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Abstract—Extremely dense wireless network topologies grad-
ually become a reality, especially through wireless sensors
networks and more recently nanonetworks. Electromagnetic
nanonetworks are expected to allow a very large amount of
extremely small and capability-limited devices to communicate
with each others. In nanonetworks, even in a communication
range limited to tens of centimeters, thousands of neighbors
can be found. Information diffusion and routing protocols
would greatly benefit from having an accurate estimation of
the density of nodes. However, in this context, most traditional
wireless communication protocols are not suited. We propose
Density Estimator for Dense Networks (DEDeN), a distributed
algorithm able to provide the required density estimation. It
allows confidence tuning and can cope with an extreme range
of local densities. A formal analysis of DEDeN is provided and
corroborated by extensive simulations. DEDeN interest is then
demonstrated through application to two information diffusion
protocols tailored for very dense networks, and also to a routing
protocol specific to nanonetworks.

I. INTRODUCTION

Continuous progress in miniaturization of electronic and
mechanical components has led to machines composed of
nanometer size elements. Using nano CPUs, nanomemories,
nanosensors, nanoactuators, machines measuring up to a few
micrometers can be built. But such tiny machines have a very
low computation capacity and not enough power to handle
common tasks alone [1].

A network of nanomachines, called a nanonetwork, is much
more capable. Electromagnetic nanonetworks have been a field
of interest for a few years now. Given the limited size of
nanomachines, graphene nano-antennas have been proposed,
which radiate in the THz band. The characteristics of this band
and the very low energy found in nanomachines allow only
a very short communication range compared to macro scale
systems, in the order of centimetres or tens of centimetres [2].
The communication range can be further increased by using
multi-hop nanonetworks, so they can achieve more complex
or spread out tasks. As such, nanonetworks can be very large
compared to the small size of the devices composing them.
Those nanonetworks could be used to design a new generation
of applications in fields of importance such as biomedical,
environment or military [3].

Some applications envisioned for nanonetworks, such as
programmable matter [4], can require a high nodes density
over a large surface. Neighborhood cardinality can largely
exceed thousands, while the diameter of the network (in terms

of hops) can still be high. These values are well above those
of usual radio networks.

The communication in a dense (nano)network has some
peculiarities. Routing and information broadcasting have to be
done while being very constrained in memory and processing
power. Simple, pure flooding protocols do not work because
of the extremely high redundancy and channel usage they
cause. More elaborate routing protocols are often limited by
the individual memory capacity that prevents a node to even
maintain a lists of its neighbors.

The contribution of this article is to present DEDeN (Den-
sity Estimator for Dense Networks), an algorithm tailored
for wireless nanonetworks that allows a node to estimate
the number of its neighbors (also called node degree, node
density, neighbor density, neighborhood density, local density,
or simply density). DEDeN has the remarkable property to
be tunable. The confidence and the error range of the esti-
mation can be adjusted to the requirements of the user with
a predictable overhead. Depending on how it is initiated, it
enables a unique node to estimate its neighborhood cardinality,
or propagate to the whole network and allow all nodes to get an
estimation in one, more efficient pass. The algorithm may be
executed each time this estimation is needed, and in particular
during network setup (before using it). It has a tiny memory
footprint: only a counter is needed. Simulations show that it
gives high quality estimations with few exchanged messages,
much fewer than a pure hello method. Our density estimator
can cope with low density networks, but is the first proposed
algorithm well suited to estimate the density of a very dense
nanonetwork (thousands of 1-hop neighbors).

The remaining of this paper is organized as follows. Sec-
tion II introduces nanonetworks and their specificities. Sec-
tion III presents related studies. Section IV explains our algo-
rithm and its design choices. Section V presents BitSimulator,
a powerful tool we developed to validate our theoretical stud-
ies. Section VI experiments with our algorithm and analyses
results. Section VII shows how upper layers broadcasting or
routing protocols can benefit from using DEDeN. Section VIII
concludes the paper.

II. BACKGROUND: COMMUNICATION IN NANONETWORKS

At nano size, electromagnetic waves may be produced
by graphene nano-antennas [3], [5]. Despite their extremely
small size and in contrast to similarly sized classical metallic



antennas, graphene nano-antennas are expected to resonate
in the terahertz band, between 0.1 and 10 THz. The THz
band behaves differently from standard wireless channels like
2.4 GHz and 5 GHz used for Wi-Fi and many others macro-
scale communication standards.

