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COMBINATORIAL IDENTITIES AND TITCHMARSH’S DIVISOR PROBLEM
FOR MULTIPLICATIVE FUNCTIONS

SARY DRAPPEAU AND BERKE TOPACOGULLARI

Abstract. Given a multiplicative function f which is periodic over the primes, we obtain a full
asymptotic expansion for the shifted convolution sum

∑
|h|<n≤x f(n)τ(n − h), where τ denotes the

divisor function and h ∈ Zr{0}. We consider in particular the special cases where f is the generalized
divisor function τz with z ∈ C, and the characteristic function of sums of two squares (or more generally,
ideal norms of abelian extensions). As another application, we deduce a full asymptotic expansion in
the generalized Titchmarsh divisor problem

∑
|h|<n≤x, ω(n)=k τ(n−h), where ω(n) counts the number

of distinct prime divisors of n, thus extending a result of Fouvry and Bombieri-Friedlander-Iwaniec.
We present two different proofs: The first relies on an effective combinatorial formula of Heath-

Brown’s type for the divisor function τα with α ∈ Q, and an interpolation argument in the z-variable
for weighted mean values of τz . The second is based on an identity of Linnik type for τz and the
well-factorability of friable numbers.

1. Introduction

Understanding correlations of arithmetic functions is a fundamental question in analytic number
theory. In an explicit form, the problem can be stated as determining the asymptotic behaviour of the
sum
(1.1)

∑
1<n≤x

f(n)g(n− 1),

where f, g : N → C are arithmetic functions of multiplicative nature. Many important problems in
number theory can be rephrased in terms of correlations of arithmetic functions, the twin prime con-
jecture or the Goldbach conjecture being two famous examples (see e.g. [Ell94, Chapter 1]). Sums of
the form (1.1) also come up prominently in the study of growth properties of L-functions in the critical
strip. In this context, the problem is known as the shifted convolution problem and has a long and rich
history (see [Mic07] for an overview).

In general, determining the precise asymptotic behaviour of the unweighted correlation (1.1) is a
difficult task and only very few unconditional results are known in this direction, all of them requiring
at least one of the involved functions to be very close – in the convolution sense – to the constant
function 1, the divisor function τ(n) or to Fourier coefficients of GL2-automorphic forms. Note that
when f and g are bounded, the logarithmically weighted correlation∑

1<n≤x

f(n)g(n− 1)
n

has been the object of a recent breakthrough of Tao [Tao16]. The case of odd-order correlations for
bounded f, g was recently settled in [TT17].

In the present paper, we focus on the particularly important case g(n) = τ(n) of the unweighted
problem (1.1), which is at the edge of current techniques. If the average value of f is not too small, it
was already observed by Vinogradov [Vin65] (in the case of primes; see also [Rod65, Hal67]) that simple
asymptotic equivalences for the sum

(1.2)
∑

1<n≤x
f(n)τ(n− 1)
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2 SARY DRAPPEAU AND BERKE TOPACOGULLARI

can be obtained from analogues of the Bombieri-Vinogradov and Brun-Titchmarsh inequalities. We
refer to [Gre18, GS18] for recent works on this topic.

It is a considerably more difficult problem to obtain full asymptotic expansions for (1.2), say, with
an error term of the form O(x(log x)−N ) where N > 0 is fixed but can be chosen arbitrarily large.
The gap in difficulty is related to the “x1/2”-barrier for primes in arithmetic progressions on average
over moduli. To our knowledge asymptotic expansions are known for only very few specific examples of
functions f of arithmetic interest:
– the indicator function of primes [Fou85, BFI86],
– the indicator function of integers without large prime factors [FT90, Dra15],
– the k-fold divisor functions τk(n), k ∈ N, k ≥ 2 [Mot80, Top16, Top17b].

The methods from the last example can also be used to handle the case where f is given by Fourier
coefficients of GL2-automorphic forms, although this does not seem to be worked out explicitly in the
literature.

The purpose of the present paper is to introduce two new methods which lead to an asymptotic
expansion for (1.2) for a wide class of multiplicative functions. Let A,D ≥ 1 be fixed integers. Define
FD(A) to be the set of all multiplicative functions f : N→ C which are D-periodic over the primes in
the sense that

f(p1) = f(p2) for any primes p1 and p2 with p1 ≡ p2 mod D,
and which satisfy the growth condition,

|f(n)| ≤ τA(n) for all n ∈ N,

where τA(n) denotes the generalized divisor function. Our main result is the following preliminary
asymptotic formula for the sum (1.2) for f ∈ FD(A).

Theorem 1.1. Let A,D,N ≥ 1. For all f ∈ FD(A) and all x ≥ 2, we have

(1.3)
∑

1<n≤x
f(n)τ(n− 1) = 2

∑
χ primitive
cond(χ)|D

∑
q≤
√
x

cond(χ)|q

1
ϕ(q)

∑
q2≤n≤x
(n,q)=1

f(n)χ(n) +O
(

x

(log x)N

)
,

where the implied constant depends only on A, D and N .

Remarks.
– The main term in (1.3) can be evaluated asymptotically by classical methods, for instance the
Selberg-Delange method [Ten15, Chapter II.5]. We spell this out in detail in three particular cases
below.

– We stress that the implied constant is uniform in all f ∈ FD(A), and depends only on A,D and N .
This feature can be useful in applications (see Section 1.3).

– On the other hand, our result is badly behaved with respect toD, partly due to the use of the Siegel-
Walfisz theorem. The arguments presented here do not seem sufficient to obtain an improvement
in this aspect, although this does not affect our applications.

– The error term in (1.3) corresponds to an application of the Siegel-Walfisz theorem. If the Riemann
hypothesis is true for all Dirichlet L-functions, then it can be improved toO(x1−δ) for some absolute
constant δ > 0.

Theorem 1.1 may also be interpreted as a result of Bombieri-Vinogradov type “beyond
√
x” for the

average of f ∈ FD(A) in the residue classes of a fixed integer and without absolute values: For f ∈
FD(A), ∑

q≤
√
x

( ∑
1<n≤x

n≡1 mod q

f(n)− 1
ϕ(q)

∑
χ primitive

cond(χ)|(D,q)

∑
1<n≤x
(n,q)=1

f(n)χ(n)
)

= OA,D,N
(

x

(log x)N

)
.

We refer to [Gre18, GS18] for recent works related to this point of view.
In many applications correlation sums with more general shifts appear and it is important to have

results which are uniform in large ranges of the involved parameters. Our methods are robust enough to
be applied to these cases as well, and Theorem 1.1 is in fact the special case a = h = 1 of the following
more general result.
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Theorem 1.2 (General shifts). Let A,D,N ≥ 1. There exists an absolute constant δ > 0, such that,
for all f ∈ FD(A), all x ≥ 2 and all a, h ∈ Z satisfying 1 ≤ a, |h| ≤ xδ, we have∑

|h|/a<n≤x

f(n)τ(an− h) = Mf (x;h, a) +O
(
τ((a, h)) x

(log x)N

)
,

where Mf (x; a, h) is given by

Mf (x; a, h) := 2
∑

χ primitive
cond(χ)|D

∑
q≤
√
ax

cond(χ)| q
(q,h)

χ
(

h
(h,q)

)
ϕ
(

q
(h,q)

) ∑
q2/a≤n≤x

(an,q)=(h,q)

f(n)χ
(

an
(an,q)

)
,

and where the implied constant depends only on A, D and N .

Unfortunately, the range of uniformity in h in Theorem 1.2 is comparatively short. This is due to a
known uniformity issue of arguments based on exponential sums estimates underlying our bilinear sums
estimate (see [FI83, p. 200]). Out of the same reason, the methods used here are not able to address
the dual problem

N−1∑
n=1

f(n)τ(N − n)

(for which results are available for instance when f = τ or f = τ3, see [Mot94, Top16]).
We mention that results are known for affine correlations whose linear parts are pairwise indepen-

dent [Mat12, Mat16], or when there is an additional, long enough average over the shift [Mik92, MRT17a,
MRT17b]. See also [ABSR15, BSF17] for a function field analogue in the large q limit.

Finally, we mention the work of Pitt [Pit13]. He considered an analogue of the Titchmarsh divisor
problem (see Section 1.3) with the divisor function replaced by Fourier coefficients of holomorphic
cusp forms. In many situations, these Fourier coefficients and the divisor function exhibit a similar
behaviour, since the latter can also be viewed as the Fourier coefficients of an Eisenstein series (see
e.g. [Iwa02, Chapter 3.4]). Remarkably, Pitt obtained an estimate with a power saving in the error
term unconditionally, something which is not known for the original Titchmarsh divisor problem. It
seems possible that his ideas can be adapted to our setting, and that one might obtain an analogue of
Theorem 1.2 with the divisor function replaced by Fourier coefficients of holomorphic cusp forms and
with a power saving in the error term. We do not pursue this here.

We apply Theorem 1.2 to three functions f of particular arithmetic interest:
(1) the generalized divisor functions τz(n) with z ∈ C,
(2) the indicator function of integers n which are norms of an integral ideal in an abelian extension,
(3) the indicator function of integers n with exactly k different prime factors.

1.1. Correlations of divisor functions. Our first application is related to the generalized additive
divisor problem, which asks for an asymptotic evaluation of

Dk,`(x, h) :=
∑

|h|<n≤x

τk(n)τ`(n+ h)

for integers k, ` ≥ 2. This problem has received a lot of attention, partly motivated by its connection
to the 2k-th moment of the Riemann zeta function (see [Ivi91, Chapter 4] or [CK16, NT18]).

It is conjectured that for some constant Ck,`(h) > 0,

Dk,`(x, h) ∼ Ck,`(h)x(log x)k+`−2,

and it is known [Hen12] that this is the correct order of magnitude. However, this has been proven only
for the cases where either k = 2 or ` = 2. In these cases, the best-known results in the literature are of
the form

Dk,2(x, h) = xPk,h(log x) +O
(
xθk+ε) for h� xηk ,

where Pk,h is a degree k polynomial depending on h, with

θ2 = 2
3 and η2 = 2

3 [DI82a, Mot94],
θ3 = 8

9 and η3 = 2
3 [FI85, Top16],

θk = max
(
1− 4

15k−9 ,
56
57
)

and ηk = 15
19 (k ≥ 4 fixed) [Lin63, FT85, Top17b].
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In the case k = ` = 2, a similar asymptotic formula holds in a much larger range of uniformity
for h, although with a weaker error term (see [Meu01] for the currently best results in this direction).
For k, ` ≥ 3 the problem remains completely open.

The functions τk are special cases of coefficients of the Dirichlet series
∞∑
n=1

τz(n)
ns

:= ζ(s)z for z ∈ C and Re(s) > 1.

On prime powers, they are given explicitly by

(1.4) τz(p`) =
(
z + `− 1

`

)
.

The functions τz for z 6∈ N have a more complicated behaviour than those for z ∈ N. When z = −1 for
instance, we recover the Möbius function τ−1(n) = µ(n).

Theorem 1.2 leads to an asymptotic expansion of Dz,2(x, h) for arbitrary z ∈ C, uniformly in any
fixed disk |z| � 1.

Theorem 1.3. Let A,N ≥ 1 and ε > 0. There exist a constant δ > 0 and holomorphic functions λh,` :
C→ C, such that, for |z| ≤ A, x ≥ 2 and 1 ≤ |h| ≤ xδ,

(1.5)
∑

|h|<n≤x

τz(n)τ(n+ h) = x(log x)z
N∑
`=0

λh,`(z)
(log x)` +O

(
x(log x)Re(z)

(log x)N+1−ε

)
,

where the implicit constant only depends on A, N and ε.

The coefficients λh,`(z) can be computed explicitly; see (8.4) infra for an expression of the leading
coefficient. If z is a non-positive integer, all the coefficients λh,`(z) vanish and (1.5) effectively becomes
an upper bound.

Our method leads to a power saving error term in Theorem 1.3 when z = k ∈ N. This is solely
due to the fact that in these cases the k-th power of Dirichlet L-functions L(s, χ)k can be continued
analytically to a strip Re(s) ≥ 1 − δ for some δ > 0 (excluding the possible pole at s = 1). We do
not focus of the case z ∈ N here, since the works mentioned above then give quantitatively stronger
estimates.

1.2. Norms of integral ideals. Let K/Q be a Galois extension with discriminant ∆K . We define

NK := {N(α) : α ideal of OK , α 6= 0}.

