subspaces are all vertical, if the spheres are centered in ∂H n , and if dim A 1, then A is vertical and the center of S belongs to ∂H n . If the intersection is defined by at least two hyperbolic subspaces then it is included in a vertical hyperplane. Since such a hyperplane is isometric to H n-1 , the result follows by induction on n.

Lemma 8.5. Let H be a subspace of H n and x ∈ H n \ H. The dimension of the smallest subspace containing H and x is dim H + 1.

Proof. Let f be an isometry that sends H onto the intersection of H n with a vertical affine subspace A of dimension p = dim H. The smallest hyperbolic subspace containing A ∩ H n and f (x) is A ′ ∩ H n where A ′ is the affine subspace generated by A and f (x), which is of dimension p + 1. 

d(x, a) = argcosh 1 + x -a 2 2x n a n = d(x, b) = argcosh 1 + x -b 2 2x n b n , that is x -a 2 2x n a n = x -b 2 2x n b n .
In the case where a n = b n , we get a vertical hyperplane. In the case where a n = b n , we get a half-sphere the center of which is in ∂H n . Indeed the coefficient of x n vanishes in the cartesian equation of the sphere, given by b n xa 2a n xb 2 = 0.

Lemma 8.7. If f is an isometry of H n then Fix f is a hyperbolic subspace.

Proof. By Lemma 8.4, there exists a smallest hyperbolic subspace H containing Fix f . Let x ∈ H be arbitrary. By contradiction, if f (x) = x then Med (x, f (x)) is a hyperplane which contains Fix f hence Fix f ⊂ F = H ∩Med (x, f (x)) but F does not contain x. This contradicts the minimality of H. Therefore x = f (x); this proves Fix f = H. This point is denoted π D x. Moreover, if x / ∈ D then the geodesic through x and π D x is orthogonal to D.

Recall that the Poincaré metric is conformal to the Euclidean metric hence the orthogonality relations are equivalent for these two metrics.

Proof. By compactness, the distance from x to D is realized: There exists y ∈ D such that d(x, D) = d(x, y). The point x and the line D are included in some hyperbolic plane P . On the one hand the geodesic from x to y is included in P . On the other hand this plane is isometric to the hyperbolic plane H 2 . Therefore we can suppose that x and D are in H 2 . Thanks to another isometry, we can suppose that D = {ti ; t > 0}. Denoting x = a + bi, we have

d(x, ti) = argch 1 + a 2 + (b -t) 2 2bt .
A calculation shows that the function t

→ a 2 +(b-t) 2 2bt attains its minimum at t = √ a 2 + b 2 hence π D x = i √ a 2 + b 2 .
The geodesic joining x to its projection is the half-circle of center #» 0 and radius √ a 2 + b 2 , which is indeed orthogonal to D.

Corollary 8.9. If F is a hyperplane of H n and x is in H n then there exists a unique point

π F x ∈ F such that d(x, π F x) = inf{d(x, z) ; z ∈ F } = d(x, F ).
Moreover, if x / ∈ F then the geodesic going through x and π F x is orthogonal to F .

Proof. By compactness, the minimal distance is attained in at least one point. If two distinct points y, z ∈ F give this minimal distance then these two points also give the minimum distance from x to D, where D is the geodesic going through y and z, since D ⊂ F . This contradicts Lemma 8.8. This lemma also implies that the geodesic from x to π F x is orthogonal to all the lines going through π F x and included in F hence is orthogonal to F .

Remark. As already said, the uniqueness of the orthogonal projection on hyperbolic subspaces also comes from Proposition 4.6 and Exercise 7.6.

Isometries of H 3 .

The next lemma asserts that an angle and an axis are associated with a positive isometry of H 3 which has fixed points. b. There exists an angle θ such that for all x ∈ Fix f the differential df (x) is a rotation with angle ±θ and with axis the affine line tangent to Fix f .

Proof of Lemma 5.10.

a. The search of the fixed points of h = h a,b,c,d leads to the equation

cz 2 + (d -a)z -b = 0, (9) 
the discriminant of which is ∆ = (da) 2 + 4bc = (a + d) 2 -4 = (tr h) 2 -4. So, if tr h < 2 then h has a unique fixed point a ∈ H 2 (the other root of equation (9), the conjugate, is not in H 2 ). The isometry h is elliptic and a is the center of h.

If c = 0 or if tr h = 2 then equation (9) has a unique root in R = R ∪ {∞}, hence h has no fixed points. The isometry h is parabolic. This case contains the case c = ad = 0.

If c = 0 and tr h > 2 then (9) has two roots in R hence h has no fixed points. The isometry h is hyperbolic.

b. The condition h a,b,c,d (i) = ai+b ci+d = i implies a = d and c = -b. The condition adbc = 1 then implies that there exists θ ∈ R such that a = cos θ 2 and c = sin θ 2 . c. If ϕ and ψ ∈ Isom + H 2 send i to z 0 ∈ Fix h then, denoting ϕ -1 hϕ by r θ , ϕ -1 ψ by r α (these are elements of Isom + H 2 fixing i, hence rotations), we obtain 

ψ -1 hψ = ψ -1 ϕr θ ϕ -1 ψ = r -1 α r θ r α = r θ = ϕ -1 hϕ. d.
M = M(x) -1 R θ 2 M(x) = cos θ 2 -x sin θ 2 x -1 sin θ 2 cos θ 2 .

Proof of Lemma 3.4

Let T = {M ∈ SL(2, Z) ; tr M = 3}. We first prove the following preliminary result. (ii) The sequence (α n ) n∈N takes its values in N and strictly increases. Moreover, for any n ∈ N we have α n+1α n 2 n and α n 2 n -1.

c. For any integer n 1, one has tr M n 2 n+1 -1.

