Julien Bernard

Pierre-Cyrille Héam

Olga Kouchnarenko

An Approximation-based Approach for the Random Exploration of Large Models

. However, this approach is not tractable on quite large models. In this paper we show how to use statistical approximations to make the approach work on larger models. Experimental results, on models of communicating protocols, are provided; they are very promising, both for the computation time and for the quality of the generated test suites.

Introduction

Many critical tasks are now assigned to automatic systems. In this context, producing trusted software is a challenging problem and a central issue in software engineering. Recent decades have witnessed the strengthening of many formal approaches to ensure software reliability, from verification (model-checking, automatic theorem proving, static analysis) to testing, which remains an inescapable step to ensure software quality. A great effort has been made by the scientific community in order to upgrade hand-made testing techniques to scalable and proven framework.

Experience shows that random testing is a very efficient technique for detecting bugs, especially at the first stages of testing activities. The strength of random testing consists of its independence on tester's priority and choices. However, the nature of random testing is to draw randomly a test rather than choosing it, and it is therefore inefficient to detect behaviour of a program occurring with a very low probability. In [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF], a random testing approach consisting of the exploration of large graph based models has been proposed. In order to tackle the problem of low probabilistic behaviour, the authors have also suggested to bias the random generation, by combining it with a coverage criterion, in order to optimize the probability to meet system' features described by this criterion. It however requires the computation of large linear systems, which becomes rapidly intractable in practice for large graphs.

In this paper we propose a sampling-based approach in order to compute approximated values of the system' solutions, deeply improving the efficiency of the computation. Experimental results on various graphs provided in the paper show a very significant time computation improvement while keeping similar covering statistical properties. 1

Related Work

A prevailing methods in model-based testing consists in designing the system under test by a graph-based formal model [START_REF] How | Black-box testing: Techniques for functional testing of software and systems, by boris beizer, wiley, 1995 (book review)[END_REF][START_REF] Lee | Principles and methods of testing finite state machines-A survey[END_REF] on which different algorithms may be used to generate the test suites. This approach has been used for a large class of applications from security of Android systems [START_REF] Tang | Nivanalyzer: A tool for automatically detecting and verifying next-intent vulnerabilities in android apps[END_REF] to digital ecosystems [START_REF] Lima | A model-based approach for product testing and certification in digital ecosystems[END_REF]. A large variety of models can be used for model-based testing such as Petri nets [START_REF] Thummala | Using petri nets to test concurrent behavior of web applications[END_REF], timed automata [START_REF] Wang | System testing of timing requirements based on use cases and timed automata[END_REF], pushdown automata [START_REF] Dreyfus | A random testing approach using pushdown automata[END_REF], process algebra [START_REF] Alex | Formal mutation testing for circus[END_REF], etc. Moreover, a strength of model-based testing is that it can be combined with several verification approaches, such as model-checking [START_REF] Dadeau | Modelbased mutation testing from security protocols in HLPSL[END_REF] or those using SMT-solvers [START_REF] Aichernig | Incremental refinement checking for test case generation[END_REF]. A general taxonomy with many references on model-based testing approach can be found in [START_REF] Utting | A taxonomy of model-based testing approaches[END_REF].

Random testing approaches have been introduced in [START_REF] Duran | A report on random testing[END_REF] and are widely used in the literature, either for generating data [START_REF] Godefroid | DART: directed automated random testing[END_REF][START_REF] Héam | Seed: An easy-to-use random generator of recursive data structures for testing[END_REF] or for generating test suites [START_REF] Oriat | Jartege: A tool for random generation of unit tests for java classes[END_REF]. As far as we know, the first work combining random testing and model-based testing has been proposed in [START_REF] Groce | Random testing and model checking: building a common framework for nondeterministic exploration[END_REF] as a combination of model-checking and testing. In [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF] the authors have proposed an improved approach to explore the models at random. This technique has been extended to pushdown models [START_REF] Héam | A random testing approach using pushdown automata[END_REF][START_REF] Dreyfus | A random testing approach using pushdown automata[END_REF] and to grammar-based systems [START_REF] Dreyfus | Random grammar-based testing for covering all non-terminals[END_REF].

Formal Background

For a general reference on probability theory, see [START_REF] Mitzenmacher | Probability and computing -randomized algorithms and probabilistic analysis[END_REF].