This set has a rich multiplicative structure, described by the Artin reciprocity law. When the extension
is abelian, the Dedekind function ζK(s) factorizes into Dirichlet L-functions mod ∆K , so that the
integers in NK can be detected by looking at the congruence classes of their prime factors mod ∆K .
Theorem 1.2 eventually applies and leads to the following result.

Theorem 1.4. Let K/Q be an abelian field extension. Let N ≥ 1 and ε > 0. There exist a constant δ > 0
and real numbers κh,`(K), such that, for x ≥ 2 and 1 ≤ |h| ≤ xδ,

(1.6)
∑

|h|<n≤x
n∈NK

τ(n− h) = x(log x)1−1/[K:Q]
N∑
`=0

κh,`(K)
(log x)` +O

(
x

(log x)N+1/[K:Q]−ε

)
,

where the implicit constant depends only on K, N and ε.

An interesting special case is given by the extension Q(i)/Q. In this case, NQ(i) is simply the set of
integers which can be written as a sum of two squares, and Theorem 1.4 takes the following form.

Corollary 1.5. Let B be the set of all integers which can be written as a sum of two squares. Let N ≥ 1
and ε > 0. There exist a constant δ > 0 and real numbers βh,`, such that, for x ≥ 2 and 1 ≤ |h| ≤ xδ,

(1.7)
∑

|h|<n≤x
n∈B

τ(n− h) = x(log x) 1
2

N∑
`=0

βh,`
(log x)` +O

(
x

(log x)N+1/2−ε

)
.

where the implicit constant depends only on N and ε.
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The first term in the asymptotic formula for the left-hand side of (1.7) can also be obtained using a
recent extension of the Bombieri-Vinogradov theorem due to Granville and Shao [GS18], along with the
Brun-Titchmarsh inequality. The coefficients κh,`(K) and βh,` can be computed explicitly; see (8.5) infra
for an evaluation of the leading coefficient βh,0 in (1.7). Note that, since the indicator function b(n) of the
set B correlates with both the principal and the non-principal character mod 4, there are two genuine
contributions on the right-hand side in (1.3) when f(n) = b(n). This also explains the discrepancy
between the conjectures made in [Iwa76] and [FKR17] on autocorrelations of b(n).

We stress that the multiplicity of representations as ideal norms in Theorem 1.5 is not taken into
account. Thus the estimate (1.7) is more difficult to obtain than an estimate for the correlation sum∑

|h|<n≤x

r2(n)τ(n− h) with r2(n) :=
∣∣{(r, s) ∈ Z2 : r2 + s2 = n}

∣∣ ,
for which classical methods suffice.

1.3. Integers with k prime divisors. The Titchmarsh divisor problem, posed in 1930 [Tit30], asks
for an asymptotic evaluation of the sum

(1.8)
∑

|h|<p≤x

τ(p− h),

where p runs over all primes up to x. Following the initial works by Titchmarsh [Tit30] and Lin-
nik [Lin63], the best known result was obtained independently by Fouvry [Fou85] and Bombieri, Fried-
lander and Iwaniec [BFI86]: For any fixed N > 0, we have, for 1 ≤ |h| ≤ (log x)N ,

(1.9)
∑

|h|<p≤x

τ(p− h) = Chx+ C ′h li(x) +O
(

x

(log x)N

)
,

where

Ch = ζ(2)ζ(3)
ζ(6)

∏
p|h

(
1− p

p2 − p+ 1

)
, C ′h =

(
γ −

∑
p

log p
p2 − p+ 1 +

∑
p|h

p2 log p
(p− 1)(p2 − p+ 1)

)
Ch.

An interesting generalization of this problem concerns the sum

(1.10)
∑

|h|<n≤x
ω(n)=k

τ(n− h),

where ω(n) denotes the number of distinct prime divisors of an integer n. An asymptotic equivalence
for this sum was proven by Khripunova [Khr98, Theorem 3], uniformly for k � log log x and h� x.

Our methods allow to obtain a full asymptotic expansion for (1.10), at least for small shifts h. In order
to circumvent the obstacle that the indicator function for integers n with ω(n) = k is not multiplicative,
we use a classical method due to Selberg [Sel54], which allows us to reduce the evaluation of (1.10) to
the evaluation of the correlation sum of the divisor function with the multiplicative function n 7→ zω(n).
This eventually leads to the following result.

Theorem 1.6. Let N ≥ 1 and ε > 0. There exist a constant δ > 0 and polynomials P kh,`(X) of
degree k − 1 such that, for 1 ≤ k � log log x and |h| ≤ xδ,

(1.11)
∑

|h|<n≤x
ω(n)=k

τ(n− h) = x
∑

0≤`≤N

P kh,`(log log x)
(log x)` +O

(
x(log log x)k

k!(log x)N+1−ε

)
,

where the implicit constants depend only on N and ε.

The case k = 1 recovers the best-known asymptotic formula (1.9) for the Titchmarsh divisor problem.
As before, the polynomials P kh,` can be computed explicitly; in particular, the leading coefficient in the
asymptotic expansion is given by Ch/(k − 1)!.

This result is non-trivial throughout the range k � log log x. The case k/ log log x → +∞ is an
interesting question which would require different tools, due to the sparsity of the set of integers under
consideration (not unlike the situation for friable integers [Har12]). We do not address this here.
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1.4. Overview of the proof of Theorem 1.2. For the sake of clear exposition, we will focus here on
the case D = 1, as our arguments extend without much difficulty to the case of general moduli and the
arising complications are mainly of technical nature. Note that any f ∈ F1(A) can be approximated
(in the convolution sense) by a suitable generalized divisor function, so that it suffices to consider the
case f = τz with z ∈ C.

We will give two distinct proofs of Theorem 1.2. They are based on two different kinds of combinatorial
identities for the generalized divisor function τz, both of which we believe are of independent interest.
Our first approach relies on an effective combinatorial formula of Heath-Brown’s type for the divisor
function τα with α ∈ Q, and an interpolation argument in the z-variable for weighted mean values
of τz. Our second apprach, which is more direct and avoids the interpolation step, is instead based on
an identity of Linnik type for τz and the well-factorability of friable numbers1.

1.4.1. Proof by Heath-Brown’s identity and interpolation. Our first proof of Theorem 1.2 divides into
two parts: We first prove the theorem for rational z, and then extend this result to all z ∈ C.

For z ∈ Q, the general structure of the proof of Theorem 1.2 follows the setup of [Fou85, BFI86] (see
also [Fou84]). The strategy naturally splits into two steps:

(1) We decompose the function f into convolutions with either large smooth components (type I)
or suitably localized components (type II).

(2) We solve the question for both types of sums.
The bulk of the present work concerns the first step. Combinatorial decompositions for prime num-

bers have a long history since the works of Vinogradov [Vin37] (we refer to the survey [Ram13] for
an account and further references). Yet, it was not until recently that analogous identities emerged for
generalized divisor functions. Montgomery and Vaughan (private communication) have recently devel-
oped a combinatorial identity of Vaughan’s type [Vau75] for τ1/2, which initially motivated largely the
present work. Unfortunately, as for primes, the bilinear sums coming from a raw application of this
identity are not quite localized enough to be effective for Titchmarsh’s problem, and even though this
can sometimes be fixed by iterating the formula [Fou81], our early attempts were unsuccessful. Instead
we follow the more flexible approach of Heath-Brown [HB82] (which is related to [Gal68]).

Our first result (Theorem 3.2 below) is a uniform combinatorial formula of Heath-Brown’s type for
the divisor function τu

v
with u/v ∈ Q. In the simplest case 0 < u < v, it reads

(1.12) τu
v

(n) =
K∑
`=1

c`,K,u/v
∑
· · ·
∑

m1···m`n1···n`v−u=n
n1,...,n`v−u≤x1/K

τ− 1
v
(n1) · · · τ− 1

v
(n`v−u) for n ≤ x,

where K ∈ N>0 is arbitrary and where c`,K,u/v ∈ Q. A more general formula holds for any rational
number u/v (see Theorem 3.2). A crucial property of this formula is that it is sensitive almost only to
the archimedean size of u/v. Indeed, for |u/v| ≤ A, the coefficients c`,K,u/v, the length of the `-sum and
the value at primes n = p of each `-summand on the right-hand side are bounded in terms of A and K
only (but not of v). Thus, the only loss due to the size of v comes from the number O(v) of terms in
the convolution, which has essentially no effect on what follows.

In the same way, we can express any rational convolution power ∗u/v f of a multiplicative function in
terms of higher convolutions ∗k f with 1 ≤ k ≤ K and a bilinear term with one component supported
on the interval [xε, x1/K ]. However, to our knowledge asymptotic formulae for the correlation sums

(1.13)
∑
n≤x

(∗kf)(n)τ(n+ 1),

for k ≥ 2 are currently known for only very few functions f (essentially constant functions and Dirichlet
characters). This is the main obstacle towards using decompositions of this form to prove Theorem 1.2
for complex-fold convolutions of multiplicative functions.

Regarding the second step, we are mostly able to use the harmonic analysis arguments underly-
ing [Fou85, BFI86]. They are based on bounds on Kloosterman sums on average [DI82b], along with
Voronoi summation (for type I) and Linnik’s dispersion method (for type II). We will follow the treat-
ment made in [Dra17, Top17b], although some work is needed in order to cast the main terms from
these works in a form suitable for us.

1The second proof was found only after a preliminary version of the present manuscript was uploaded online.
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Eventually, the arguments described above yield a proof of Theorem 1.2 for f = τu
v
uniformly in the

range v ≤ (log x)N . As it turns out, this is already sufficient information to be able to conclude.
To see why, we return to the correlation sum

D(z) :=
∑

|h|/a<n≤x

τz(n)τ(an− h)

with z ∈ C, |z| � 1. The main observation is that this expression is a polynomial in z, and that we
know how to evaluate it on rational numbers with small denominators. Even though D(z) initially has
degree of the order of log x, we can use large deviation bounds on the function ω(n) (and a convolution
argument) to approximate it, up to an admissible error, by the polynomial

D̃(z) :=
∑

|h|/a<n≤x
ω(n)�log log x

zω(n)τ(an− h),

which has degree at most O(log log x). This enables us to use Lagrange interpolation on a suitably
chosen set of rational sample points to transfer our estimates for z ∈ Q to estimates of the same quality
for z ∈ C. Indeed, this process introduces an error which grows exponentially in the degree of the
polynomial. As our estimates for D(z) for z ∈ Q save an arbitrarily large power of log x, we are still
able to obtain an asymptotic formula at the end.

Note that for the above arguments to work it is crucial that estimates with a saving of a large
power of log x for D(z) for z ∈ Q are available, which we can fortunately obtain here from the Siegel-
Walfisz bound (an unfortunate consequence of the last fact, however, is that most of our results are not
effective).

We mention that, as in Heath-Brown’s work [HB82], the arguments sketched above can be used to
obtain asymptotic formulae for short sums ∑

x<n≤x+y
f(n)

for y ≥ x7/12+ε and f ∈ FD(A), as well as theorems of Bombieri-Vinogradov type. However, unlike
Titchmarsh’s divisor problem, such results could in principle also be obtained by zero-density estimates
for Dirichlet L-functions (see [IK04, Chapter 10.5], [Bom65]).

1.4.2. Proof by Linnik’s identity. Our second proof uses a different decomposition for τz, which has
the major advantage that it holds uniformly for all z in a fixed bounded subset of C. This avoids the
interpolation step necessairy in the first proof, although the resulting combinatorial identity is not as
elegant as the identity of Heath-Brown’s type described above.

A naive attempt to find a combinatorial formula for τz which is uniform in z might start with Linnik’s
formula [IK04, §13.3], which relies on the Taylor series expansion

ζ(s)z = (1 + (ζ(s)− 1))z =
∑
j≥0

(
z

j

)
(ζ(s)− 1)j .

The main technical difficulty at this point is to truncate the sum over j. In the context of Linnik’s
formula, this truncation is performed by restricting to almost-primes from the outset (or inserting a
sieve weight), see [Lin63, p.21], but unfortunately this approach is not available in our situation.

Instead we write ζ(s) = ζy(s)My(s), where

ζy(s) :=
∏
p≤y

(
1− 1

ps

)−1
and My(s) := ζ(s)

ζy(s) ,

with y = x1/K for some K ∈ N, and then apply the Taylor series expansion only on the second
factor My(s), so that

ζ(s)z = ζy(s)z
∑
j≥0

(
z

j

)
(My(s)− 1)j .