Proof. Item a results from the fact that

M = a b c d ⇒ M -1 = d -b -c a .
Item b (i) is proved by induction. It is obvious for n = 1 and also for n = 2 (i.e. M 2 = 3M -I) by the Cayley-Hamilton theorem. Next, if we assume that M n-1 = α n-1 Mα n-2 I for some n 2 then

M n = α n-1 M 2 -α n-2 M = (3α n-1 -α n-2 )M -α n-1 I = α n M -α n-1 I.
Therefore, since the sequence (α n ) strictly increases and α 0 = 0, we obtain

A k B l ≫ 5 0 0 6 . (11) 
Similarly, for k, l 1 we have

A k B -l = α k-1 α l-1 -4α k-1 α l -5α k α l -α k α l-1 -α k-1 α l -α k α l α k α l-1 + 5α k-1 α l -19α k α l α k-1 α l-1 -3α k α l-1 + α k-1 α l -4α k α l A -k B l = α k-1 α l-1 -3α k α l-1 + α k-1 α l -8α k α l α k α l-1 + α k-1 α l -7α k α l -α k α l-1 -5α k-1 α l -α k α l α k-1 α l-1 -4α k-1 α l -α k α l A -k B -l = α k-1 α l-1 -3α k α l-1 -4α k-1 α l + 17α k α l α k α l-1 -α k-1 α l + 4α k α l -α k α l-1 + 5α k-1 α l + 4α k α l α k-1 α l-1 + α k-1 α l + α k α l
from which one deduces the inequalities

-A k B -l ≫ 5 0 0 3 -A -k B l ≫ 7 0 0 1 and A -k B -l ≫ 10 0 0 1 .
This and (11) give the desired result.

Lemma 8.16. Let m 1 be an integer and k 1 , . . . k m , l 1 , . . . l m , be nonzero integers, except possibly for k 1 and l m , and such that (k 1 , l 1 ) = (0, 0). Then the matrix

M = A k 1 B l 1 . . . A km B lm satisfies |tr M| 3.
Proof. If m = 1 then the result follows from Lemma 8.14.c if k 1 l 1 = 0, and from (10) if k 1 and l 1 are both nonzero, because in this case

|tr (A k 1 B l 1 )| = ε(k 1 l 1 )tr (A k 1 B l 1 ) 6. Now suppose m 2. ⊲ If k 1 and l m are nonzero then |tr M| = tr ε(k 1 l 1 )A k 1 B l 1 × • • • × ε(k m l m )A km B lm tr 5 m 0 0 1 = 5 m + 1 3. ⊲ If k 1 = l m = 0 then tr M = tr (B l 1 A k 2 B l 2 . . . A km ) = tr (A k 2 B l 2 . . . A km B l 1 )
and we fall in the previous case.

⊲ If k 1 = 0 and l m = 0 then tr M = tr (B l 1 A k 2 B l 2 . . . A km B lm ) = tr (A k 2 B l 2 . . . A km B lm+l 1 ).
If l m + l 1 = 0 we fall into one of the previous cases (depending on whether m

= 2 or m > 2). If l m + l 1 = 0 then tr M = tr (A k 2 B l 2 . . . A km ) = tr (A k 2 +km B l 2 . . . A k m-1 B l m-1 )
and we iterate until we are reduced to an already considered case.

⊲ If k 1 = 0 and l m = 0 then tr M = tr (A k 1 B l 1 . . . A km ) = tr (A k 1 +km B l 1 . . . A k m-1 B l m-1 )
and we proceed as above.

8.3 Proof of Lemma 5.5

Let w be a nontrivial word of G 0 = σ, τ of length ℓ 1, i.e. an element w = a 1 . . . a ℓ with a i ∈ {σ, σ -1 , τ, τ -1 } and a i a i+1 = id for all i ∈ {1, . . . , ℓ -1}. The word w has one of the four forms σ

± • • • τ ± , τ ± • • • σ ± , σ ± • • • σ ± or τ ± • • • τ ± .
The second form comes down to the first by considering w -1 instead of w and the last two forms can be reduced to one of the first two by conjugation, unless w is simply a power of σ or τ , or a conjugate of such a power, in which case the result comes from θ / ∈ πQ. So we just have to show that 1 is not an eigenvalue of w when w = σ ± • • • τ ± . An easy induction shows that w has a matrix of the form

    P -Q -R -S Q P -S R R S P -Q S -R Q P    
where P, R are polynomials in cos θ with integer coefficients and Q, S are products of such polynomials with sin θ. Since w is orthogonal, we have

P 2 + Q 2 + R 2 + S 2 = 1. A straightforward computation then shows that the characteristic polynomial of w is λ 4 -4P λ 3 + (4P 2 + 2)λ 2 -4P λ + 1.
We show below that the degree of P is equal to ℓ, the length of w. If 1 were an eigenvalue of w we would have 4P 2 -8P + 4 = 0, a contradiction since cos θ is transcendent.