Therefore, for nanonetworks, Jornet at al. proposed TS-
OOK, a pulse based modulation scheme [6]. TS-OOK uses
pulses to transmit information over the channel. “1” bits are
encoded with a power pulse of duration Tp and “0” bits
are encoded as silence. Because sending consecutive pulses
need a hardware and power unavailable at such small sizes,
consecutive bits are spaced with a duration Ts which is
usually much longer than the pulses themselves. The spreading
ratio β = Ts/Tp can be very large (1000 for instance, and
possibly much more). Because pulses are extremely short—
Jornet and al. proposed a Tp=100 femtosecond duration—the
total available bandwidth is very high, in the order of Tb/s.

As pulses from a given frame are scattered over a relatively
large period, many concurrent transmissions may occur in TS-
OOK without excessively rising the collision probability. This
capability to time multiplexing many transmissions is very
specific to nanonetworks. In fact, not only could multiple
transmissions take place at the same time, but they could even
be all correctly received at a given node, provided that bits
do not collide. Collision occurs when the receiver is receiving
a “0” bit (silence), but in the same time a “1” bit arrives,
which effectively shadows the “0”. Such collisions are hard to
predict especially as the propagation delay, at the considered
scale and durations, is usually larger than a pulse duration.

III. RELATED WORK

Multi-hop wireless networks have been subject to intensive
research in the last two decades and many protocols have been
proposed for ad hoc, sensor, and vehicular networks along
with many other forms of networks not relying on a fixed
infrastructure. Nanonetworks mostly differ from those by:

• The very low computation power and memory available.
• The sheer number of potential neighbors a node can have

(thousands and even millions can be envisioned).
• The ability to multiplex many frames over the same

period of time.
• The unavailability of global positioning mechanisms.
• The ability to harvest energy from the environment and

thus mitigate the cost of communications if they can be
spread out over a large period.

The algorithm we propose allows nodes to discover the local
density (i.e. how many neighbors they have) while sticking
to the constrains of nanonetworks. Specifically, distributed
algorithm in nanonetworks should not build a potentially huge
list of their neighbors to count them, nor send many messages
that could exhaust their energy or saturate the channel. In
macronetworks several solutions exists but are not well suited
for nanonetworks. For a presentation of related work less
suitable to our context, such as mobile phones and sensor
networks (low density networks), one can refer to the related
work given in [7].

A. Estimation of competing nodes

Bianchi et al. [8] proposed a method to estimate the
number of nodes competing for the channel access in a
802.11 network. This estimation is based on the observation of
802.11 busy time slots and time slots where collisions occur.
Then using mathematical tools such as collision probabilities
(deduced from observations) and Kalman filter, authors are
able to estimate the number node of competing for the channel
access. The method works at run-time and gives an estimation
continuously in real time.

We note that this method estimates the nodes which are
transmitting data. In nanonetworks, the number of idle neigh-
bors can be very high, which could heavily falsify the results.
We need an estimation method which should work even with
no traffic running on the network. As such, this method is not
suited for nanonetworks.

B. DIP

Density Inference Protocol (DIP) [9] is a MAC-based pro-
tocol that estimates the number of neighbors of each node in
macro wireless sensor networks.

DIP uses the channel contention to infer the local density.
Nodes estimate the density during some interval of time, which
is divided in equal time slots. Each node sends a packet during
a random slot of equal probability. To avoid bias given by
interferences (several packets sent in the same time), DIP bases
its estimation on the number of slots where the channel is free
(no communication). DIP uses several iterations, i.e. several
intervals of time. Nodes calculate the number of neighbors n
statistically using the following formula [9]:

n = log
E(0, n)

m
/ log

(
1− 1

m

)
(1)

where E(0, n) is the number of free slots noticed by the node,
and m the total number of slots.

DIP is not appropriate for our work. In nanonetworks based
on TS-OOK, the definition of a free channel is fundamen-
tally different than in standard macro wireless network (e.g.
802.11): several messages can be transmitted at the same
time (cf. section II), and as such there is no such concept
as free channel. Regarding the overhead, the total number
of packets used in DIP for the estimation is the number of
nodes multiplied by the number of iterations, whereas in our
estimation method the number of packets can be smaller than
the number of nodes for sufficiently high network densities.
Since it uses contention, DIP cannot work with background
traffic, i.e. all the traffic needs to be stopped in order for a node
to estimate its neighborhood. The formula above needs floating
point operations and high precision computing, whereas our
solution uses integer numbers only.