This expression has the advantage that the j-th summand has no coefficient for n ≤ yj in its Dirichlet
series expansion. After expanding and comparing the Dirichlet coefficients on both sides, we are therefore



8 SARY DRAPPEAU AND BERKE TOPACOGULLARI

led to the following “raw” combinatorial decomposition (see Theorem 3.3),

τz(n) =
∑

0≤`<K
c`

∑
n=n1n2

n1 is y-friable

τz−`(n1)τ`(n2) for n ≤ x,

where the c` are some complex numbers which depend on z, but which can be bound uniformly for z � 1
(we recall that an integer is said to be y-friable if all of its prime factors are bounded by y).

In order to apply this formula, it is of course necessairy to be able to control the factors τz−`(n1).
However, the characteristic function of y-friable numbers has good factorability properties (see [Vau89,
p.66] or [FT96, Lemme 3.1]): we can essentially replace them in the formula above by convolutions of
sequences supported on [1, y] (see Lemma 3.4). This in turn enables us to apply estimates of type I and
type II, leading eventually to the desired asymptotic formula.

Plan. In Section 2, we introduce our main notations and the subsets of functions of FD(A) we will
mainly work with. In Section 3, we present the combinatorial decompositions for τz, on which our proofs
are based. In Section 4, we state some auxiliary computations in order to use the results of [Top17b,
Dra17]. In Sections 5 and 6, we proof Theorem 1.2 using the combinatorial identity of Heath-Brown’s
type, first by treating the case of rational parameters, and then by interpolating the obtained results to
all functions in FD(A). In Section 7, we sketch an alternative proof using the combinatorial identity of
Linnik’s type. Finally, in Section 8, we estimate the main terms and prove Theorems 1.3, 1.4 and 1.6.

2. First reductions

2.1. Statement of the main proposition. For n, h ∈ Z with n ≥ 1 and n− h ≥ 1, let

(2.1) τ̃h(n;R) := 2
∑

q≤
√
n−h

(n,q)=(h,q)

1
ϕ( q

(h,q) )
∑

χ (mod q/(h,q))
cond(χ)≤R

χ( h
(h,q) )χ( n

(h,q) ).

Note that τ̃h(n;R) = τ(n − h) if R >
√
n− h and n − h is not a perfect square. We will eventually

choose R of size (logn)O(1). We have a trivial bound
(2.2) τ̃h(n;R)�ε n

εR1+ε.

The function τ̃h(n;R) should be thought of as an approximation to τ(n − h) on average. The main
work in proving Theorem 1.2 consists in showing that, for any f ∈ FD(A), we have

(2.3)
∑
n≤x

f(n)τ(an− h) ∼
∑
n≤x

f(n)τ̃h(an;Rx) for x→∞,

where Rx is some slowly growing function in x (some appropriate power of log x). Once this is estab-
lished, we can evaluate the sum on the right by standard methods. In view of this, it is convenient to
define

∆h(n;R) := τ(n− h)− τ̃h(n;R) and Σf (I; a, h;R) :=
∑
n∈I

f(n)∆h(an;R),

for any interval I ⊆ R+. The main part of this article is concerned with proving the following propo-
sition, which puts the statement (2.3) into precise terms, and from which the results described in the
introduction can be deduced easily (see Section 8).

Proposition 2.1. Let A,D ≥ 1 be fixed. Then we have, for x ≥ 3, I ⊂ [x/2, x] an interval and
f ∈ FD(A), the following estimate,

(2.4) |Σf (I; a, h;R)| ≤ Cτ((a, h))x(log x)B

R1/3 for 1 ≤ a, |h|, R ≤ xδ,

where δ > 0 is some absolute constant and where B,C > 0 are constants which depend only on A and D.

2.2. Restricting the set of functions. It is known in multiplicative number theory that, to a certain
degree of precision, the magnitude of the mean value of a multiplicative function f depends mostly on
the values f(p), p prime. The following lemma quantifies the analogous phenomenon in our case.

Lemma 2.2. Let f, g : N→ C be multiplicative functions, which satisfy the following conditions,
(i) |g(n)| ≤ τM (n) for some M ≥ 1 and all n ∈ N,

(ii) H :=
∑
n≥1

∣∣(f ∗ g−1)(n)
∣∣

nσ
< +∞ for some σ < 1.
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Furthermore, assume there are constants %, δ ∈ (0, 1] and B,C ≥ 1 such that, for all x ≥ 1 and all
intervals I ⊂ [x/2, x],

|Σg(I; a, h;R)| ≤ Cτ((a, h))x(log x)B

R%
for 1 ≤ a, |h|, R ≤ xδ.(2.5)

Then there exists C ′, δ′ > 0 depending only on %, δ, σ and M , such that, for all x ≥ 1 and all
intervals I ⊂ [x/2, x],

|Σf (I; a, h;R)| ≤ HCC ′τ((a, h))x(log x)B

R%
for 1 ≤ a, |h|, R ≤ xδ

′
.(2.6)

Proof. Let h := f ∗ g−1. We have

Σf (I; a, h;R) =
∑

n1n2∈I
g(n1)h(n2)∆h(an1n2;R)

=
∑
n2≤T

h(n2)Σg(I/n2; an2, h;R) +
∑
n2>T

h(n2)Σg(I/n2; an2, h;R),

for some parameter T ≥ 1. For the sum on the left we use the assumption (2.5), so that∑
n2≤T

h(n2)Σg(I/n2; an2, h;R)�σ CHτ((a, h))x(log x)B

R%
,

provided that the parameters a, h and R satisfy

1 ≤ a ≤ xδ

T 1+δ and 1 ≤ |h|, R ≤ xδ

T δ
.

For the sum on the right we use the trivial bound Σg(I/n2; an2, h;R)�ε,M Rx1+ε/n2, and get∑
n2>T

h(n2)Σg(I/n2; an2, h;R)�ε,M x1+εRT−1+σH.

The lemma follows on setting T = xδ/3 and δ′ = min( δ3 ,
δ(1−σ)
4(1+ρ) ). �

In view of this, in order to prove Proposition 2.1, we will restrict to the following two subsets of FD(A).
The first subset, denoted by FτD(A), consists of functions f : N→ C, which are the coefficents of Dirichlet
series of the form

(2.7)
∞∑
n=1

f(n)
ns

=
∏

χ mod D
L(s, χ)bχ ,

where the parameters bχ are complex numbers such that |bχ| ≤ A. Note that τz ∈ FτD(A) for |z| ≤ A. A
particularly important role will be played by the subset FτQD (A) ⊂ FτD(A) formed by functions of this
form where all the parameters bχ are rational.

The second subset FωD(A) is defined to be the set of functions f : N→ C, which are the coefficients
of Dirichlet series of the form

(2.8)
∞∑
n=1

f(n)
ns

=
∏

r∈(Z/DZ)×

∏
p≡r mod D

(
1 + zr

ps − 1

)
,

where the coefficients zr are complex numbers such that |zr| ≤ A. This includes the functions n 7→ zω(n)

for all |z| ≤ A.

Lemma 2.3. For any f ∈ FD(A), there exist g1 ∈ FτD(A) and g2 ∈ FωD(A) which satisfy the condi-
tions (i)–(ii) stated in Lemma 2.2 for σ = 2

3 , and M,H bounded only in terms of A and D.

Proof. We first prove the lemma with respect to the set FτD(A). Let f ∈ FD(A) be fixed, and let vf :
Z→ C be the D-periodic function defined by

(2.9) vf (r) =
{
f(p) if there exists a prime p such that (p,D) = 1 and p ≡ r mod D,
0 if (r,D) > 1.

We then set

bχ := 1
ϕ(D)

∑
r (mod D)

vf (r)χ(r) for any character χ mod D,
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and define g1 as the coefficients of the following Dirichlet series,

(2.10)
∞∑
n=1

g1(n)
ns

:=
∏

χ (mod D)

L(s, χ)bχ .

We have (f ∗g−1
1 )(p) = 0 if p - D. Moreover, since |bχ| ≤ A, we get |g1(n)| ≤ τAD(n) for all n. Therefore,∑

n≥1

∣∣(f ∗ g−1
1 )(n)

∣∣
n2/3 =

∏
p|D

(
1 +OA,D

( 1
p2/3

))∏
p-D

(
1 +OA,D

( 1
p4/3

))
= OA,D(1).

This proves the first part of the lemma.
For the second part, we define g2 by its Dirichlet series

∞∑
n=1

g2(n)
ns

:=
∏

r∈(Z/DZ)×

∏
p prime

p≡r mod D

(
1 + vf (r)

ps − 1

)
.

The fact that g2 satisfies the required conditions can be shown using similar computations as above. �

Let us at this point also note the following result, which is an easy consequence of the proofs of
Lemmas 2.2 and 2.3, and which will become useful later on.

Lemma 2.4. Let f ∈ FD(A) and let ψ mod q be a Dirichlet character. Then the Dirichlet series
associated to ψf is given by

∞∑
n=1

ψ(n)f(n)
ns

= Hψ(s)
∏

χ mod D
L(s, ψχ)bχ for Re(s) > 1,

where Hψ(s) is some holomorphic function defined in Re(s) > 1
2 and where

bχ := 1
D

∑
r mod D

vf (r)χ(r),

with vf (n) as defined in (2.9). Moreover, for any fixed σ0 >
1
2 , we have Hψ(s)� 1 uniformly in Re(s) >

σ0, with the implicit constant depending at most on σ0, A and D.

From Lemmas 2.2 and 2.3, we deduce the following statement.

Lemma 2.5. To prove Proposition 2.1 in full generality, it suffices to prove it under either one of the
additional hypotheses f ∈ FτD(A) or f ∈ FωD(A).

3. Combinatorial identites for τz(n)

In this section we describe the two combinatorial identites for the generalized divisor function τz on
which the proofs of Theorem 1.2 are based.

3.1. A generalization of Heath-Brown’s identity. We first derive a combinatorial decomposition
analogous to [HB82] for the function n 7→ τα(n) in the case α ∈ Q. Our argument is based on the
following polynomial identity.

Lemma 3.1. Let u and v be integers such that v > u ≥ 0. Let K ≥ 1 and N ≥ 0. Then there exist
rational coefficients am and b` such that there holds∑

K≤m≤(K+N)v−u

am(X − 1)m = 1 +XNv
∑

1≤`≤K
b`X

`v−u.(3.1)

The coefficients (b`) are unique and given explicitly by

b` = (−1)`

(`− 1)!(K − `)!
∏

1≤j≤K
j 6=`

(
j +N − u

v

)
.(3.2)
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Proof. An identity of the form (3.1) exists if and only if we can find b1, . . . , bK such that the first K− 1
derivatives of the polynomial on the right hand side of (3.1) vanish at X = 1. This is equivalent to
saying that the b1, . . . , bK solve the equation

1 · · · 1
v +Nv − u · · · Kv +Nv − u

...
. . .

...
(v +Nv − u)K−1 · · · (Kv +Nv − u)K−1



b1
b2
...
bK

 =


−1
0
...
0

 .(3.3)

Let C be the matrix on the left, and B` the same matrix but with the upper row and the `-th column
removed. Note that C is a Vandermonde matrix, and B` is a product of a Vandermond matrix with a
diagonal matrix. Hence, we deduce

detC =
∏

1≤i<j≤K
(jv − iv) = 2! 3! · · · (K − 1)! v

K(K−1)
2 ,

detB` =
∏

1≤i<j≤K
i,j 6=`

(jv − iv)
∏

1≤j≤K
j 6=`

(jv +Nv − u).

Since detC 6= 0, we obtain by Cramer’s rule that there is a unique solution (b`), given by

b` = (−1)` detB`
detC ,(3.4)

which yields (3.2). �

Theorem 3.2. Let v > 0 and r be integers such that v > u ≥ 0 and r ≥ 0. Let K ≥ 1 and x ≥ 1. Then
for any n ≤ x, we have

τr+u
v

(n) =
K∑
`=1

c+
`

∑
· · ·
∑

m1···m`+rn1···n`v−u=n
n1,...,n`v−u≤x1/K

τ− 1
v
(n1) · · · τ− 1

v
(n`v−u),(3.5)

and, for r ≥ 1,

τ−r+u
v

(n) =
K∑
`=1

c−`

∑
· · ·
∑

m1···m`−1n1···n`v+(r−1)v−u=n
n1,...,n`v+(r−1)v−u≤x1/K

τ− 1
v
(n1) · · · τ− 1

v
(n`v+(r−1)v−u),(3.6)

where the c+
` and c−` are certain rational numbers, which can be bounded by

c+
` , c
−
` � 1 for 1 ≤ ` ≤ K,

the implicit constant depending only on K and r.