In the sequel, the notation ≍ indicates that only the term of highest degree in cos θ has been retained. Using cos mθ ≍ 2 m-1 cos m θ and sin mθ ≍ 2 m-1 cos m-1 θ sin θ, and denoting cos θ by c and sin θ by s, we get, with ε = ±1 and δ = ±1

σ εm ≍ 2 m-1 c m-1     c -εs 0 0 εs c 0 0 0 0 c -εs 0 0 εs c     τ δk ≍ 2 k-1 c k-1     c 0 0 -δs 0 c -δs 0 0 δs c 0 δs 0 0 c     .
Multiplying both expressions and using s 2 = 1c 2 ≍ -c 2 we get

σ εm τ δk ≍ A(m, k, ε, δ) = 2 m+k-2 c m+k-1     c -εs -εδc -δs εs c -δs εδc εδc δs c -εs δs -εδc εs c     . Let us denote w = σ ε 1 m 1 τ δ 1 k 1 • • • σ εnmn τ δnkn with ε i , δ i = ±1 and m i , k i 1; thus the length of w is ℓ = m 1 + k 1 + • • • + m n + k n .
We assert that, for every integer n 1, there exist ξ n , µ n , ζ n and ν n equal to ±1 such that

ξ n ζ n = µ n ν n and w ≍ A n = 2 ℓ-n-1 c ℓ-1     ξ n c -µ n s -ζ n c -ν n s µ n s ξ n c -ν n s ζ n c ζ n c ν n s ξ n c -µ n s ν n s -ζ n c µ n s ξ n c     .
By induction on n, let us show that this is indeed the case. For n = 1, this is because

A 1 = A(m 1 , k 1 , ε 1 , δ 1
) and because we have

ξ 1 = 1, µ 1 = ε 1 , ζ 1 = ε 1 δ 1 , and ν 1 = δ 1 .
Now assume that the property holds for an integer n 1 and let us check it for n + 1. One sees that

A n A(m n+1 , k n+1 , ε n+1 , δ n+1 ) ≍ A n+1 with ξ n+1 = 1 2 (ξ n + ε n+1 µ n -ε n+1 δ n+1 ζ n + δ n+1 ν n ) µ n+1 = 1 2 (ε n+1 ξ n + µ n + δ n+1 ζ n -ε n+1 δ n+1 ν n ) ζ n+1 = 1 2 (ε n+1 δ n+1 ξ n + δ n+1 µ n + ζ n -ε n+1 ν n ) ν n+1 = 1 2 (δ n+1 ξ n + ε n+1 δ n+1 µ n -ε n+1 ζ n + ν n ).
x + y 2xy 2 . It is enough to verify that | is a positive definite symmetric bilinear form. Easily we have

x | y = y | x , x | x 0 and x | x = 0 ⇒ x = #» 0 . It remains to prove that x + x ′ | y = x | y + x ′ | y and λx | y = λ x | y .
First we have #» 0 | y = 0. By using (6) we get 

x + x ′ | y + x -x ′ | y = 1 4 x + x ′ + y 2 + x -x ′ + y 2 -x + x ′ -y 2 -x -x ′ -y 2 = 1 2 x + y 2 + x ′ 2 -x -y 2 -x ′ 2 = 2 x | y .
= f k 1 g l 1 • • • f km g lm is of the form h : x → ax+b cx+d with ad -bc = 1.
Looking for a fixed point x of h leads to the equation cx 2 + (da)xb = 0, whose discriminant is ∆ = (a + d) 2 -4. From Lemma 8.16, one has |a + d| 3 hence ∆ 0 hence h has always a fixed point. Therefore the group f, g is eccentric.

Exercise 7.8. Let G be a gaf of Isom H 2 . Let us identify H 3 with R × H 2 . For any g ∈ G, let ϕ(g) : H 3 → H 3 , (x, y) → (x, g(y)). We easily check that ϕ(g) ∈ Isom H 3 and that Fix ϕ

(g) = R × Fix g = ∅. Thus H := ϕ(G) is a gaf of Isom H 3 , hence a gag since Isom H 3 is globalizing, and Fix H is of the form R × A. We obtain Fix G = A = ∅ hence G is a gag of Isom H 2 .
Exercise 7.9. Let f : R n → R n preserving the Euclidean distance. The equality

x | y = 1 2 x 2 + y 2 -x -y 2
shows that the function g : x → f (x)-f ( #» 0 ) preserves the scalar product: One has g(x) | g(y) = x | y for every x, y ∈ R n . Thus, for every x, y ∈ R n and every λ ∈ R, we have

g(x + λy) -g(x) -λg(y) 2 = g(x + λy) 2 + g(x) 2 + λ 2 g(y) 2 - 2 g(x + λy) | g(x) -2λ g(x + λy) | g(y) + 2λ g(x) | g(y) = x + λy 2 + x 2 + λ 2 y 2 - 2 x + λy | x -2λ x + λy | y + 2λ x | y = x + λy -x -λy 2 = 0.
Therefore g is linear hence f is affine. Since g preserves the Euclidean distance, it is injective. Since we are in finite dimension, g is surjective. It is the same with f . Exercise 7.10. Let E be a normed vector space and f : It follows that g(ax) = ag(x) for all a ∈ N, then for all a ∈ Q, finally for all a ∈ R by continuity of g and by density of Q in R, hence g is linear, hence f is affine. (ii) From item (i), for all a, b in E we have f ( 1 2 (a + b)) = 1 2 (f (a) + f (b)). Since f is continuous, we deduce that f is affine by Exercise 7.10. Exercise 7.12. Kakutani Theorem in finite dimension [START_REF] Antetomaso | Un théorème de point fixe en dimension finie : application aux sousgroupes compacts de GL n (R)[END_REF].

E → E be a continuous function such that ∀a, b ∈ E, f 1 2 (a + b) = 1 2 f (a) + f (b) . ( 12 
) Let g : E → E, x → f (x) -f ( #» 0 
a. One easily checks that is a norm. In order to prove that is strictly convex on E we consider x, y ∈ E such that x = #» 0 and y / ∈ R + x. Then we have, for all g ∈ G, g(x) = #» 0 and g(y) / ∈ R + g(x). Put ϕ(g) = g(x) 2 + g(y) 2g(x) + g(y) 2 . The function ϕ is continuous and takes positive values on the compact set G, hence ϕ is bounded below by some δ > 0. Thus, for all g ∈ G, g(x) + g(y) 2 g(x) 2 + g(y) 2δ x + yδ hence, taking the supremum: x + y

x + yδ. Finally g(x)g(y) = sup h∈G hg(x)hg(y) 2 = sup k∈G k(x)k(y) 2 = xy since G is a group, showing that every element of G is an isometry.

b. Since K is convex, the Cesàro mean σ n = 1 n (x 1 + • • • + x n ) is in K. By compactness, there exists a subsequence (σ n k ) k∈N tending to some a ∈ K. We have

f (σ n k ) = 1 n k (x 2 + • • • + x n k +1 ) = σ n k -1 n k (x n k +1 -x 1
), hence the sequence (f (σ n k )) k∈N tends to a too. Since f is an endomorphism on a finite dimensional space, f is continuous hence (f (σ n k )) k∈N tends to f (a), from which we deduce that f (a) = a. c. Given g ∈ G, set V g = {x ∈ K ; g(x) = x} and assume by contradiction that for all x ∈ K there exists g ∈ G such that g(x) = x.