C. Estreme

Estreme [7] is a statistic method to estimate the number
of neighbors. It works in networks where all nodes perform
periodic but random events within a given period, such as
sensor networks. The key idea of the method is that the time



difference between two consecutive events captures the density
of the neighborhood: the shorter the time difference, the higher
the density. It targets networks where nodes have “one hundred
neighbors” [7]. All nodes estimate concurrently the density.

As is, Estreme cannot be used in our context, since there is
no periodic event in the network. Still, it could be implemented
in a similar way to our density estimator, in a separate phase
during which each node estimates its neighborhood. In this
case, to avoid collision, periods need to be very long, since all
the nodes send packets. Also, the probabilities used by Estreme
are not adaptive, and the range of densities it handles (one
hundred) is much smaller than our density estimator. Thus,
Estreme is not suited to very high density networks.

D. RFID cardinality estimators

Zero-One Estimator Protocol (ZOE) [10] is a probabilistic
protocol that estimates the cardinality of a large RFID system,
composed of a reader and numerous tags. In ZOE, the reader
uses several rounds, in each round it sends a request to all
tags. The tags answer the reader with a fixed probability. The
reader estimates the number of RFID tags using the response
probability of tags and the proportion of “empty” rounds
(without any response).

Bloom Filter based Cardinality Estimator (BFCE) [11]
works similarly, but uses an additional initial phase to get a
rough estimation of the fixed probability to be used.

RFID methods are not suitable to our problem. An RFID
system is a particular 1-hop network. In contrast, DEDeN
works in multi-hop networks. Also, the probability used by
readers in ZOE is fixed in advance, and the formula to
compute it in BFCE is complex, inappropriate for constrained
nanonodes. In contrast, DEDeN, by changing the probability
dynamically, works with a great range of node densities.

IV. DENSITY ESTIMATION ALGORITHM

As explained in section III, because nodes do not have much
memory nor processing power, elaborated routing protocols
that try to find optimum forwarder(s) cannot work well if
at all. On the other hand, flooding and geocasting protocols
are simple but inefficient in their pure form if the density is
very high. Hopefully, they can be optimized by using the local
density of the network to limit their retransmission rate. Some
applications are given in section VII.

A. Context and expected properties

We propose a distributed algorithm that estimates the local
density, with a particular emphasis on nanonetworks, given
that they are the densest networks up to date.

The algorithm can be executed during the network de-
ployment or at hard coded intervals of time, if nodes have
sufficiently accurate clocks. Alternatively, upon reception of
a 1-hop signal from a macro equipment, if it exists. Finally,
it can be executed whenever some node needs to estimate
its number of neighbors, based on the application dynamics
for example (node movement, node entering or leaving the
network). In this latter case, it broadcasts a message (beacon)

in the network, which gives for the node receiving it the
beginning of the algorithm. This beacon can be sent as pure
flooding or by an optimized protocol, such as probabilistic or
backoff flooding, with conservative settings in order to reach
all the nodes, as presented in section VII.

It is important to note that nodes need to be only locally
synchronized. Certainly, in a big multi-hop network, the prop-
agation delay from the initiating node to a distant one can
be significant, which means that nodes in the whole network
do not start the algorithm at the same time. However, our
algorithm does not need a global synchronization, but a local
one (synchronization among neighhbors), which is guaranteed
because the rounds, explained later, are sufficiently long to
make beacon reception delay insignificant to neighbors1.

The algorithm performs properly when started by several
nodes concurrently. A node executing the algorithm ignores
any new beacon. Also, given that the sender is not taken into
account in the algorithm, having two concurrent beacons in
different parts of the network just makes the algorithm start
sooner in some parts of the network.

The algorithm works in the presence of concurrent back-
ground traffic too. In this case, the only requirements are to not
experiment too many collisions (very busy channel) and to be
able to distinguish our packets from those of other protocols,
for example by using a specific identifier in the packet header.
When used without background traffic, 1 bit per packet is
sufficient, as packets do not carry data. For simplicity, in this
article we have not used background traffic.

The algorithm has a statistical behavior: it will not usually
give the exact number of neighbors, but a good estimation
of it. It works on any density, from a few to millions of
neigbours. Even if somewhat unoptimal in sparse networks in
terms of number of exchanged messages, its efficiency rapidly
increases with the number of neighbors. It can cope with
heterogeneous local densities (i.e. some parts of the network
much denser than others). It is also designed to benefit from
the high multiplexing capability of nanonetworks to obtain its
estimation in a very short time, but could be used on any other
network. No matter the network density, it never saturates
the radio channel and does not require much memory, nor
computations. The only memory needed is a counter to store
the number of packets received so far. It uses integer numbers
through the use of fixed-point arithmetic.