Proof. Let

G(s) :=
∞∑
n=1

τ−1/v(n)g(n)
ns

with g(n) :=
{

1 if n ≤ x1/K ,

0 otherwise.

We first look at (3.5). Here we use Lemma 3.1 with N = 0 and X = ζ(s) 1
vG(s), and then multiply both

sides by ζ(s)r+u
v , which leads to the identity∑

K≤m≤Kv−u

am(ζ(s) 1
vG(s)− 1)mζ(s)r+u

v = ζ(s)r+u
v +

∑
1≤`≤K

b`ζ(s)r+`G(s)`v−u.

Then (3.5) follows by comparing the Dirichlet coefficients on both sides.
In order to show (3.6), we use Lemma 3.1 with the same X as before and with N = r − 1, and then

multiply both sides by ζ(s)−r+u
v . This gives∑

K≤m≤(K+r−1)v−u

am

(
ζ(s) 1

vG(s)− 1
)m

ζ(s)−r+u
v = ζ(s)−r+u

v +
∑

1≤`≤K
b`ζ(s)`−1G(s)`v+(r−1)v−u,

and (3.6) follows again by comparing the Dirichlet coefficients on both sides. �

Remark. With r = v = 1 and u = 0, the identity (3.6) leads to the decomposition of µ(n) described
in [IK04, (13.38)].
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3.2. A combinatorial identity of Linnik’s type. Here we derive a combinatorial decomposition
for τz using an approach analogous to [Lin63].

We denote by P+(n) the largest, and by P−(n) the smallest prime factor of an integer n > 1, with
the convention that P+(1) = 1 and P−(1) = ∞. Given an arbitrary multiplicative function f and a
complex number z ∈ C, we define the z-fold convolution of f as the multiplicative function given by

f (∗z)(pν) :=
∑

1≤r≤ν

(
z

r

) ∑
λ1,...,λr≥1
λ1+···+λr=ν

f(pλ1) · · · f(pλr ) (ν ≥ 1).

Note that f (∗z)(p) = zf(p), and that for ` ∈ N the `-fold convolution as defined here coincides with
the `-fold convolution defined in the traditional sense. We will be eventually interested in the case
when f = χ is a Dirichlet character, in which case we have f (∗z) = τχz .

Theorem 3.3. Let K ∈ N>0 and A, x ≥ 1. Then for all z ∈ C there exist complex numbers (c`)0≤`≤K ,
such that for all x ≥ 1 and all multiplicative functions f , we have the following identity for n ≤ x,

f (∗z)(n) =
∑

0≤`<K
c`

∑
n=n1n2

P+(n1)≤x1/K

f (∗(z−`))(n1)f (∗`)(n2),(3.7)

where the coefficients c` can be bound by c` = OK,A(1) uniformly for |z| ≤ A.

Proof. Let y := x1/K . We may certainly assume that f(pk) vanishes if p > x. For Re(s) large enough
the function logF (s) is well defined, and we have F (s)z =

∑
n f

(∗z)(n)n−s. Let

F (s, y) =
∏
p≤y

(∑
k≥0

f(pk)
pks

)
, G(s, y) =

∏
p>y

(∑
k≥0

f(pk)
pks

)
.

For Re(s) > 0, the decomposition F (s) = F (s, y)G(s, y) yields

F (s)z = F (s, y)z(1 + (G(s, y)− 1))z

= F (s, y)z
∑
k≥0

(
z

k

)
(G(s, y)− 1)k

= F (s, y)z
∑

0≤k<K

(
z

k

)
(G(s, y)− 1)k +R(s)

with

R(s) := F (s, y)z
∑
k≥K

(
z

k

)
(G(s, y)− 1)k.

Note that the series converge absolutely if Re(s) is large enough in terms of f . By expanding, we get

F (s)z = F (s, y)z
∑

0≤`<K
c`G(s, y)` +R(s),

with

c` := (−1)`
∑

`≤k<K

(−1)k
(
z

k

)(
k

`

)
.

We read the coefficients of n−s, for n ≤ x, on each side. Note that for k ≥ K, the series (G(s, y)− 1)k
has no corresponding Dirichlet coefficients, so there there is no contribution from R(s). The claimed
equality follows on writing G(s, x1/K) = F (s)F (s, x1/K)−1. �

Remarks.
– Compared with (3.5)–(3.6), this identity has the significant advantage that it is uniform for z � 1
complex.

– The case K = 2 only involves the exponents ` ∈ {0, 1}. It follows, for instance, that if f (∗z) satisfies
a Siegel-Walfisz estimate (in the sense of [GS18, eq. (1.2)]), and if f satisfies a Bombieri-Vinogradov
theorem, then f (∗z) satisfies a Bombieri-Vinogradov theorem as well.
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– The case K = 2, f = 1 leads to Eratosthenes’ sieve identity: for all n ∈ (
√
x, x], we have

1n prime =
∑
d|n

p|d⇒p≤
√
x

µ(d).

For any η ∈ (0, 1/2), either we have d ≤ xη (which corresponds to type I sums), or d > xη, in
which case we can localize a factor of d in the interval [xη, x1/2+η] (and this corresponds to type II
sums).

The main property which allows Theorem 3.3 to be used in our arguments is the following factoriza-
tion lemma, in the spirit of Lemma 3.1 of [Vau89, p.29]; see [Hmy64] for an early use of this property,
and [FT96] for an application in a context similar to ours.

Lemma 3.4. For any multiplicative function f : N→ R, any compactly supported function g : N→ C,
and all y, w ≥ 2, we have

(3.8)
∑

P+(n)≤y

f(n)g(n) = Σtriv + ΣI +O (ΣII) ,

where

ΣI =
∑
n≤w

P+(n)≤y

f(n)g(n), Σtriv =
∑
n>w

P+(n)≤y
∃pν‖n,pν>y

f(n)g(n),

ΣII = (log y) sup
α,β

∣∣∣ ∑
w<m≤yw

∑
n

αmβng(mn)
∣∣∣,

the supremum in ΣII being taken over all sequences (αm), (βn) of complex numbers satisfying

|αm| ≤ |f(m)|, |βn| ≤ (|f | ∗ |f |)(n).

Proof. In an integer n with P+(n) ≤ y is not counted in the first two sums on the right-hand-side,
then n > w and all prime powers pν‖n satisfy pν ≤ y. By incorporating these prime powers as p
increases, we may factor n = n1n2 uniquely in such a way that

P+(n1) < P−(n2), w < n1 ≤ wQ+(n1),

where Q+(n1) is the prime power corresponding to the largest prime of n1: Q+(n1) = P+(n1)ν‖n1. Note
that this implies (n1, n2) = 1. Our statement follows after separating variables [IK04, Lemma 13.11] in
the condition P+(n1) < P−(n2). �

4. Auxiliary estimates

In this section we collect some estimates on ∆h(n,R), which will be needed in the following sections.

4.1. The second moment of ∆h(n;R). On several occasions, we will require the following rough
upper-bound for the “main terms”.

Lemma 4.1. For x ≥ 3, R ≥ 1 and (a, h) ∈ Z2 such that 1 ≤ a, |h|, R ≤ x1/4, the following estimate
holds, ∑

x
2<n≤x

|∆h(an;R)|2 � τ((a, h))2x(log x)4.

Proof. We have∑
x
2<n≤x

|∆h(an;R)|2 �
∑

x
2<n≤x

τ(an− h)2 +
∑

x
2<n≤x

|τ̃h(an;R)|2 =: G1 +G2,

and we now proceed to estimate the two sums G1 and G2 separately.
We first look at G1. For notational convenience, let

a′ := a

(a, h) , h′ := h

(a, h) and t := (a, h).
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We start by splitting the sum according to the size of t∗ = (an− h, t∞) as follows,

G1 =
∑
t∗|t∞

(t∗,a′)=1
t∗≤x1/2

∑
x
2<n≤x

a′n≡h′ mod t∗

( a
′n−h′
t∗ ,t)=1

τ(an− h)2 +
∑
t∗|t∞

(t∗,a′)=1
t∗>x1/2

∑
x
2<n≤x

a′n≡h′ mod t∗

( a
′n−h′
t∗ ,t)=1

τ(an− h)2 =: G1a +G1b.

In order to estimate G1a we choose b, y ∈ Z such that a′b = 1 + yt∗ and write

G1a =
∑
t∗|t∞

(t∗,a′)=1
t∗≤x1/2

τ(t∗t)2
∑

x−2bh′
2t∗ <n′≤ x−bh

′
t∗

(yh′+n′a′,t)=1

τ(yh′ + n′a′)2

≤
∑
t∗|t∞

(t∗,a′)=1
t∗≤x1/2

τ(t∗t)2
∑

a′x−2h′
2t∗ <m≤ a

′x−h′
t∗

m≡yh′ mod a′

τ(m)2.

The sum over m can now be estimated via [Shi80, Theorem 2] or [BV69, Theorem 1], which leads to

(4.1) G1a � x log3 x
∑
t∗|t∞

t∗≤x1/2

τ(t∗t)2

t∗
� τ((a, h))2x log4 x.

In G1b we bound all the summands trivially and get

G1b �
∑
t∗|t∞

(t∗,a′)=1
t∗>x1/2

∑
x
2<n≤x

a′n≡h′ mod t∗

τ(t(a′n− h′))2 � x1+ε
∑
t∗|t∞

x1/2<t∗≤2a′x

1
t∗
� x

3
4 +ε,

so that together with (4.1) we deduce

G1 � τ((a, h))2x log4 x.

Next we look at G2. Here we first rewrite τ̃h(an;R) as

τ̃h(an;R) := 2
∑

α|(a,h)

∑
δ|( hα ,n)
(δ, aα )=1

∑
q≤
√
an−h
αδ

1
ϕ(q)

∑
χ (mod q)
cond(χ)≤R

χ( hαδ )χ(anαδ ),

so that after expanding the square we are led to

G2 ≤ 4
∑

α1,α2|(a,h)
δ1| hα1

, δ2| hα2

∑
q1≤
√
ax−h
α1δ1

q2≤
√
ax−h
α2δ2

1
ϕ(q1)ϕ(q2)

∑
χ1 (mod q1)
χ2 (mod q2)

cond(χ1),cond(χ2)≤R

S
(
χ1χ2,

x
[δ1,δ2]

)
,

with

S(χ, y) := max
y
2≤y0<y

∣∣∣∣ ∑
y0<n≤y

χ(n)
∣∣∣∣.

If χ1 and χ2 are induced by the same primitive character, we use the trivial bound S (χ1χ2, y) ≤
y. Otherwise, the Pólya-Vinogradov bound applies and S (χ1χ2, y) � τ(q1q2)R logR. Inserting these
bounds, we eventually obtain

G2 � τ((a, h))2x log4 x+ xεR3 � τ((a, h))2x log4 x

by our assumption R ≤ x 1
4 . This concludes the proof. �

4.2. Comparison of main terms. We begin by two technical lemmas related to the main terms that
will appear later. Let X ≥ 1, and let f and v be two smooth functions which are both compactly
supported inside R∗+. We assume that supp f ⊂ [C1X,C2X], where C1 and C2 are some fixed constants,
and that for some Ω ∈ (0, 1], we have

‖v(j)‖∞ �j 1, ‖f (j)‖∞ �j (ΩX)−j
ˆ
R
|f (j+1)| � (ΩX)−j ,
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for all j ≥ 0. Furthermore, we define

(4.2) Mf,v(b, h;M) := 1
b

∑
d|b

cd(h)
d

ˆ
(log(ξ − h) + 2γ − 2 log d)f(ξ)v

(
ξ

bM

)
dξ,

where
cd(h) :=

∑
ν (mod∗ d)

e(νh/d) =
∑
δ|(h,d)

δµ(d/δ)

denotes the Ramanujan sum.