(i) Since an isometry is continuous, each V g is an open subset of K. By assumption, K is the union of the V g , g ∈ G, hence by compactness there exist g 1 , . . . , g N ∈ G such that

K = V g 1 ∪ • • • ∪ V g N . (ii) Let f = 1 N (g 1 + • • • + g N )
. By convexity, one has f (K) ⊆ K hence there exists a ∈ K such that f (a) = a by item b.

(iii) One has Na = g 1 (a) + • • • + g N (a) g 1 (a) + • • • + g n (a) = N a because the g k are isometries, therefore the inequality is an equality, hence the g k (a) are positively collinear by strict convexity of the norm, hence all equal one to each other, hence all equal to a. As a consequence the point a would be in none of the V g k , a contradiction. By Exercise 7.9, f is also affine and surjective hence an isometry. Since f ( #» 0 ) = #» 0 , f is linear hence it is determined by its values on a subset spanning R n+1 , for instance S n , hence the uniqueness follows.

Exercise 7.14. Extension of an isometry. By Exercise 7.9, f is also surjective hence an isometry.

a. One has f (a i ) -f (a 0 ) | f (a j ) -f (a 0 ) = f (a i ) -f (a 0 ) 2 + f (a j ) -f (a 0 ) 2 -1 2 f (a i ) - f (a j ) 2 = a i -a 0 2 + a j -a 0 2 -1 2 a i -a j 2 = a i -a 0 | a j -a 0 .
c. Of course we have f (a i ) = f (a i ) for all i ∈ {0, . . . , n}, by uniqueness of the barycentric coordinates. Let a ∈ A; from above, one has f (a)f (a i ) = aa i for all i ∈ {0, . . . , n} hence f (a)f (a i ) = f (a)f (a i ) since f is an isometry of A. Thus f (a i ) ∈ Med f (a), f (a) for all i ∈ {0, . . . , n} but Med f (a), f (a) is an affine subspace hence f (a) = n i=0 λ i (a)f (a i ) ∈ Med f (a), f (a) , hence f (a) = f (a), hence f indeed extends f . Since isometries of an affine space are affine maps by Exercise 7.9, f is affine and it is the only affine map of Aff (a 0 , . . . , a n ) taking the values f (a i ) at points a i hence the uniqueness follows. An eccentric subgroup G = f, g of A 7 is then obtained by taking two even permutations which act separately on {1, 2, 3, 4} and on {5, 6, 7}: We choose for f an element of K on {1, 2, 3, 4} and the identity on {5, 6, 7}, say f = (12)(34), and for g an element of A 4 \ K on {1, 2, 3, 4} and an element of A 3 without fixed points on {5, 6, 7}, say g = (123)(567). We obtain for G a 12-element semi-direct product of K and A 3 .

Any element of G whose restriction to {1, 2, 3, 4} has no fixed points, i.e. is in K \ {id}, is the identity on {5, 6, 7}, so all the elements of G have a fixed point but f and g have no common fixed points. With this identification we obtain f = (123)(567) and g = ( 14)(67) which are two even permutations.

b. Since the elements of G are linear and Y generates the vector space F 3 2 , if the restriction to Y of h ∈ G is the identity map then h is the identity map. In addition, f and g send Y to Y hence the map which sends h to its restriction to Y is a one-to-one morphism from G to S Y . c. We find (f g) 2 = (12)(34), (gf ) 2 = (13)(24), (f gf ) 2 = (14) [START_REF] Wagon | Banach-Tarski Paradox[END_REF].

By item b, there is no other element of G whose restriction to {1, 2, 3, 4} is a double transposition.

d. As Fix f ∩ Fix g = ∅, in order to prove that the action of G is eccentric, it is enough to check that Fix h = ∅ for all h in G. The elements of S 4 without fixed point are the double transpositions and the cycles of order 4. From item c, if the restriction to {1, 2, 3, 4} of h ∈ G is a double transposition then Fix h = {5, 6, 7}. If the restriction of h ∈ G to {1, 2, 3, 4} is a cycle of order 4, since h is an even permutation, its restriction to {5, 6, 7} is a transposition, so also has a fixed point. Thus the action of G is eccentric which shows that the action GL(3, F 2 ) on F 3 2 \ { #» 0 } is nonfixating.

e. It is easy to check that the above morphism is an isomorphism. So the group generated by (123)(567) and (14)(67) is an eccentric subgroup of order 24 of A 7 therefore is different from the subgroup of Exercise 7.15.

Exercise 7.17 

Intervals.

  We denot by ]a, b[ the open interval from a to b, in order to avoid confusion with the pair (a, b).

Lemma 3 . 4 .