B. Algorithm

When initiated, the algorithm has a fixed maximum duration
after which an estimation of the density will be provided.
It consists in several rounds Ri of equal duration. For
the duration of each round, each node may send a unique
DensityProbe packet with a probability pi.

This probability pi starts with a value close to 0 and
increases at each round Ri. At each Ri, the node counts
the packets received from its neighbors. Since it knows the

1A bit travels through a communication range (of 0.5 mm) in approximately
167 fs, which is negligible to the neighborhood compared to the round duration
(10µs).



transmission probability, it estimates the number of nodes
in its transmission range. As the probability progressively
increases (multiplied by the growthRate parameter at each
round), the average number of probes sent during a round
increases accordingly. Starting with a very low p1 ensures that
even if many neighbors are present, only a few will effectively
send a probe, thus keeping the channel usage and collision
risk very low. The lower the initial probability, the higher the
potential number of neighbors the algorithm can cope with.

The round duration can be known by each node from the be-
ginning or can be specified in the beacon message. To prevent
a large number of collisions to occur at the beginning of each
round, nodes select a random waiting time (backoff) between 0
and round duration before transmitting their probes. Collisions
between probes are further made unlikely by choosing an
adequate round duration. A bit (or pulse) duration being 100 fs,
the transmission of a 10 bits probe represents a 1 ps activity
on the medium. In our tests, as we expected a maximum of
around 1000 probes per round, we used a 10µs round duration.
This makes collisions very unlikely, even among 1000 probes.
Note that the maximum number of expected probes depends
on parameters set by the user, such as the required confidence
interval and the maximum number of neighbors expected.

The algorithm reaches the final estimation when any of the
following two conditions is met:

• Transmission probability reaches 1. In that case, at the
end of the round, the number of packets received directly
gives the number of neighbors. This can occur if the
number of neighbors is very low.

• The number of probes that have been received during
the current round exceeds a given threshold thi. As
detailed in section IV-C, values of thi for each Ri can be
computed offline and stored in a table in each node; they
provide a desired confidence value when estimating the
number of neighbors. Additionally, the node will continue
to send probes with an increasing probability for a few
remaining rounds. In non homogeneous environments,
this allows neighboring nodes that did not reach their
threshold yet to correctly estimate the density.

A summary of DEDeN is presented in algorithm 1.

C. Estimation confidence and threshold computation

From a node point of view, probe receptions can be modeled
as a binomial distribution with parameters:

• k (the number of successes), the number of probes
observed.

• ptrans (the probability of success in a Bernoulli trial), the
transmission probability.

• nreal (the number of trials), the real number of neighbors
to estimate.

The natural approach is to compute the number of neighbors
nestimated as the average of a binomial distribution:

nestimated =
k

ptrans
(2)

Algorithm 1 Density estimation algorithm executed by nodes.
Input: p1, growthRate > 1, thi for each round
Output: estimation

1: i = 1
2: while TRUE do
3: send a probe with probability pi using a backoff
4: wait for the round Ri to end
5: k = number of received probes in this round
6: if k > threshold thi then
7: estimation = k/pi
8: end algorithm
9: end if

10: if pi ≥ 1 then
11: estimation = k
12: end algorithm
13: end if
14: pi+1 = pi× growthRate
15: i++
16: end while

Its value is therefore the most likely number of neighbors. But
k comes from a random process. Its value may change between
instances of the experiment, causing undesirable variations in
the estimation.

The confidence in this estimation depends on the spread
of the binomial distribution. However nreal is not known, so
neither is the effective binomial distribution.

Intuitively, for a given ptrans, receiving more probes means
a higher number of neighbors, hence a higher number of
attempts at the Bernoulli trial. Increasing the number of
attempts decreases the spread of the binomial distribution and
consequently increases the confidence in the estimation. For a
given ptrans it is possible to choose a threshold for the number
of received probes above which a desired degree of confidence
is reached.

(3) computes the probability to observe k probes for a given
number of neighbors n and a transmission probability p:

Pr(k, n, p) = Pr(X = k) =

(
n

k

)
pk (1− p)

n−k (3)

In our context, k and p are known, but n is not. The con-
fidence in the estimation of n can be obtained by considering
the distribution of the probability to observe a given k against
all values of n.