Lemma 4.2. For (b, h) ∈ Z2, b,M ≥ 1, and R ≥ 1, we have∑
m

f(bm)v
(m
M

)
τ̃h(bm;R) = Mf,v(b, h;M) +O

(
XεR3/2 +X1/2+ε (h, b)

b

)
.

Proof. Recall the definition (2.1). By partial summation and the Pólya-Vinogradov inequality, we have∑
m

f(bm)v
(m
M

)
τ̃h(bm;R) = 2

∑
m

f(bm)v
(m
M

) ∑
q≤
√
bm−h

(bm,q)=(h,q)

1
ϕ( q

(q,h) ) +O(XεR3/2).

The condition (bm, q) = (h, q) in the sum on the right-hand side is equivalent to

(b, q)|h, (h, q)
(b, q)

∣∣∣m, (m(b, q)
(h, q) ,

q

(h, q)

)
= 1.

Using Möbius inversion and our hypotheses on f and v, we can replace the m-sum by the corresponding
integral and obtain∑

m

f(bm)v
(m
M

)
τ̃h(bm;R) = 2

b

ˆ
f(ξ)v

( ξ

bM

) ∑
q≤
√
ξ−h

(b,q)|h

(b, q)
q

dξ +O(XεR3/2).

The main term on the right-hand side may be rewritten as
2
b

∑
d|b

cd(h)
d

ˆ
f(ξ)v

( ξ

bM

)
H
(√ξ − h

d

)
dξ +O(XεR3/2)

where H(x) =
∑
q≤x 1/q = log x+ γ +O(x−1). This gives the claimed estimate. �

Next, we define

(4.3) Mχ
f,v(b, h;M) :=

∑
a mod D
(a,D)=1

χ(a)Mfab,va/M (bD, h− ab;M/D)

where fab(ξ) := f(ξ + ab) and va/M (ξ) := v(ξ + a/M).

Lemma 4.3. If b = b◦b∗ with b◦|D∞ and (b∗, D) = 1, then

(4.4) Mχ
f,v(b, h;M) = 1

bD
χ
( h

(h, b)

)
χ
( b

(h, b)

)∑
d|b∗

cd(h)
d

ˆ (
log
( ξ − h

(Db◦d)2

)
+ 2γ

)
f(ξ)v

( ξ

bM

)
dξ.

Moreover, if χ mod D is primitive, we have∑
m

f(bm)v
(m
M

)
χ(m)τ̃h(bm;R)

= Mχ
f,v(b, h;M) +O

(
1D>R(b, h)X(logX)3

bD
+XεD1/2R3/2 +X1/2+ε (h, b∗)

b∗

)
where 1D>R = 1 if D > R and 0 otherwise.

Proof. We rewrite

Mχ
f,v(b, h;M) = 1

bD

∑
a (mod D)

(a,D)=1

χ(a)
∑
d|bD

cd(h− ab)
d

ˆ
(log(ξ − h) + 2γ − 2 log d)f(ξ)v

( ξ

bM

)
dξ.
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Using Gauß sums, ∑
a (mod D)

(a,D)=1

χ(a)cd(h− ab) = G(χ)χ
(−bD

d

) ∑
ν (mod∗ d)

χ(ν)e
(hν
d

)
.

This last expression vanishes unless D(b,D∞)|d. Denoting b◦ = (b,D∞) and b∗ = b/b◦, we obtain
for d|b∗ ∑

a (mod D)
(a,D)=1

χ(a)cDb◦d(h− ab) = G(χ)χ(−b∗/d)G(χ)
∑

δ|(b◦d,h)

δχ(h/δ)µ(b◦d/δ)χ(b◦d/δ)

= b◦D1b◦|hχ(b∗)χ(h/b◦)cd(h)

= b◦Dχ
( h

(h, b)

)
χ
( b

(h, b)

)
cd(h).

This yields our first claim.
For the second, the computations are similar to the previous Lemma. If D > R, we get

(4.5)
∑
m

f(bm)v
(m
M

)
χ(m)τ̃h(bm;R)� XεD1/2R3/2,

while on the other hand Mχ
f,v(b, h;M) � (b, h)(bD)−1X(logX)2 by a simple computation from (4.4).

If D ≤ R, the bound (4.5) applies to all the characters involved in the definition of τ̃h(bm;R), except
all those which are induced by χ. We obtain∑
m

f(bm)v
(m
M

)
χ(m)τ̃h(bm;R) = 2

∑
D| q

(q,h)

χ( h
(b,q) )χ( b

(b,q) )
ϕ( q

(h,q) )
∑

(bm,q)=(h,q)
q2≤bm−h

f(bm)v
(m
M

)
+O(XεD1/2R3/2).

Similarly as above, the main term in the right-hand side can be rewritten
2
b
χ
( h

(h, b)

)
χ
( b

(h, b)

)ˆ
f(ξ)v

( ξ

bM

) ∑
q≤
√
ξ−h

(b,q)|h, D| q
(h,q)

(D,(b,h)/(b,q))=1

(q, b)
q

dξ +O(Xε)

The χ-factors impose the conditions b◦|h and (D,h/b◦) = 1. We rewrite the q-sum as∑
q≤
√
ξ−h

(b,q)|h, D| q
(h,q)

(D,(b,h)/(b,q))=1

(b, q)
q

= 1
D

∑
q≤
√
ξ−h/(Db◦)

(b∗,q)|h

(q, b∗)
q

= 1
D

∑
d|b∗

cd(h)
d

H
(√ξ − h
Db◦d

)

whence the claimed expression. �

4.3. Type τ1 estimates. The following estimate is relevant for convolutions with one smooth compo-
nent of size � x1/3+ε. It can be viewed as a generalization of a result of Selberg [Sel91, p.235] on the
equidistribution of τ2 in arithmetic progressions.

Lemma 4.4. Let ε > 0, let C2 > C1 > 0, let v : (0,∞) → R be a smooth and compactly supported
function, and let χ mod D be a Dirichlet character of modulus D ≥ 1. Then we have, for any X,M ≥ 1
and R ≥ D, any 1 ≤ bD, |h| � X1−ε, and any interval I ⊂ [C1X,C2X],∑

m: bm∈I
χ(m)v

(m
M

)
∆h(bm;R)� Xε

(
DX

1
3 + (b, hD∞)MX−

1
2 +D

1
2R

3
2

)
.(4.6)

The implied constants depend only on the function v and the constants ε, C1 and C2.

Proof. Note that we can always assume bM � X, since otherwise the sums in consideration are empty.
Let f : (0,∞) → [0,∞) be a smooth weight function, which is compactly supported in supp f ⊂
[C1X/2, 2C2X], which has value f(ξ) = 1 for all ξ ∈ I, and whose derivatives satisfy

f (ν)(ξ)� 1
(ΩX)ν for ν ≥ 0 and

ˆ ∣∣∣f (ν)(ξ)
∣∣∣ dξ � 1

(ΩX)ν−1 for ν ≥ 1,
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for some constant Ω ≤ 1. We can then encode the condition bm ∈ I by using the function f(ξ) via

(4.7)
∑

m: bm∈I
χ(m)v

(m
M

)
∆h(bm;R) =

∑
m

f(bm)v
(m
M

)
χ(m)∆h(bm;R) +O

(
ΩX1+εb−1) ,

so that it suffices to consider the smoothed sum on the right hand side.
Assume first that χ is the trivial character. In [Top17b, Section 3] it is shown that

(4.8)
∑
m

f(bm)v
(m
M

)
τ(bm− h) = Mf,v(b, h;M) +O

(
Xεb

1
2 Ω− 1

2

)
,

where the main term Mf,v(b, h;M) is given by (4.2). By Lemma 4.2, we obtain∑
m

f(bm)v
(m
M

)
τ̃h(bm;R) = Mf,v(b, h;M) +O

(
XεR

3
2 + (b, h)b−1X

1
2 +ε
)
.(4.9)

The estimate (4.6), in the case D = 1 and χ = 1, now follows from (4.7) with the choice Ω = bX−
2
3 .

Now assume that χ is a primitive character modulo D, where D ≤ R and bD � X1−ε. We write∑
m

f(bm)v
(m
M

)
χ(m)τ(bm− h) =

∑
a (mod D)

(a,D)=1

χ(a)
(∑

m

f̃ (̃bm)ṽ
(
m

M̃

)
τ (̃bm− h̃)

)
,

with

b̃ := Db, M̃ := M/D, h̃ := h− ab, f̃(ξ) := f(ξ + ab) and ṽ(ξ) := v
(
ξ + a

M

)
,

so that we can use our former result (4.8) to get∑
m

f(bm)v
(m
M

)
χ(m)τ(bm− h) = Mχ

f,v(b, h;M) +O
(
XεD

3
2 b

1
2 Ω− 1

2

)
,

where Mχ
f,v(b, h;M) is defined in (4.3). By Lemma 4.3, we obtain∑

m

f(bm)v
(m
M

)
χ(m)τ(bm− h) =

∑
m

f(bm)v
(m
M

)
χ(m)τ̃h(bm;R)

+Oε

(
XεD3/2b1/2Ω−1/2 +XεD1/2R3/2 +X1/2+ε (h, b∗)

b∗

)
We choose Ω = bDX−

2
3 , and hence get (4.6) also in this case.

The case when χ is not necessarily primitive follows at once using Möbius inversion. �

4.4. Type τ2 estimates. The following estimate is a uniform version of the τ2− τ2 shifted convolution
problem obtained recently by the second author.

Lemma 4.5. Let ε > 0, let C2 > C1 > 0, let v1, v2 : (0,∞) → R be smooth and compactly supported
weight functions, and let χ1 and χ2 be Dirichlet characters mod D. Then for any X, b ≥ 1 and R ≥ D,
any M1 ≥ M2 ≥ 1 with X

1
2 ≤ M1M2, any h ∈ Z with 1 ≤ |h|, D ≤ X1/4 and any interval I ⊂

[C1X/2, C2X], we have

(4.10)
∑

m1,m2:
bm1m2∈I

v1

(
m1

M1

)
v2

(
m2

M2

)
χ1(m1)χ2(m2)∆h(bm1m2;R)

� b◦D5/2(XM1M2)1/3+ε
(

1 +
(
|h|M1M2

XD

)1/4)
+X−1/2+εR3/2b◦(h, b)M1M

2
2 .

The implied constant depends only on the constants ε, C1 and C2, and the functions v1 and v2.

Proof. Note that we can make the assumption b � X
M1M2

, as otherwise the sum in consideration is
empty. Also, as in Lemma 4.4, we can exchange the original sum by its smoothed version,∑

m1,m2

f(bm1m2)v1

(
m1

M1

)
v2

(
m2

M2

)
χ1(m1)χ2(m2)∆h(bm1m2;R),

with an error of the size of O
(
ΩX1+εb−1).
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Let χ0 := χ1χ2. The results of [Top17b] cannot be quoted as a black box, however, the computations
of [Top17a] on which they are based may be adapted with little change. We write∑

m1,m2

f(bm1m2)v1

(
m1

M1

)
v2

(
m2

M2

)
χ1(m1)χ2(m2)τ(bm1m2 − h) =

∑
a (mod D)

χ1(a)D(a),

where D(a) is the defined as

D(a) :=
∑
n

w1

(
r1n+ f1

x1

)
w2

(
r2n+ f2

x2

)
τ(r1n+ f1)

∑
n1,n2

n1n2=r2n+f2

χ0(n2)hM2M1(n1, n2),

with
r1 := bD, r2 := D, f1 := ab− h, f2 := a, x1 := X, x2 := X

b
,

and
w1(ξ) :=

√
f(Xξ + h), w2(ξ) :=

√
f(Xξ), hM2M1(n1, n2) := v2

(
n1

M2

)
v1

(
n2

M1

)
.

The sum D(a) is now of the same shape as the sum DAB(x1, x2) defined in [Top17a, p. 157], with the
function f̃(a, b) there replaced by χ0(a)f̃(a, b). The computations of Section 3 of [Top17a] can then be
adapted with the following changes. In Section 3.1 of [Top17a], the expressions Σ0

AB and Σ±AB have an
additional factor χ0(au2/u

∗
2) in the summands. In the sums in the definition of R±AB , p.159 ibid, the

summand has to be multiplied by an additionnal factor χ0(c), and the altered relation

Σ±AB =
∑
u∗2 |u2
r∗2 |r2

χ0

(u2

u∗2

) ∑
d

(d,r∗1s2u
∗
2)=1

χ0(d)R
±
AB

d

holds. Consequently, the relationship between R±AB(N ;χ) and K±AB(N ;χ) becomes

R±AB(N ;χ) =
∑

N<n≤2N
τ(n)Ŝv(χ;n)K±AB(χχ0;n).