 34 ([16] Chapter VIII) Let G 0 be the subgroup of SL(2, Z) generated by the matrices A and B above. Then G 0 is free and any matrix M ∈ G 0 \ {I} has trace different from 2.

  b), the mediator plane of a and b. The same holds for Fix g. Since Fix f ∩ Fix g = ∅, Fix f and Fix g are two parallel lines. It follows that # » [f, g] = id. If f and g were commuting, we would have f (Fix g) = Fix g by Proposition 2.1.a, in contradiction with f = id. It follows that [f, g] is a nontrivial translation hence Fix [f, g] = ∅. Proposition 5.3. The group Isom R 3 is fixating.

) Lemma 5 . 5 .

 55 ([23] Theorem 5.2, p.53) The subgroup G 0 of SO 4 generated by σ and τ is free. Moreover, 1 is not an eigenvalue of any element of G 0 \ {id}.

Lemma 5 . 11 .

 511 If f, g ∈ Isom + H 2 are such that Fix f ∩ Fix g = ∅ then there exists h ∈ f, g such that Fix h = ∅. Proof. If Fix f or Fix g is empty we are done. Now we assume that Fix f and Fix g are nonempty. Thus f and g are two rotations of centers a and b respectively, with a = b. Below we prove that tr [f, g] > 2, yielding Fix [f, g] = ∅ by Lemma 5.10.a. Let us start by sending a and g(a) into iR: Let ϕ ∈ Isom + H 2 and x ∈ ]0, +∞[ \{1} be such that ϕ(a) = i and ϕ(g(a)) = ix. Set f = ϕf ϕ -1 and g

For

  x ∈ S n , we write ẋ = {x, -x} the corresponding class in RP n . Given ẋ = {x, -x} and ẏ = {y, -y} in RP n , the distance between ẋ and ẏ is then given by d( ẋ, ẏ) = arccos | x | y | where x | y is the scalar product between x and y.

Theorem 6. 1 .a.

 1 The symmetric group S n acting on {1, . . . , n} is fixating if and only if n 4.

a.

  Let a, b ∈ E and m be the midpoint of [a, b], let W a,b be the set of isometries of E fixing a and b, and let λ = sup{ g(m)m ; g ∈ W a,b }.

Lemma 8 . 6 .

 86 Let a and b be two distinct points in H n . Then the set Med (a, b) of points equidistant from a and b is a hyperplane of H n . Proof. By (8), a point x is in Med (a, b) if and only if

Lemma 8 . 8 .

 88 Let D be a line in H n and x ∈ H n . There exists a unique point y ∈ D such that d(x, y) = d(x, D) := inf{d(x, z) ; z ∈ D}.

Lemma 8 . 10 .

 810 Let f ∈ Isom + H 3 . Assume Fix f = ∅ and f = id.a. Then Fix f is a hyperbolic line.

  The rotation of center ix and angle θ is f = ϕr θ ϕ -1 , where ϕ ∈ Isom + H 2 sends i to ix. Let us choose ϕ = h a,b,c,d with a = √ x, b = c = 0 and d = 1 √ x , i.e. the homography associated with the matrix M(x) = √ x 0 0 1/ √ x . Then the matrices associated with ϕr θ ϕ -1 are ±M with

Lemma 8 . 14 .

 814 Let M ∈ T . a. One has M -1 ∈ T . b. (i) For any integer n 1, one has M n = α n Mα n-1 I, with α 0 = 0, α 1 = 1, and α n = 3α n-1α n-2 for n 2.

ForExercise 7 . 6 .

 76 x ′ = x we obtain 2x | y = 2 x | y . For x = 1 2 (a + b) and x ′ = 1 2 (ab) we deduce a | y + b | y = a + b | y . Therefore kx | y = k x | y , first for integer k, then for rational k, finally for real k by continuity of the norm and by density of Q in R. Let xyz be a hyperbolic triangle and m the midpoint of the geodesic segment from x to y. Let α = ∠zmx and β = ∠zmy ∈ ]0, π[ ; one has α + β = π hence cos α + cos β = 0. For short denote by ab the geodesic distance between two points a and b.

  ). Then g is continuous and satisfies (12) and g( 2x), we can rewrite[START_REF] Kakutani | Two fixed-point theorems concerning bicompact convex sets[END_REF] as ∀a, b ∈ E, g(a + b) = g(a) + g(b).

Exercise 7 . 11 .

 711 Mazur-Ulam Theorem[START_REF]A proof of the Mazur-Ulam theorem[END_REF].a. (i) For every g ∈ W a,b , one hasg(m)m g(m)g(a) + am = 2 am = ab , hence λ ab . (ii) Let g ∈ W a,b. Since s m is an isometry which fixes m, one hasg * (m)m = s m g -1 s m g(m)m = g -1 s m g(m)m = s m (g(m))g(m) = 2 g(m)m .(iii) From the above, on the one hand λ is finite, and on the other hand, for all g ∈ W a,b , since s m permutes a and b, we have g * ∈ W a,b , hence 2 g(m)m λ, hence 2λ λ, hence λ = 0. As a consequence we haveg(m) = m for all g ∈ W a,b . b. (i) One has h(a) = s m f -1 s m ′ (f (a)) = s m f -1 (f (b)) = s m (b) = a. Similarly one proves h(b) = b, hence h ∈ W a,b , therefore from a one has h(m) = m. It follows that f -1 s m ′ f (m) = s m (m) = m, then s m ′ (f (m)) = f (m).Since s m ′ admits m ′ as unique fixed point, one has f (m) = m ′ .

Exercise 7 . 13 .