When observing k probes, the minimal possible value for
n is k (it represents the possible but unlikely event where n
nodes were present and all of them succeeded at the Bernoulli
trial). The most likely value for n is k/p. And finally there is
no maximum value for n, but the probability to observe only
k probes gets very small when the number of potential senders
(n) becomes very large.

We can chose an estimation interval which is likely to
contain the real value of n with a predetermined high prob-
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ability (usually 95%). For an expected number of neighbors
we choose an error threshold emax. (2) becomes:

nreal
min =

k

ptrans
(1− emax) (4a)

nreal
max =

k

ptrans
(1 + emax) (4b)

The confidence in an estimation is given by the probabil-
ity P for the interval [nreal

min, n
real
max] to contain nreal:

P =

∑n=nreal
max

n=nreal
min

Pr(k, n, ptrans)∑n=∞
n=0 Pr(k, n, ptrans)

(5)

Fig. 1 illustrates (5) for various values of p and k. In
this example, the curves show nestimated = 600 as the most
probable number of neighbors, which can also be computed
from (2). The two vertical lines delimit a desired 5% error
range I = [nreal

min = 570, nreal
max = 630]. Here, the confidences

P have been numerically calculated as 0.36, 0.52 and 0.78
respectively for (p, k) values of (0.125,75), (0.25,150) and
(0.5,300). It means that the real number of neighbors when
p = 0.5 and observed number of probes k = 300 has only
78% chances to be in the estimated interval I .

For the same transmission probability ptrans, the confi-
dence P increases with the number of probes received, as
shown in Fig. 2. For a given ptrans, the threshold th is
the number of probes receptions required for P to reach
the desired confidence (here, a 95% probability for I to
contain nreal). For example, receiving 190 probes means
nreal ∈ [171, 209] (error interval with emax = 0.1) with a
probability of 95%.

For a given probability ptrans and number of neighbors
nreal, the number of probes received k might not reach the
desired threshold. In this case, the algorithm will proceed to
the next round and multiply ptrans by growthRate. Now, with
a higher ptrans, more probes will be sent. This process can
be repeated until the confidence reaches the desired level.

Choosing a confidence interval has a strong impact on the
overhead of the algorithm. Small values for emax require a
much higher threshold in the number of probes received (th).
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This is shown in Fig. 2 with curves using emax = 10% needing
much fewer probes to reach the desired confidence (here 95%).

The theoretical overhead of the algorithm is represented in
Fig. 3. The overhead is expressed as the number of packets
received by a node. It can be seen that the overhead does not
grow anymore for a high number of neighbors. This means
that for high densities, only a small proportion of the nodes
have to send a probe to get a high quality estimation.

Fig. 3 also shows some spikes. They appear because each
round uses a ptrans value suited for a range of node densities,
and the number of probes received is smaller when the
effective number of neighbors is close to the beginning of
this interval than close to the end. The growthRate parameter
affects the variations of the overhead. A smaller value of
growthRate mitigates these variations, at the price of a higher
number of rounds and thus a longer duration of the algorithm.

V. IMPLEMENTATION AND SIMULATION SOFTWARE

Many technological challenges need to be addressed before
wirelessly communicating nanomachines become a reality.
Therefore, we have to use simulations to test our algorithm.
Three main existing simulators handle nanonetworks.



Nano-Sim [12] is a plug-in for the classical NS3 network
simulator. It does not take into account the signal propagation
delay, whose impact is significant because of the extremely
short duration of the pulse. Indeed pulse are around 100
femtosecond long, and depending on the communication range
several pulses can be “in flight” before the first pulse has
reached a node. It neither takes into account the actual payload
when computing collisions, which is also significant since only
a “0” can collide with a “1”, cf. section II. Nano-Sim proposes
a clustered routing system that is not appropriate for our tests.
Therefore, Nano-Sim was not really suitable for our work.

Vouivre [13] is a discrete event simulation library that can
also work in stand-alone mode. It simulates individual packets
and propagation delay. But it uses a statistical model for
packet error rate and it does not take actual payload into
account. Payload and as correct as possible collision and error
calculations are critical for this study and upcoming work, so
we preferred to put Vouivre aside.

COMSOL Multiphysics2 is a simulator for various physics
and engineering applications, and as such it allows to sim-
ulate THz nanocommunication too. It was used to model
the terahertz channel of nanonetworks [14]. It focuses on
physical properties to model the reception of each bit by taking
into account molecular absorption, channel equivocation, etc.
However, the simulation of “a single one-to-one nano-link”
has a “very high computational complexity”, and “in order
to simplify the computational complexity, we simulate a 2D
geometry instead of a 3D scenario” [14]. Consequently, this
very precise simulator would take too much time to simulate
our large networks with complex scenarios.