The rest of the argument of [Top17a] is adapted with the only change that the Kuznetsov formula is
applied with nebentypus χχ0 instead of χ. This has no effect on the error terms, since the bounds in
Theorem 2.6 and Lemmas 2.7, 2.8 and 2.9 of [Top17a] are uniform with respect to the nebentypus.

By the bound (3.4) of [Top17a], with b◦ = (b,D∞), r0 ← Db◦ and h← hD, we obtain

D(a) =
∑
m2

(m2,D)=1

χ0(m2)v2

(
m2
M2

)
bDm2

∑
d|bDm2

cd (abm2m2 − h)
d

ˆ
(log(ξ − h) + 2γ − 2 log d)

· f(ξ)v1

(
ξ

bM1m2

)
dξ +O

(
b◦D3/2X

1
2 +ε

(
1

Ω 1
2

+
( (b, h)X

Db2

)θ{
1 +

( |h|
bD

)1/4}))
,

where m2 denotes any integer such that m2 ·m2 ≡ 1 mod D. We sum over a (mod D), exchange the a-
and m2-sums, and change variables a← am2. We obtain∑

a (mod D)

χ1(a)D(a) =
∑
m2

v

(
m2

M2

)
χ2(m2)Mχ1

f,v1
(m2b, h;M1)

+O
(
b◦D5/2X

1
2 +ε

(
1

Ω 1
2

+
( (b, h)X

Db2

)θ{
1 +

( |h|
bD

)1/4}))
,

with Mχ1
f,v1

(m2b, h;M1) defined as in (4.3), for which we can use Lemma 4.3. The bound (4.10) follows
after choosing Ω = X

1
3 (M1M2)− 2

3 . �

4.5. Type II estimates. The following estimate, the first version of which was obtained in [Fou85],
concerns convolutions with one component supported inside [xε, x1/3−ε].

Lemma 4.6. For all η,A > 0, there exist δ,B > 0 such that the following holds. Whenever X,R ≥ 1,
(a, h) ∈ Z2, an interval I ⊂ [X/2, X], and two sequences (βn), (γn) are given, under the conditions 1 ≤
R, |a| , |h| ≤ Xδ, and

|βn| ≤ τA(n), |γn| ≤ τA(n), γn 6= 0 =⇒ n ∈ [Xη, X
1
3−η],
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we have

(4.11)
∑
n∈I

(β ∗ γ)(n)∆h(an;R)�A,η τ((a, h))R−1/2X(logX)B .

Proof. Recall that ∆h(an;R)� RXε. In the left-hand side of (4.11), the contribution of those n such
that (n, (ah)∞) > Xδ is therefore at most

RXε
∑
n�X

(n,(ah)∞)>Xδ

1� RX1−δ+ε.

Next, we have∑
d|(ah)∞

d≤Xδ

∑
n∈I
d|n

(n/d,ah)=1

(β ∗ γ)(n)∆h(an;R) =
∑

λ1,λ2|(ah)∞

λ1λ2≤Xδ

∑
mn∈(λ1λ2)−1I

(mn,ah)=1
(m,λ2)=1

βλ1mγλ2n∆h(aλ1λ2mn;R).

Finally, we note that there are at most O(X1/2+ε) tuples (λ1, λ2,m, n) with λ1λ2mn ∈ I for which the
expression aλ1λ2mn− h is a perfect square, and

∆h(aλ1λ2mn;R) = 2
∑

λ3|(h,aλ1λ2)

∑
q≤
√
aλ1λ2mn−h/λ3

(q,aλ1λ2h/λ
2
3)=1

uR(mnaλ1λ2
λ3

h
λ3

; q) +O(1aλ1λ2mn−h is a square),

where the notation uR(n; q) is defined in formula (5.1) of [Dra17]. Now, for each (λ1, λ2, λ3), the sum

S(λ1, λ2, λ3) =
∑

q≤
√
aλ1λ2mn−h/λ3

(q,aλ1λ2h/λ
2
3)=1

∑
mn∈(λ1λ2)−1I

(mn,ah)=1
(m,λ2)=1

uR(mnaλ1λ2
λ3

h
λ3

; q)

is of the same shape as in formula (5.6) of [Dra17], with three differences:
(1) the quantity τA(λ1)τA(λ2) has to be factored out for the condition (5.4) of [Dra17] to hold,
(2) the sums over m and n must be restricted to dyadic intervals, which is done at the cost of an

additionnal factor (log x)2,
(3) the sums over m, n and q are not separated.

The last point can be implemented by a standard argument (see e.g. page 720 of [Dra17]), cutting
the (m,n) sums into intervals of type [M, (1 + ξ)M ] × [N, (1 + ξ)N ] with ξ � R−1/2. Assuming δ is
small enough in terms of η, we obtain

S(λ1, λ2, λ3)� τA(λ1)τA(λ2)(λ1λ2)−1X(logX)B(ξ + ξ−1R−1)

� τA(λ1)τA(λ2)(λ1λ2)−1R−1/2X(logX)B .

We sum this over (λ1, λ2, λ3) satisfying

λ1λ2|(ah)∞, λ1λ2 ≤ xδ, λ3|(h, aλ1λ2).

Since
∑
λ|(ah)∞ τ2A(λ)τ(λ)λ−1 �A (log log x)OA(1), we obtain∑

n∈I
(β ∗ γ)(n)∆h(an;R)� τ((a, h))

{
RX1−δ/2 +R−1/2X(logX)B+1},

which yields our claim by reinterpreting δ and B. �

5. The case of rational parameters

Let χ1, . . . , χT be distinct Dirichlet characters mod D, and the function f ∈ FτQD (A) be defined by

(5.1)
∞∑
n=1

f(n)
ns

:=
T∏
j=1

L(s, χj)bj ,

with b1, . . . , bT ∈ Q, which we write in the form

bj = rj + uj
vj

with rj ∈ Z and uj , vj ∈ N such that 0 ≤ uj < vj .
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For notational convenience we also define
‖r‖1 :=

∑
1≤j≤T

|rj |, ‖v‖1 :=
∑

1≤j≤T
vj .

Our goal is to prove estimate (2.4) for the function f defined in (5.1). In fact, we will prove a result
which is slightly more precise in term of uniformity in D and T .

Proposition 5.1. Let A,D, T ≥ 1 be fixed. Then we have, for x ≥ 3, I ⊂ [x/2, x] and f ∈ FτQD (A) as
described above, the following estimate,

(5.2) |Σf (I; a, h;R)| ≤ Cτ((a, h))D 5
2
x(log x)B+ω(D)

R
1
2

‖v‖1 for 1 ≤ a, |h|, R ≤ xδ,

where δ > 0 is some absolute constant, and where B,C > 0 are constants which depend only on A and T .

The rest of this section is now concerned with proving Proposition 5.1.

5.1. Application of the combinatorial identity. Denote τχz (n) := τz(n)χ(n), so that
(5.3) f(n) = τχ1

b1
∗ · · · ∗ τχTbT .

The expression on the left hand side of (5.2) now reads

(5.4) Σf (I; a, h;R) =
∑

m1···mT∈I
τχ1
b1

(m1) · · · τχTbT (mT )∆h(am1 · · ·mT ;R).

By Theorem 3.2 with K = 4 we can write τχjbj (mj) as

(5.5) τ
χj
bj

(mj) =
4∑
`=1

c`,j
∑
· · ·
∑

m1···mk`,jn1···nk′
`,j

=mj

n1,...,nk′
`,j
≤x1/4

χj(m1) · · ·χj(mk`,j )τ
χj
− 1
vj

(n1) · · · τχj− 1
vj

(nk′
`,j

),

where (k`,j)4
`=1 and (k′`,j)4

`=1 are two sequences of integers satisfying

0 ≤ k`,j ≤ |rj |+ 4, 1 ≤ k′`,j ≤ (|rj |+ 4)vj ,

and where (c`,j)4
`=1 is a set of complex numbers whose moduli are bounded in terms of A. We replace

each factor τχjbj (mj) in (5.4) by its decomposition, and after expanding the resulting expression, we end
up with a linear combination (whose coefficients are bounded by OA(1)) of OT (1) sums of the form

(5.6) Ξ :=
∑

m1···mkn1···nk′∈I
n1,...,nk′≤x

1/4

σ1(m1) · · ·σk(mk)%1(n1) · · · %k′(nk′)∆(am1 · · ·mkn1 · · ·n′k;R),

where each function σi is some Dirichlet character mod D, where each function %i is equal to τ
χj
−1/vj for

some j, and where k and k′ are integers bounded by

0 ≤ k ≤ 4T + ‖r‖1 and 1 ≤ k′ ≤ 4‖v‖1 +
∑

1≤j≤T
|rj |vj .

We consider each sum Ξ separately.
Out of technical reasons, it will be necessary to use a smooth dyadic decomposition for the vari-

ables m1, . . . ,mk. Let u : (0,∞)→ R be a smooth and compactly supported function, which satisfies

suppu ⊂ [1/4, 2] and
∑
`∈Z

u

(
ξ

2`

)
= 1 for all ξ ∈ (0,∞),

and define
u0(ξ) :=

∑
`≤0

u

(
ξ

M`

)
and u`(ξ) := u

(
ξ

M`

)
for ` > 0,

where we have set
M` := x

1
4 +η2`,

with 0 < η < 1
24 an arbitrary, but fixed constant. For a k-tuple ` = (`1, . . . , `k) ∈ Nk, we then define

Ξ` :=
∑

m1···mkn1···nk′∈I
n1,...,nk′≤x

1/4

u`1(m1)σ1(m1) · · ·u`k(mk)σk(mk)%1(n1) · · · %k′(nk′)∆(am1 · · ·mkn1 · · ·n′k;R),
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so that the sum Ξ can be split as
Ξ =

∑
`∈Nk

Ξ`.

Note that this last sum is in fact finite, since Ξ` becomes empty if the coordinates of ` are large enough,
namely if `1, . . . , `k � log x. We will now estimate the sums Ξ` in different ways, depending on the sizes
of the supports of the variables mi.

5.2. Case I. First assume that ` has at least one coordinate, say `1, satisfying M`1 ≥ x
1
3 +η. Let m0 :=

m2 · · ·mkn1 · · ·nk′ . Denoting σ1 = χj for some j, we can use Lemma 4.4 with X = ax, b = am0
and M = M`1 to get∑

m1: m0m1∈I
u`1(m1)σ1(m1)∆h(am0m1;R)�ε,A x

ε

(
Da

1
3x

1
3 + (am0, hD

∞)M`1

x
1
2

+D
1
2R

3
2

)
.

This leads to

(5.7) Ξ` �ε x
ε
(
Da

1
3x1−η + (a, hD∞)(log x)ω(D)x

1
2 + x

2
3−ηD

1
2R

3
2

)
,

where we have made use of the fact that∑
m0≤ x

M`1

(m0, hD
∞) ≤

∑
D∗|D∞
D∗≤x

D∗
∑

m0≤ x
D∗M`1

(m0, h)�ε h
ε x

M`1

∑
D∗|D∞
D∗≤x

1�ε
(log x)ω(D)x1+ε

M`1

.

5.3. Case II. Next assume that ` has at least two non-zero coordinates, say `1 ≥ `2 ≥ 1. We can also
assume that x 1

4 +η �M`1 ,M`2 � x
1
3 +η, since the case of larger M`1 and M`2 is already treated above.

Let m0 := m3 · · ·mkn1 · · ·nk′ . We use Lemma 4.5 with X = ax and b = am0, which gives∑
m1,m2:

m0m1m2∈I

u`1(m1)σ1(m1)u`1(m1)σ2(m2)∆h(am0m1m2;R)

�ε,A (am0, D
∞)xε

(
D

5
2 (axM`1M`2) 1

3 + (h, am0)R 3
2
M`1M`2

a
1
2x

1
2

)
,

so that altogether we are led to

(5.8) Ξ` �ε,A (a, h)(a,D∞)(log x)ω(D)xε
(
D

5
2 a

1
3x1− 4

3η + (a, h)R 3
2x

1
2

)
.