 713 Isometries of the sphere.a. For all x, y ∈ S n , one has f(x) | f (y) = cos d f (x), f (y) = cos d(x, y) = x | y . b. For x or y = #» 0 , one has f (x) | f (y) = 0 = x | y . For x and y = #» 0 , one has f (x) | f (y) = x y f x x Firstly we have f (x) 2 = f (x) f (x) = x | x = x 2 for all x ∈ R n+1 . Then, for all x, y ∈ R n+1 f (x)f (y) 2 = f (x) 2 + f (y) 2 -2 f (x) | f (y) = x 2 + y 2 -2 x | y = xy 2 .

b. 2 =

 2 One hasf (x)f (y) 2 = n i=0 λ i (x)λ i (y) f (a i ) x)λ i (y) f (a i )f (a 0 ) x)λ i (y) λ j (x)λ j (y) f (a i )f (a 0 ) | f (a j )f (a 0 ) x)λ i (y) λ j (x)λ j (y) a ia 0 | a ja 0 = n i=0 λ i (x)λ i (y) (a ia 0 ) xy 2 .

Exercise 7 . 15 .

 715 The alternating group A 7 is nonfixating. The group A 4 has a subgroup isomorphic to the Klein group, K = {id, (12)(34), (13)(24), (14)(23)}, such that: ⊲ The quotient A 4 /K is isomorphic to Z/3Z, ⊲ Any element of A 4 \ K has at least one fixed point (these are all cycles of order 3).

Exercise 7 . 16 .

 716 The action of the groupGL(3, F 2 ) on X = F 3 2 \ { #» 0 } is nonfixating.a. Identify X with {1, . . . , 7} by e i → i, e 123 → 4, e 23 → 5, e 13 , → 6, e 12 , → 7.

..

  The action of GL(d, K) on X = K d \ { #» 0 } is nonfixating, except in obvious cases.a. Let G be the set of matrices of the form A = a b 0 1 with a ∈ K * = K \ {0} and b ∈ K.It is a group. One finds that Fix A is the straight line of equation x = 0 if b = 0 and the straight line of equation y = (1a)x/b if b = 0 (more precisely the restrictions to X of these lines). Thus G is a gaf.For card K 3, choose a ∈ K \ {0, 1} and set A = Then Fix A ∩ Fix B is empty in X hence G is eccentric.b. Given an eccentric group G of GL(d, K), let G be the group of block-matrices of the formA = A b t 0 1 where A ∈ G, b ∈ K d is a column-vector,and t 0 is the zero row-vector. If x = x y with x ∈ K d and y ∈ K then A x = Ax + yb y hence x 0 is in Fix A for all x ∈ Fix A, which shows that G is a gaf. On the other hand an element x ∈ Fix G cannot be of the form x = x 0 (otherwise x would be in Fix G which is empty by assumption) and, if x = x y were in Fix G with y = 0, we would have (I -A)x = yb for all A ∈ G and all b ∈ K, a contradiction since K has at least two elements. c. One easily checks that GL(1, K) is fixating. If K = F 2 then GL(2, K) is nonfixating by item a hence GL(d, K) is nonfixating for all d 2 by item b. If K = F 2 then GL(2, K) is fixating seen as a subgroup of S 3 but GL(3, K) is nonfixating by Exercise 7.16 and GL(d, K) is nonfixating for all d 3 by item b.

  for all x ∈ E, there exists a unique y ∈ C such that d(x, C) = d(x, y). This point is denotedy = π C x. b. If g is an isometry of E then Fix g is closed and half-convex. c. If G is a group of isometries of E then Fix G is closed and half-convex. , let y n ∈ C be such that d(x, y n ) < δ + 1n . By (3) the sequence (y n ) n∈N * hereby defined is Cauchy, hence converges to a point y ∈ C satisfying d(x, y) = δ; this proves the existence. Inequality (3) also proves the uniqueness.b and c. The proof is straightforward.

	Proof. a. Let δ = d(x, C). By definition, for any ε > 0, there exists y ∈ C such that d(x, y) < δ + ε. If z ∈ C also satisfies this inequality, since d x, m(y, z) δ, (1) then gives
	d(y, z) 2 8δε + 4ε 2 .	(3)
	For each n ∈ N Theorem 4.7. Let (E, d) be a complete metric space satisfying (1), let G be a group of
	isometries of E, and let H G be such that G/H is cyclic. If G is a gaf and H a gag then
	G is a gag.	

* 

  1 endowed with the Poincaré metric given by ds 2 = 1

	x 2 n	n i=1 dx 2 i , cf. Appendix 8.1 for details.

Theorem 5.8. If n 3 then Isom H n is fixating. If n 5 then Isom H n is nonfixating.

  Ironically, the Möbius group acting on R instead of H 2 is nonfixating in spite of a lower dimension, cf. Exercise 7.7. 2. As already said, one can also deduce Proposition 5.12 from the forthcoming Corollary 5.15 and Exercise 7.8.

	Remarks.
	1.

The group Isom H 2 is fixating.

Proof. By Corollary 4.8, it is enough to prove that Isom + H 2 is fixating. Let G Isom + H 2 be a gaf; we have to prove that G is a gag. If G = {id} the result is obvious. We now assume G = {id}. By Lemma 5.11, all elements of G \ {id} are rotations of the same center hence G is a gag.

  a contradiction. Corollary 5.15. The group Isom H 3 is fixating. Proof. Since Isom + H 3 is a subgroup of index 2 of Isom H 3 , by Corollary 4.8 it suffices to prove that Isom + H 3 is fixating. Let G

  Show that f preserves the scalar product. b. Prove that, if GL(d, K) is nonfixating, then GL(d + 1, K) is nonfixating either. c. Deduce that GL(d, K) is fixating if and only if:

  8.1.1 The isometry group of H n .The similarity transformations (similarities for short), the inversions with respect to spheres, and the reflections through affine hyperplanes, act on R n = R n ∪ {∞} and form a subgroup of the group of homeomorphisms of R n . This subgroup is call the Möbius group of R n and is denoted by M( R n ). The inversions and the reflections are enough to generate the Möbius group. The restrictions to the upper half-space of some elements of the Möbius group give rise to the isometry group of H n : Theorem 8.2.([START_REF] Ratcliff | Fundations of Hyperbolic Manifolds[END_REF], Theorem 4.6.2) The isometry group Isom H n is the group of the restrictions to H n of the Möbius transformations ϕ such that ϕ(H n ) = H n . It is generated by the reflections through spheres centered at points in ∂H n and through vertical hyperplanes. All results we need follow from this theorem, from Theorem 8.1, and from formula[START_REF] Dunford | Linear operators, 1: General Theory[END_REF].A first consequence of Theorem 8.2 is that a similarity ϕ : R n → R n such that ϕ(H n ) = H n induces an isometry of H n . Conversely, since the only elements in M( R n ) that fix ∞ are the similarities ([START_REF] Ratcliff | Fundations of Hyperbolic Manifolds[END_REF], Theorem 4.3.2), we have the following result. Corollary 8.3. If an isometry f of H n is the restriction of

  The cosine inequality for the triangle myz is: mz 2 + my 2 -2mz.my cos α yz 2 . By using my = 1 2 xy, we obtain mz 2 + 1 4 xy 2mz.xy cos α yz 2 . In the same way, one has mz 2 + 1 4 xy 2mz.xy cos β xz 2 . By adding both inequalities, we get 2mz 2 + 1 2 xy 2 xz 2 + yz 2 which indeed corresponds to the median inequality (1). Let f : x → 1 -x+3 and g : x → -x-1 5x+4 ; f and g have distinct fixed points. Let k 1 , l 1 , . . . , k m , l m be relative integers all nonzero, except possibly k 1 and l m . The product h

	Exercise 7.7.

For the uniqueness, let us first notice that all the vertices of a path verifying the color change property of the edges, are distinct. Indeed, if two vertices of the path coincided then an elementary cycle could be extracted. By assumption on X, all the edges of this cycle have the same color, contradicting the property of color change.

If two distinct paths [a 0 = x, . . . , a m = y] and [b 0 = x, . . . , b n = y] join x to y and satisfy the property of color change then there is an integer i 0 such that a i = b i and a i+1 = b i+1 . Consider the first vertex a j in the path [a i+1 , . . . , a m ] which also belongs to the path [b i+1 , . . . , b n ]. So we have a j = b k for some k > i. The integer k is chosen minimal. By choice of j and k, the vertices of the path [a i , a i+1 , . . . , a j = b k , b k-1 , . . . , b i = a i ] are all distinct, except the two ends. This cycle has at least three edges (otherwise a i+1 = b i+1 ), it is elementary and has at least two colors, a contradiction. Lemma 6.13. Let s be an isometry of X having at least one fixed point and let x be a vertex of X that is not a fixed point of s. Let F be the set of points y ∈ Fix s such that d(x, y) = d(x, Fix s).

a. Then F is included in a cell whose color is the one of the last edge of the geodesic going from x to any element of F . b. Moreover:

) is even then the midpoint z of the geodesic joining x to s(x) belongs to F . 

] is a geodesic since the colors of two consecutive edges of this path are never the same. Hence it is the geodesic joining x to s(x). The length of this geodesic is 2n and its midpoint is u ∈ F .

] is also an edge Y . Two consecutive edges of the path [u 0 , . . . , u n-1 , s(u n-1 ), . . . , s(u 0 )] never have the same color. Hence this path is the geodesic joining x to s(x). By construction, the length of this geodesic is odd and its middle edge [u n-1 , s(u n-1 )] is of color c. It remains to prove that s(Y ) = Y . Let y be a vertex of Y . The image under s of the triangle u n-1 uy is a triangle that contains the edge [s(u n-1 ), u] which is an edge of Y . Therefore the image of this triangle is a triangle of Y hence s(y) is a vertex of Y .

Proof of Theorem 6.11. We proceed by induction on the number of generators of G. Suppose that G is generated by s and G 0 , where s is an isometry which fixes at least one vertex and G 0 is a subgroup with a global fixed point x 0 . If s(x 0 ) = x 0 we are done. Otherwise consider c. Conclude.

Exercise 7.14. Extension of an isometry.

Let A be a subset of R d and set E = Aff A, the affine subspace generated by A. We endow A with the Euclidean distance induced by that of R d . We want to show that any isometry of A is the restriction of a unique affine isometry of E.

We know that there are a 0 , . . . , a n ∈ A such that E = Aff (a 0 , . . . , a n ), where n = dim E. Thus every point x ∈ E is written in a unique way x = n i=0 λ i (x)a i with n i=0 λ i (x) = 1. The numbers λ i (x) are the barycentric coordinates of x. Let f be an isometry of A.

a. Show that for all i, j ∈ {0, . . . , n} we have f

Prove that f is an isometry.

c. Show that f extends f . Conclude.

Exercise 7.15. The alternating group A 7 is nonfixating.

In Step 3 of the proof of Theorem 6.1, we built an eccentric subgroup of S 5 using permutations which act separately on {1, 2, 3} and on {4, 5}, thanks to the following key point. The group S 3 has a normal subgroup (the alternating group A 3 ) which has the following two properties:

⊲ Any element of S 3 \ A 3 has at least one fixed point.

We then obtained an eccentric subgroup G = f, g of S 5 by taking for f an element of A 3 on {1, 2, 3} and the identity on {4, 5}, and for g an element of S 3 \ A 3 on {1, 2, 3} and an element of S 2 without fixed point on {4, 5}. Use a similar construction to build an eccentric subgroup of A 7 .

Exercise 7.16. The action of the group GL(3, e. Observe that this produces another eccentric subgroup of A 7 .

Exercise 7.17. The action of the group

Let K be a field, finite or not, let d 1 be an integer, and let X = K d \ { #» 0 }. In this exercise we will say that the group GL(d, K) is fixating if its action on X is. a. Prove that, if K has at least three elements, then GL(2, K) is nonfixating.