Inspired by these simulators, we developed a new, small and
very focused simulator, BitSimulator3. It uses a discrete event
model and has the following features useful for our study:

• Propagation delay: packet arrival time on a node depends
on its distance from the sender.

• Collisions: computation of collisions uses the TS-OOK
model (see section II) by checking the actual bit value of
each packet currently being received at each node.

• While it allows for multiple concurrent receptions on a
given node, it also recognizes that there is a limit to
their number (that could be hardware processing power or
buffer space for instance). In particular, this parameter has
a strong impact on the behavior of upper layer protocols,
as packets otherwise correct can be completely ignored.

• Being very focused on nanocommunications, its design
is kept simple and efficient. It allows it to scale up to
hundred of thousands of simulated nodes.

• As required from this type of simulators, the behavior is
completely deterministic, but changed by seeding differ-
ently the various dedicated random number generators.

BitSimulator still has room for enhancements. It can be
further improved to match more precisely THz nanocommu-
nications by adding, for instance, the channel equivocation.

2https://www.comsol.com
3The simulator is at http://eugen.dedu.free.fr/bitsimulator, GPL licence.
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VI. DENSITY ESTIMATION RESULTS

DEDeN is a distributed algorithm that produces, for each
node, an estimation of the number of neighbors. We are mainly
interested in two parameters that define the efficiency of the
algorithm: the error of the estimation and the number of
packets sent during algorithm execution, which stand for the
quality and the cost of the algorithm, respectively. It should
be noted that the time required to reach an estimation is
really short, due to the time scale of the communications in
nanonetworks. If communications are not slowed down by a
lack of energy, the whole process can terminate in µs.

To validate the theoretical results given in section IV-C,
we use BitSimulator with different scenarios. The topology
is kept simple with a 2.5 mm by 2.5 mm square area. The
communications are omnidirectional with a 0.5 mm radius.
Probe packets are 10 bits long. Between 100 to 40 000 nodes
are randomly placed in this area using a uniform distribution.

A. Quality as error qualification

DEDeN is designed to produce estimations with a tunable
error confidence. We first compare theoretical and simulated
error distributions. The scenario has 40 000 nodes. DEDeN
is configured so that a node estimation has at least a 95%
probability to differ for less than 10% from the real number
of neighbors. The estimation error of the algorithm is defined
as e = (nestimated − nreal)/nreal.

Fig. 4 shows that the simulated error behaves as the theoret-
ical one. In this scenario the simulated results are even better
than the requested confidence. This is because the theoretical
curve presented is computed at the exact confidence threshold,
i.e. for nodes to estimate their neighborhood with an error of at
most 10% and a confidence of at least 95%. In the simulation,
the actual number of packets received exceeds this threshold
and consequently the quality of the estimation is better.

To experiment further, we run over 200 scenarios with the
same square area but with a neighbors count varying from 10
to 4200, growthRate=1.6, emax=10%, and confidence=95%.
Fig. 5 shows the estimation error distribution for all nodes in
all scenarios. The shape is similar to Fig. 4 and proves the
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Fig. 5. Distribution of the average estimation error for all nodes in 202
different density scenarios.

ability of DEDeN to produce estimations that at least provide
the desired requirements no matter the network real density.

B. Overhead as number of packets sent

We define the overhead of DEDeN as the number of packets
sent to obtain an estimation of the desired precision.

To observe this overhead we use at set of 200 scenarios
with a varying number of nodes between 100 and 40 000. It
should be noted that the density in the simulated scenarios
is not homogeneous. Nodes near the border of the simulated
area have indeed fewer neighbors than those in the center. This
affects the results that will slightly differ from theoretical com-
putations that consider an infinite homogeneous environment.

For DEDeN to work well in this non homogeneous envi-
ronment, as previously mentioned, we let nodes participate in
one more round after reaching an estimation with sufficient
confidence. This increases the overhead, but is significant
only when the neighbors count is relatively small. Fig. 6
shows the total number of packets sent to reach an estimation
with growthRate=1.6 and various values of emax. The curves
present a similar shape to the theoretical one given in Fig. 3,
but smoothened due to the non homogeneity of the topology.
Fig. 6 also highlights the decrease in overhead when relaxing
the constraint on emax. Both Fig. 3 and Fig. 6, which present
the number of packets required to reach a targeted confidence
in the estimation, show that this number almost stops growing
when the number of neighbors becomes very high.