5.4. Case III. Finally, we need to consider the case, where ` has at most one non-zero coordinate,
say `1, for which we have M`1 � x

1
3 +η. We split the sum Ξ` into two parts,

Ξj =: Ξ(1)
` + Ξ(2)

` ,

according to whether n1 · · ·nk′ > xη or n1 · · ·nk′ ≤ xη.
We look first at Ξ(1)

` . We split this sum according to the value of

µ = min{1 ≤ µ′ ≤ k′ : n1 · · ·nµ′ > xη},

and write accordingly

Ξ(1)
` =:

k′∑
µ=1

Ξ(1)
` (µ).

After defining

βm :=
∑

m1···mknµ+1···nk′=m
nµ+1,...,nk′≤x

1/4

u`1(m1)σ1(m1) · · ·u0(mk)σk(mk)%µ+1(nµ+1) · · · %k′(nk′),

and

γn :=
∑

n1···nµ=n
n1···nµ−1≤xη, n1,...,nµ≤x1/4

%1(n1) · · · %µ(nµ),
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and renaming n← n1 · · ·nµ and m← m1 · · ·mknµ+1 · · ·nk′ , we can write Ξ(1)
` (µ) as

Ξ(1)
` (µ) =

∑
m,n: mn∈I
xη<n≤x1/4+η

βmγn∆h(amn;R).

Note that γn = 0 if n > x1/4+η. Moreover, we can bound the quantities βm and γn by
|βm| ≤ τ2‖r‖1+8T (m), |γn| ≤ τ‖r‖1+4T (n).

Hence we can apply Lemma 4.6 with A← 2‖r‖1 + 8T , and we see that

Ξ(1)
` (µ)� τ((a, h))R−1/2x(log x)B1 for 1 ≤ a, |h|, R ≤ xδ1 ,

where δ1, B1 > 0 are certain constants which depend solely on η and A. Summing over µ, we deduce

(5.9) Ξ(1)
` �A τ((a, h))R−1/2x(log x)B1‖v‖1 for 1 ≤ a, |h|, R ≤ xδ1 .

The other sum Ξ(2)
` can be estimated similarly – the role of the variables n1, . . . , nk′ is now played

by the variables m2, . . . ,mk. Eventually, we get

(5.10) Ξ(2)
` �A τ((a, h))R−1/2x(log x)B2 for 1 ≤ a, |h|, R ≤ xδ2 ,

where δ2, B2 > 0 are certain constants which again depend solely on η and A.

5.5. Conclusion. Grouping the different bounds (5.7)–(5.10), setting B := max(B1, B2) and choos-
ing δ > 0 small enough, we get

Ξ� τ((a, h))D 5
2R−

1
2x(log x)B+ω(D)‖v‖1 for 1 ≤ a, |h|, R ≤ xδ,

with the implicit constant depending only on A and T . This finally proves Proposition 5.1.

6. Interpolation to complex parameters

Let r1, . . . , rϕ(D) be the residues mod D which are relatively prime to D. Any f ∈ FωD(A) is given by
∞∑
n=1

f(n)
ns

=
ϕ(D)∏
j=1

∏
p≡rj mod D

(
1 + zj

ps − 1

)
,(6.1)

for z = (z1, . . . , zϕ(D)) ∈ Cϕ(D), with |zj | ≤ A. After setting
(6.2) ωr(n) := # {p prime : p | n, p ≡ r mod D} ,
we can also write

f(n) =
∑

n1···nϕ(D)=n

ϕ(D)∏
j=1

zj
ωrj (nj).

Our aim here is to show that the bound (2.4) holds for Σf (I; a, h;R), for all f ∈ FωD(A). By Lemma 2.5
this will imply Proposition 2.1.

Let χ1, . . . , χϕ(D) be the Dirichlet characters mod D, let Q be the unitary matrix

Q := 1√
ϕ(D)


χ1(r1) χ2(r1) · · · χϕ(D)(r1)
χ1(r2) χ2(r2) · · · χϕ(D)(r2)

...
...

. . .
...

χ1(rϕ(D)) χ2(rϕ(D)) · · · χϕ(D)(rϕ(D))

 ,

and let MQ : Cϕ(D) → Cϕ(D) be the bijective linear map associated to Q.
Let K ≥ 1. We define FωD(A,K) to be the set of functions f ∈ FωD(A) of the same form as in (6.1),

but with the additional property that the parameters z are given by
z = MQ(b)

for a tuple of rational numbers b = (b1, . . . , bϕ(D)) ∈ Qϕ(D) satisfying

|bj | ≤ A and bj = uj
vj

with uj , vj ∈ Z and |vj | ≤ K,

for all j = 1, . . . , ϕ(D). By Proposition 5.1, Lemma 2.2 and Lemma 2.3, we deduce that the bound (2.4)
holds for all f ∈ FωD(A,K) in the following form.
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Proposition 6.1. Let A,D ≥ 1 be fixed. For K ≥ 1, x ≥ 3, I ⊂ [x/2, x] and f ∈ FωD(A,K), we have

(6.3) |Σf (I; a, h;R)| ≤ CKτ((a, h))x(log x)B

R
1
2

for 1 ≤ a, |h|, R ≤ xδ,

where δ > 0 is some absolute constant, and where B,C > 0 are constants which depend only on A
and D.

Our goal is to interpolate this result to all functions in FωD(A). Let f ∈ FωD(A) be fixed, with z as
in (6.1). For L ∈ [1,∞], we define two polynomials in the variables Z = (Z1, . . . , Zϕ(D)) as follows,

PL(Z) :=
∑
n∈I

∀j,ωrj (n)≤L

∑
n1···nϕ(D)=n

ϕ(D)∏
j=1

Zj
ωrj (nj)∆h(an;R), P̃L(Z) := PL(MQ(Z)).

By definition, both these polynomials have degree at most L in each variable. Furthermore, let

b := M−1
Q (Z),

and note that ‖b‖∞ ≤ D
1
2A. Using this notation, we can now write the sum Σf (I; a, h;R) simply as∑

n∈I
f(n)∆h(an;R) = P̃∞(b).

In order to have better control over the degree of P̃∞(Z), we cut off all the terms of degree larger
than some fixed real number L ≥ 1. For a tuple ζ = (ζ1, . . . , ζϕ(D)) satisfying |ζj | ≤ AD

1
2 and any real

number E ≥ 1, this leads to an error term of the following form,

|P̃∞(ζ)− P̃L(ζ)| ≤
∑
n∈I

ω(n)>L

τD(n)(AD)ω(n) |∆h(an;R)|

≤ E−L
∑
n≤x

τD(n)(ADE)ω(n) |∆h(an;R)|

≤ E−L
∑
n≤x

τAD2E(n)2

 1
2
∑
n≤x

|∆h(an;R)|2
 1

2

.

The different factors can be estimated via [Ten15, Theorem II.6.1], and Lemma 4.1, and we get

|P̃∞(ζ)− P̃L(ζ)| � E−L
(
x(log x)(ADE)4−1

) 1
2 (
x(log x)4τ((a, h))2) 1

2

� E−Lτ((a, h))x(log x)
(ADE)4

2 +2,(6.4)

where the implicit constants depend at most on A, E and D.
Next, we set

β` := 2(`+ 1)bAD 1
2 c

L+ 1 − bAD 1
2 c for ` = 0, . . . , L.

Obviously, all these numbers are bounded by |β`| ≤ AD
1
2 , and are rational numbers with denominators

not larger than L+ 1. Furthermore, we have the bound

|β`1 − β`2 | ≥
AD

1
2

2L |`1 − `2| for `1 6= `2.

For any tuple ` = (`1, . . . , `ϕ(D)) ∈ {0, . . . , L}ϕ(D), denote β` = (β`1 , . . . , β`ϕ(D)). The value P̃∞(β`) can
be interpreted as an instance of the sum Σ

f̃
(I; a, h;R) for an appropriate function f̃ ∈ FωD(AD,L+ 1),

P̃∞(β`) = Σ
f̃
(I; a, h;R).

Hence, by Proposition 6.1 and the estimate in (6.4) we can deduce

(6.5) P̃L(β`)�A,D τ((a, h))x(log x)
(ADE)4

2 +B
(
L

R
1
2

+ 1
EL

)
,

uniformly for 1 ≤ a, |h|, R ≤ xδ.
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By Lagrange interpolation, we bring P̃L(b) into the following shape,

P̃L(b) =
∑

`∈{0,...,L}ϕ(D)

P̃L(β`)
ϕ(D)∏
j=1

∏
0≤i≤L
i 6=`j

bj − βi
β`j − βi

,

which is allowed since the Vandermonde determinant associated to (β`) does not vanish. We can now
estimate P̃L(b) via the already known bound (6.5) for the expressions P̃L(β`). Namely, we have

|P̃L(b)| ≤
∑

`∈{0,...,L}ϕ(D)

∣∣∣P̃L(β`)
∣∣∣ ϕ(D)∏
j=1

∏
0≤i≤L
i6=`j

|bj − βi|
|β`j − β`i |

� τ((a, h))x(log x)
(ADE)4

2 +B
(
L

R
1
2

+ 1
EL

)
(4L)Lϕ(D)

∑
`∈{0,...,L}ϕ(D)

ϕ(D)∏
j=1

∏
0≤i≤L
i 6=`j

1
|`j − i|

� τ((a, h))x(log x)
(ADE)4

2 +B
(
L

R
1
2

+ 1
EL

)
(8L)Lϕ(D)

(L!)ϕ(D) ,

which after using Stirling’s approximation for the Gamma function simplifies to

|P̃L(b)| � τ((a, h))x(log x)
(ADE)4

2 +B
(

1
R

1
2

+ 1
EL

)
(4e)2DL,

with the implicit constant depending at most on A, E and D.
After adding all the terms we had cut off earlier, we are finally led to

Σf (I; a, h;R)�A,D,E τ((a, h))x(log x)
(ADE)4

2 +B
(

1
R

1
2

+ 1
EL

)
(4e)2DL.

With the choices
L := logR

12D log(4e) and E := (4e)6D,

and after reinterpreting the constant B, we get

Σf (I; a, h;R)�A,D τ((a, h))x(log x)B

R
1
3

for 1 ≤ a, |h|, R ≤ xδ,

which is exactly the statement we wanted to prove.

7. Proof of Theorem 1.2 using Linnik’s identity

We now sketch how Theorem 1.2 can alternatively be proven using Theorem 3.3. The details of the
computations being very similar, we will restrict to discussing the main differences in the arguments.

As mentioned above, it is enough to consider the case f ∈ FτD(A), or in other words we can assume
that f = τχ1

b1
∗ · · · ∗ τχTbT , where χ1, . . . , χT are distinct Dirichlet characters mod D, and where b1, . . . , bT

are complex numbers whose moduli are bounded by A. The sum in consideration is then given by

Σf (I; a, h;R) =
∑

m1···mT∈I
τχ1
b1

(m1) · · · τχTbT (mT )∆h(am1 · · ·mT ;R).

Here we replace each τ
χj
bj

(mj) by its decomposition as given in Theorem 3.3 with K = 4, and after
expanding the resulting expression, we end up with a linear combination of sums of the form

Ξ :=
∑

m1···mkn1···nT∈I
P+(n1···nT )≤x1/4

σ1(m1) · · ·σk(mk)ρ1(n1) · · · ρT (nT )∆(am1 · · ·mkn1 · · ·nT ;R),

where each function σj is some Dirichlet character mod D, where each function ρj is equal to τ
χj
bj−` for

some j and ` ∈ [0, 3], and where k ≤ 3T . We consider each sum Ξ separately.
To each factor ρj in the sum Ξ we apply Lemma 3.4 with y = x1/4 and w = xη for some arbitrary, but

fixed η ∈ (0, 1/24). By compacity, it follows that for each j = 1, . . . , T there exist arithmetic functions αj
and βj , such that the sum Ξ can be written as

Ξ =
T∑
j=1

Ξ(1)
j +

T∑
j=1

Ξ(2)
j + Ξ(3),
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with

Ξ(1)
j :=

∑
mn1···nT∈I

P+(n1···nT )≤x1/4

n1,...,nj−1≤xη, nj>x1/η

∃pk‖nj , pk>x1/4

(σ1 ∗ · · · ∗ σk)(m)ρ1(n1) · · · ρT (nT )∆(amn1 · · ·nT ;R),

Ξ(2)
j :=

∑
mn1···nj1n

′
jn
′′
j nj+1···nT∈I

P+(n1···nj1n
′
jn
′′
j nj+1···nT )≤x1/4

n1,...,nj−1≤xη, xη<n′j≤x
1/4+η

(σ1 ∗ · · · ∗ σk)(m)
( ∏

1≤k≤T
k 6=j

ρk(nk)
)
αj(n′j)βj(n′′j )∆(amn1 · · ·nT ;R),

Ξ(3) :=
∑

mn1···nT∈I
n1,...,nT≤xη

(σ1 ∗ · · · ∗ σk)(m)ρ1(n1) · · · ρT (nT )∆(amn1 · · ·nT ;R).