Proof. a. Let x ∈ Fix f . The differential df (x) is a positive isometry of R 3 hence a rotation with an eigenvector #» u . Consider the geodesic D through x of direction #» u . It is invariant by f , and f has a fixed point in D, hence D ⊂ Fix f . If D were strictly included in Fix f then Fix f would contain a hyperbolic plane. The differential of f at a point of this plane would be a rotation with two independent eigenvectors; hence it would be the identity. It follows that f would be the identity, a contradiction, hence Fix f = D.

b. Conjugating by an isometry, we can restrict ourselves to the case where D is a vertical line. By Corollary 8.3, f is the restriction of a similarity. Since f has a half-line of fixed points, f is the restriction of a rotation r of axis D. The differential of f along this axis is then always equal to #» r or to its inverse.

With the same method one easily proves the following statement.

Lemma 8.11. Let f ∈ Isom -H 3 . If Fix f = ∅ then Fix f is a hyperbolic plane and f is a reflection through this plane.

Our last statement concerning isometries of H 3 is the following. Lemma 8.12. Let f ∈ Isom + H 3 . Assume that Fix f = ∅. Denote by D the axis of f and by θ its angle. Let P 1 and P 2 be two hyperbolic planes of intersection D and let σ P 1 and σ P 2 be the reflections through the planes P 1 and P 2 . Denote ∂P 1 and ∂P 2 the circles or lines determined by these planes in ∂H 3 . If ∠(∂P 1 , ∂P 2 ) = ± θ 2 mod π then f = σ P 2 σ P 1 or σ P 1 σ P 2 . Proof. As in the previous proof, thanks to a conjugacy by an isometry, we can assume that D is a vertical half-line. It follows that P 1 and P 2 are vertical planes and that f , σ P 1 , and σ P 2 are similarities hence isometries of R 3 . Since the relation about angles remains true up to the sign, we have f = σ P 2 σ P 1 or σ P 1 σ P 2 .

Isometries of H 2 .

The hyperbolic plane H 2 is identified with the upper half-plane {z ∈ C ; Im z > 0}. With this identification, by Theorem 8.2, the positive isometries of H 2 are the conformal transformations of the upper half-plane, i.e., the maps h : H 2 → H 2 of the form

The negative isometries are obtained by composing the positive isometries with the reflection z → -z.

Proof. It is enough to prove the statement in the case where x ′ = i and y ′ = it with t > 1. The homography h ∈ Isom + H 2 defined by h(z) = 1 Im x (z -Re x) sends x to i. Let #» u be the unit vector tangent at x to the geodesic going from x to y. By composing with a homography of the form r(z) = cos θ z-sin θ sin θ z+cos θ which fixes i, we can suppose that the differential of rh at x sends #» u to i. The isometry rh maps the geodesic segment joining x to y onto a geodesic segment of the same length starting at i with initial speed i hence included in the imaginary axis. Therefore rh(y) = it where t is the unique real number greater than

For item b (ii), an easy induction shows that (α n ) is increasing and that α n 0 for all n ∈ N. Therefore we have

For item c, considering the above, for any n 1, one has

Let G 0 be the subgroup of SL(2, Z) generated by the matrices

The matrices A and B (as well as their inverses A -1 and B -1 ) are elements of T . We will show that any matrix M ∈ G 0 \ {I} has a trace different from 2, which is equivalent to saying that 1 is not an eigenvalue of M (since det M = 1), i.e. that M -I is invertible.

y ij for all i, j ∈ {1, 2}. It is a partial order compatible with the addition and the multiplication.

We also have X ≫ Y ⇒ tr X tr Y.

The following is inspired by [START_REF] Newman | Integral matrices[END_REF], VIII 26, pp.158-162, and proves Lemma 3.4. Lemma 8.15. For k, l ∈ Z \ {0}, one has

Proof. Note first that

and that

With the notation of Lemma 8.14.b, one has

From these equalities, it is easily shown that ξ n+1 ζ n+1 = µ n+1 ν n+1 . It remains to check that ξ n+1 , µ n+1 , ζ n+1 , ν n+1 are equal to ±1. Noticing that ζ n = ξ n µ n ν n , one obtains

since, in general, if a, b, c are equal to ±1 then a + b + cabc = ±2. In the same way we show that µ n+1 , ζ n+1 and ν n+1 are equal to ±1, which completes the proof. Exercise 7.2. Let G = g , let X be an arbitrary set and ρ : G → Bij X be a morphism. We have ρ(G) = ρ(g) . Let H ρ(G). Then H is cyclic generated by some h hence Fix H = Fix h. If H is a gaf then Fix h = ∅ hence Fix H = ∅ too, hence H is a gag. Conversely, let G be a noncyclic group. Let G act by left multiplication on the set X = P(G) \ {∅, G} of nontrivial subsets of G: Precisely, let ρ : G → Bij X be defined by ρ(g)(A) = gA = {ga ; a ∈ A}. For every g ∈ G the subset g is nontrivial since G is noncyclic and g is fixed by ρ(g) hence ρ(G) itself is a gaf but ρ(G) has no global fixed point: Given A ∈ X, let a ∈ A and b / ∈ A. Since b = (ba -1 )a, we have b ∈ ρ(ba -1 )(A) hence ρ(ba -1 )(A) = A. Thus (X, G) is eccentric, therefore nonfixating. Exercise 7.3. Denote ρ(Q) = {g 1 , . . . , g n }. Let r i = p i q i ∈ Q such that ρ(r i ) = g i , with p i and q i relatively prime, and denote by M the least common multiple of the q i . Then ρ(Q) is cyclic, generated by ρ 1 M , hence fixating by Exercise 7. 

Solutions of the exercises