Finally, Fig. 7 compares our algorithm to DIP for various
values of growthRate. These curves are computed for emax =
10%, which as seen in Fig. 6 is a pretty conservative and costly
value. It shows that for DeDen the packets sent per node ratio
decreases with the density. In both DIP and Hello, each node
sends a packet in each iteration, and we took the best case
for them, i.e. only one iteration, so the packets sent per node
ratio is 1. Depending on the value of growthRate, DeDen is
better than DIP above 1800 (growthRate=2) to 4000 neighbors
(growthRate=1.2). Therefore, for dense nanonetworks, our
algorithm needs much fewer messages thanks to its ever-
growing efficiency.
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VII. APPLICATIONS

Applications running over multi-hop wireless networks may
have many different communication patterns, such as data
collection, broadcasting, unicast flows or even mostly local
exchanges. The flooding is the most basic packet forwarding
scheme, where nodes retransmit packets they receive for the
first time. Pure flooding in a very dense network (thousands
of neighbors) is extremely inefficient as most retransmissions
propagate the packet to few (if any) new nodes. Moreover,
countermeasures have to be taken to prevent skyrocketing
contention for channel access or collisions.

Consequently, more advanced routing protocols are used.
Multi-hop routing protocols usually use proactive or reactive
schemes, and sometimes a mix of both. Reactive routing
schemes rely on flooding to find new routes, hence are vulner-
able in very high density networks. Proactive schemes try to
build and maintain routes, and usually need to have detailed
knowledge of at least their direct neighborhood, consequently
requiring a large amount of memory in high density networks.

DEDeN estimates the number of neighbors of each node.
This information is especially useful as a base to optimize
these routing protocols and other applications running on the
network. In this section we first present how this estimation
can be used to mitigate the overhead and the unreliability of
information diffusion with two types of probabilistic flooding.



Then we consider Stateless Linear Routing (SLR) for 3D
networks [15], a nanonetwork routing protocol, which can also
be significantly enhanced by our estimation.

A. Simple adaptative probabilistic flooding

Multi-hop data broadcasting is a service of extreme im-
portance in wireless ad hoc networks. It is required by a
large number of applications and high level protocols, and
also used to spread emergency information in disaster net-
works. The simplest method to implement it is flooding: each
node forwards the packet it receives. But the flooding has
two drawbacks: first it generates a considerable amount of
messages, one packet per node; second, to prevent further
retransmissions, each node has to memorize the id—supposed
unique—of each packet.

Traditional optimizations involving the selection of subsets
of forwarding nodes often suffer in very dense nanonetworks.
This is caused by the inability to build a complete map of
even the direct neighbors or because of too high memory
requirements. A common solution to this issue is to probabilis-
tically limit the number of forwarders, by giving each node
a probability to forward a new packet (packets already seen
are discarded). A survey on probabilistic broadcast schemes
is presented in [16]. The schemes are divided in fixed and
adaptive. In fixed schemes, a fixed probability of forwarding
is used by all nodes. The broadcasting can further be optimized
by taking into account network characteristics: in non-counter-
based adaptive schemes (counter-based schemes are presented
in the next section), the probability depends on several factors,
such as density, distance, speed and others. Among these, “the
number of neighbors is the most used density metric” [16].
Commonly, the forwarding probability is inversely propor-
tional to the number of neighbours of a node, p = k/nb, where
k is the propagation factor and “nb can be easily obtained via
hello packets”. [16] does not consider very dense networks,
where this sentence does not hold anymore: hello method leads
to numerous packets and needs much memory in nodes for
id memorization. This is exactly what DEDeN provides: an
estimation of the number of neighbors efficiently computed in
high density networks.

We implemented in BitSimulator a simple adaptative prob-
abilistic flooding and feed it with DEDeN estimations. The
k factor is used along with the density estimation to control
the average number of retransmissions in an area. Because of
space limitation we do not provide here a complete analysis of
the results, but prefer to point to the main risk of this simple
method. Fig. 8 is produced from a 10 000 nodes scenario in
which data packets are multi-hop-broadcasted. It shows the
distribution of number of copies received by each node. In this
case, the requested average number of copies was k = 5. But
it can be seen that a large number of nodes have not received
the packet: the propagation stopped too early, leaving parts of
the network out of the broadcast. In turns out that k value is
too small. Increasing it further increases the number of copies
received. It would also be very costly to set it big enough
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to eliminate with a high confidence the risk of propagation
interruption.