The sums Ξ(1)
j can be bound trivially. Indeed, we note that if a prime power pk > y divides n, then

since P+(nj) ≤ y we must have k ≥ 2. Hence

Ξ(1)
j ≤

∑
n∈I

∃pk|n: pk>x1/4, k≥2

τ(A+6)T (n)|∆(an;R)|

�ε

(∑
n∈I
|∆(an;R)|2

) 1
2
( ∑

n∈I
∃pk|n: pk>x1/4, k≥2

1
) 1

2

�A,T x
1−1/17τ((a, h)),

which is an acceptable error term.
Concerning the sums Ξ(2)

j , we can bound them following the arguments of Case III, Section 5.4, since
we have a variable localized in [xη, x1/4+η], and since 1/4 + η < 1/3. The remaining sum Ξ(3), which is
analogous to (5.6), can be estimated for all sufficiently small η > 0 by the arguments of Sections 5.2, 5.3
and 5.4, according to the size of the involved variables. As a result, we get for these sums the estimate

Ξ(2)
j ,Ξ(3) �A,T τ((a, h))x(log x)O(1)

R
1
2

.

Together with the bound for Ξ(1)
j , this eventually proves Theorem 1.2.

8. Proof of Theorems 1.2, 1.3, 1.4 and 1.6

In this section we want to deduce Theorem 1.2 from Proposition 2.1, and afterwards apply this result
to the problems mentioned in the introduction. Before doing so, we first need to prove an auxiliary result,
which is concerned with bounds on average for functions in FD(A) twisted by a Dirichlet character.

Lemma 8.1. Let f ∈ FD(A) and let B ≥ 1. Then there exists a constant c > 0, such that, for all
Dirichlet characters χ mod q satisfying cond(χ) - D and q ≤ (log x)B, we have

(8.1)
∑
n≤x

χ(n)f(n)� xe−c
√

log x.

Both the constant c and the implicit constant depend at most on A, B and D.

Proof. Let Fχ(s) be the Dirichlet series associated to the function χ(n)f(n). By Lemma 2.4 we know
that Fχ(s) can be written as

Fχ(s) = Hχ(s)
∏

ψ mod D
L(s, χψ)bψ for Re(s) > 1,

where Hχ(s) is a holomorphic function in Re(s) ≥ 1
2 + ε, bounded in terms of A,D only.

Due to the assumption cond(χ) - D we know that none of the characters χψ is principal, which
means that none of the L-functions L(s, χψ) has a pole at s = 1. It follows from Siegel’s theorem that
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for any δ > 0 there exists a constant c(δ) such that all L(s, χψ) are zero-free in the region defined by
the condition Re(s) > 1− γ(Im(s)), where

(8.2) γ(t) := min
{

c(δ)
log(qD(|t|+ 2)) ,

c(δ)
(qD)δ

}
.

Using this zero-free region, the bound (8.1) follows using a standard contour integration argument; see
e.g. [MV07, Section 11.3]. �

We now proceed to prove Theorem 1.2. We set R = (log x)L where L ≥ 1 is some constant which
depends only on A, B and D, and which we will determine at the very end. Note that in any case we
can assume x to be large enough so that D ≤ R is satisfied.

We start by splitting the sum Df (x; a, h) into two parts as follows,

Df (x; a, h) = Df (
√
x; a, h) +

∑
√
x<n≤x

f(n)τ(an− h).

While the first sum can be estimated by trivial means, we can use Proposition 2.1 to evaluate the
second (after first dividing the range of summation into dyadic intervals). This eventually shows that
there exists an absolute constant δ > 0, and a constant B depending only on A and D, such that, for
all 1 ≤ a, |h| ≤ xδ,

Df (x; a, h) = Mf (x; a, h) +O
(
τ((a, h))x(log x)B

R1/3

)
,

with
M̃f (x; a, h) :=

∑
|h|/a<n≤x

f(n)τ̃h(an;R).

It remains to evaluate this last sum.
After expanding τ̃h(an;R), it can be written as

M̃f (x; a, h) = 2
∑

q≤
√
ax

1
ϕ
(

q
(h,q)

) ∑
χ mod q

(h,q)
condχ≤R

χ
(

h
(h,q)

) ∑
q2
a ≤n≤x

(an,q)=(h,q)

f(n)χ
(

an
(h,q)

)
+O

(
xδ+ε) .

We now split the remaining sum into two parts, denoted by M̃ (1)
f (x; a, h) and M̃ (2)

f (x; a, h), depending
on whether cond(χ) | D or not. A simple reordering of the sums shows that the first part is equal
to Mf (x; a, h) as given in Theorem 1.2. The second part can be written as

M
(2)
f (x; a, h) = 2

∑
t|(a,h)

∑
u|ht

(u,a/t)=1

∑
q≤
√
ax
tu

1
ϕ(q)

∑
χ mod q

condχ≤R
cond(χ)-D

χ
(
h
tu

)
χ
(
a
t

) (
Sf,χ(x, u)− Sf,χ

(
tu2q2

a , u
))

,

with Sf,χ(x, u) given by
Sf,χ(x, u) :=

∑
n≤ xu

f(un)χ(n).

This last sum can be estimated via Lemma 8.1, namely we have

Sf,χ(x, u) =
∑
u∗|u∞
u∗≤
√
x

f(uu∗)χ(u∗)
∑

n≤ x
uu∗

(n,u)=1

f(n)χ(n) +O
(
x

1
2 +ε
)

� xe−c
√

log x
∑

u∗≤
√
x

τA(uu∗)
uu∗

+ x
1
2 +ε

� τA(u)
u

x(log x)Ae−c
√

log x,

for some constant c > 0 depending on A, D and L. Hence

M
(2)
f (x; a, h)� τ((a, h))Rx(log x)A+2e−c

√
log x � τ((a, h))xe− c2

√
log x.

Eventually, we get

Df (x; a, h) = Mf (x; a, h) +O
(
τ((a, h))x

(
(log x)B

R1/3 + e−
c
2

√
log x

))
,
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and Theorem 1.2 follows with the choice L = 3N + 3B.

8.1. Proof of Theorems 1.3, 1.4 and 1.6. The applications mentioned in the introduction are
essentially all immediate corollaries of Theorem 1.2, except for the fact that it remains to evaluate the
main terms. This is a rather tedious task, but can be done using standard techniques from analytic
number theory, in particular the Selberg-Delange method, which is for example described in detail
in [Ten15, Chapter II.5]. In order to not further lengthen this article, we only want to indicate very
briefly the main steps of the procedure.

In the case of Theorem 1.3, the main term takes the form

Mτz (x; 1, h) = 2
∑
q≤
√
x

1
ϕ
(

q
(h,q)

) ∑
q2≤n≤x

(n,q)=(h,q)

τz(n),

which after a few simple transformations can be written as

(8.3) Mτz (x; 1, h) =
∑

u|h, v|u∞
v≤
√
x

τz(uv)
∑

q≤
√
x/u

(q, vhu )=1

D(x;uq, uv)−D(u2q2;uq, uv)
ϕ(q) +O

(
x

1
2 +ε
)
,

where
D(y; r, t) :=

∑
n≤ yt

(n,r)=1

τz(n).

This sum has been studied in detail in [Ten15, Chapter II.5]. In particular, following the proof of [Ten15,
Theorem II.5.2], we see that there exist complex numbers µz` (r, t) such that

D(y; r, t) = 1
2πi

L∑
`=0

µz` (r, t)
Γ(z − `)

y(log y)z

(log y)`+1 +O
(

(log t)L+1

t

y(log y)z

(log y)L+2−ε

)
,

where

µz` (r, t) := ∆`
s

(
ψzs (r)
ts

(s− 1)zζ(s)z

s

)
with ψzs (r) :=

∏
p|r

(
1− 1

ps

)z
,

and where the differential operator ∆`
s is defined as

∆`
s := 1

`!
∂`

∂s`

∣∣∣∣
s=1

.

It therefore remains to evaluate the sums∑
q≤
√
x
u

(q, vhu )=1

∆`
sψ

z
s (uq)

ϕ(q) and
∑
q≤
√
x
u

(q,vh/u)=1

∆`
sψ

z
s (uq)

ϕ(q)
q2(2 log(uq))z

(2 log(uq))`−1 .

For the first sum this is a standard exercise in using counter integration, the result being∑
q≤
√
x
u

(q, vhu )=1

∆`
sψ

z
s (uq)

ϕ(q) = ∆`
sRes
w=0

(
Czs,w

ψzs (u)ρw
(
vh
u

)
γzs,w(h)

x
w
2

uw
ζ(w + 1)

w

)
+O

(
1

x
2
3−ε

)
,

with

Czs,w :=
∏
p

(
1 + 1

(p− 1)pw+1 + ψzs (p)− 1
(p− 1)pw

)
,

and

γzs,w(n) :=
∏
p|n

(
1 + p(ψzs (p)− 1)

pw+2 − pw+1 + 1

)
and ρw(n) :=

∏
p|n

(
1− p

pw+2 − pw+1 + 1

)
.

An asymptotic formula for the second sum now follows via partial summation. After putting the resulting
formulae back in (8.3) and completing the sum over v, this eventually leads to the main term described
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in Theorem 1.3. In particular, the first coefficient is given by

(8.4)

λh,0(z) = 1
Γ(z)

∏
(p,h)=1

(
1 +

(
1− 1

p

)z−1 − 1
p

)

·
∏
p`‖h

(
1− 1

p
+
(

1− 1
p

)z+1 `−1∑
j=1

(`− j)τz(pj)
pj

+
(

1− 1
p

)z−1
τz(p`)
p`+1

)
.

For Theorem 1.5, we have from [Nar04, Proposition 8.4, Theorem 8.6] that the characteristic func-
tion n 7→ bK(n) of the set NK is multiplicative with b(p) = 1 if and only if

∑
χ∈X(K) χ(p) > 0,

where X(K) is a subgroup of the Dirichlet characters modulo the discriminant D = Disc(K) and p - D.
The subgroup of residue classes a mod D such that

∑
χ∈X(K) χ(a) > 0, corresponding to the subgroupH

in [Nar04, Theorem 8.2], has density 1/[K : Q] inside (Z/DZ)×. Thus we have a factorization∑
n≥1

bK(n)
ns

= ζ(s)1/[K:Q]H(s)

where H is holomorphic and bounded in the strip Re(s) ≥ 2
3 . The rest of the argument the follows the

path described above. We leave the details to the reader.
In the case K = Q(i), the first coefficient is given by βh,0 = B0B(h), where

B0 := 1√
2

∏
p≡3 mod 4

(
1− 1

p2

)− 1
2

,(8.5)

and

B(h) :=
(

1 + χ4(h∗)
4h◦

) ∏
p`‖h

p≡3 mod 4

(
1− 1

p+ 1 + (−1)`

p`(p+ 1)

) ∏
p≡3 mod 4

(
1 + 1

p2

)
,

with h◦ := (h, 2∞), h∗ := h
h◦ and χ4 the non-principal character mod 4.

Finally, the proof of Theorem 1.6 rests upon the fact that∑
|h|<n≤x
ω(n)=k

τ(n− h) = 1
k!

∂k

∂zk
Ξx,h(0) with Ξx,h(z) :=

∑
|h|<n≤x

zω(n)τ(n− h).

Since the function n 7→ zω(n) is an element of F1(A) for |z| ≤ A, Theorem 1.2 can again be applied in
this case. After evaluating the arising main term in the same manner as described above, we see that
there exist functions γh,`(z), which are holomorphic in a neighborhood of z, such that

Ξx,h(z) = x(log x)z
L∑
`=0

γh,`(z)
(log x)` +O

(
x(log x)Re(z)

(log x)L+1−ε

)
.

Now an application of [Ten15, Theorem II.6.3] proves Theorem 1.6.
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