To conclude, in dense networks, especially with constrained
resources, adaptive probabilistic flooding is better than fixed
one. The local probability is derived from the density estima-
tion provided by DEDeN and can be tuned to adapt to hostile
environments (at the cost of a somewhat higher number of
retransmissions). This simple probabilistic flooding requires
very few memory (only for packet ids), giving it an edge over
more complex adaptive floodings. Nodes take the decision to
forward a packet immediately upon reception, and can delete
it afterward.

B. Backoff-based adaptive probabilistic flooding

Another usual—and also more reliable—method to optimize
multi-hop flooding is to count the number of retransmissions,
also known as adaptive counter-based schemes in [16]. A node
that receives a packet decides to effectively forward it if it
has seen less than a given threshold copies of the packet.
This threshold, called redundancy in the following, guarantees
(collisions put aside) that a message is forwarded at least a
given number of times.

However, wireless nanonetworks work differently. Because
of the high temporal multiplexing capability of TS-OOK
modulation, many copies of a packet can start being sent
before nodes decode them. This issue can be solved by adding
a waiting time to packet forwarding. This backoff period is
picked in a window from 0 to t. t should be dimensioned in
order to let nodes notice that a neighbor has already forwarded
the packet before starting to forward its own copy. A small
value of t when the local nodes density is high means a high
probability of concurrent retransmissions, and even collisions.
Hence, this duration t depends on the number of neighbors.
Thus, since DEDeN provides an estimation of the number of
neighbors, it can be used to dimension an ideal duration t.

Backoff flooding does not give any guarantee on the exact
number of forwarders. It involves a random number, and
due to the specificities of nanocommunication (collision and
channel multiplexing) and the highly distributed nature of the
algorithm, several nodes can use very close values of backoff
and send a copy of the same packet simultaneously.

Like the probabilistic flooding presented earlier, backoff
flooding drastically reduces the number of retransmissions. In
comparison, it has two major advantages. First, it is much



Fig. 9. Forwarding nodes in SLR scenario: without (left) and with proba-
bilistic forwarding (right).

less prone to incomplete coverage because it tries to ensure
the requested redundancy. Secondly, it can be tuned to have
a low redundancy variation. On the other hand it implies an
additional delay that increases with reduction of the number of
forwarders and the spread of its distribution. As the decision to
forward or delete a packets has to be postponed, this solution
also requires to keep them in memory for some time. As
we have seen, the maximum waiting time t depends on the
number of neighbors. Consequently the backoff flooding in
nanonetworks greatly benefits from DEDeN.

C. Stateless Linear Routing

Stateless Linear Routing (SLR) [15] is a routing scheme
appropriate for nanonetworks. It works by forming groups
of nodes depending on their distance (in hops) to a set of
anchor nodes. The set of distances to the anchors form a
topological address that can be shared by multiple nodes.
These distances are obtained during the addressing phase,
prior to any routing, through the flooding of beacons from
the anchors. Subsequently, packets are routed in the network
following a scheme similar to geocasting. Nodes choose to
retransmit a packet if they are on the path between the source
and the destination. As many nodes may share a topological
address, the number of retransmissions can be very high. SLR
heavily relies on broadcast, both for its addressing and routing
phases and suffers in very dense networks. This makes it
a good candidate for optimization through probabilistic or
backoff flooding, as shown before.

We implemented SLR and modified its forwarding code
to use density estimation from DEDeN. Fig. 9 illustrates
how the number of forwarders drops when using probabilistic
forwarding. In both cases the message reached its destination,
but with 683 retransmissions (left case) and only 35 (right).

VIII. CONCLUSION

This article presented a distributed algorithm to estimate
the node density in very dense networks, and in particular in
electromagnetic nanonetworks, an appropriate example of such
networks. The algorithm is executed by each node and is based
on consecutive rounds. During each round, until a computed
criterion is met, the probability of sending packets increases
and the quality of the estimation too. This quality is completely
tunable to the requirements of upper layer protocols, and the
overhead in terms of exchanged messages is predictable. The
memory requirements are tiny: only a counter is needed.

The usefulness of the algorithm was demonstrated on two
probabilistic flooding algorithms and the SLR routing protocol.
The proportion of nodes sending probes is much smaller
compared to classical floodings, and strongly decreases with
the density. Its application field is large and many other
routing algorithms, protocols and applications can benefit from
DEDeN. To the best of our knowledge, this is the first proposed
estimation method suited for nanonetworks.

Future works include taking advantage of background traffic
to reduce overhead, and develop new strategies based on our
estimator to reduce congestion in saturated networks.
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