Finite Automata. Models considered in this article are finite automata, that are labelled graphs. More precisely, a finite automaton A is a tuple (Q, Σ, E, I, F), where Q is a finite set of states, Σ is a finite alphabet, E ⊆ Q × Σ × Q is the set of transitions, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. A path σ in a finite automaton is a sequence (p 0 , a 0 , p 1) . . . (p N -1 , a N -1 , p N) of transitions. The integer N is the length of the path. If p 0 ∈ I and p N in F , σ is said successful. The path σ visits a state q if there exists i such that p i = q. An automaton is trim if every state is visited by at least one successful path. All automata considered throughout this paper are trim. An example of an automaton is depicted in Fig. 1 : its set of states is {1, 2, 3, 4}, the alphabet is {a, b, c, d}, its set of transitions is {(1, a, 3), (3, a, 3), (3, b, 3), (3, c, 4), (4, a, 4), (4, b, 4), (1, b, 2), (2, a, 2), (4, d, 2)}, its set of initial states is reduced to {1} and all its states are final.

Let A = (Q, Σ, E, I, F) be a n-state automaton and q ∈ Q. We denote by A q the automaton on the alphabet Σ whose set of states is (Q × {0, 1} (two copies of Q) and : • Its set of final states is

• Its set of initial states is I × {0},
F × {1} ∪ (F ∩ {q}) × {0}, • Its set of transitions is E = {((p, 0), a, (p , 0)) | (p, a, p) ∈ E and p = q} ∪ {((p, 1), a, (p , 1)) | (p, a, p) ∈ E} ∪ {((q, 0), a, (p , 1)) | (q, a, p) ∈ E}.
Intuitively, a successful path in A q starts with an initial state of the form (q 0 , 0) and remains in a state of the form (p, 0) until it visits q. Then, if q is final in A it may ends or continue with states of the form (p, 1). One can easily show that there is a bijection between the set of successful paths of A q of length N and the set of successful paths of A of length N visiting q. denoted Let us consider for instance the automaton depicted in Fig. 1 and state 3. The corresponding automaton is depicted in Fig. 2 (states (4,0), (1,1) and (2,0) have to be removed to make the resulting automaton trim). Automata used in many testing applications have a bounded outgoing degree. Throughout this paper, we consider that |E| = O(|Q|). Note that it is not a theoretical requirement: it is only used for the complexity issues. Indeed, all proposed algorithms work for any automata. Under this hypothesis, computing A q can be done in time O(n 2) and the resulting automaton has at most twice the number of states (regarless of the fact that |E| = O(|Q|)).

Counting Paths. We call NumPaths an algorithm that, given a finite automaton A and a positive integer N , computes the number of successful paths of length N in A. We call RandomPath an algorithm that, given a finite automaton A and positive integers N, k, randomly, uniformly and independently generates k successful paths of length N in A. Several algorithms have been developed for processing NumPaths and RandomPath [START_REF] Oudinet | A new dichotomic algorithm for the uniform random generation of words in regular languages[END_REF], whose complexities depend on several parameters. Let us observe, without going into details, using floating point arithmetics, that NumPaths can be performed in O(nN log N), where n is the number of states of A. And RandomPath can be performed in time O(knN log 2 N). Note that the different approaches may have different meanings of time/space complexities, both for the preprocessing step and the generation step. The reader can see [START_REF] Oudinet | A new dichotomic algorithm for the uniform random generation of words in regular languages[END_REF]Table 4] and [4, Random Biased Exploration of Finite Automata. The objective is here to biased the random generation of paths (i.e. not use a uniform random generation) in order to improve the state coverage of the automata. It is necessary to provide a quite detailed description of the algorithms in [START_REF] Oudinet | A new dichotomic algorithm for the uniform random generation of words in regular languages[END_REF]. The first approach, denoted later Uniform, consists in uniformly picking up a given number of paths from the set of successful paths of a given length. The approach can be applied to very large graphs with hundreds of nodes (see [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF]Section 6]). However, rare events can be missed up, and in order to optimize1 the coverage criterion (let us present it here for nodes coverage2) of the graph, the following approach, denoted later Exact, is proposed to produce k successful paths of an automaton A whose set of states is {1, . . . , n}:

1. Choose a set S of successful paths (for instance those of length less than or equal to a constant N), 2. For each pair of nodes, compute the probability α i,j that a path of S visiting j also visits i,

3. Solve the linear programming system whose variables are p min , π 1 , . . . , π n : maximize p min , under the constraints for all j, p min ≤

n i=1 α i,j π i 1 = n i=1 π i (1)
Solution is a distribution π = (π 1 , . . . , π n) of probabilities over the states of the automaton, 4. Repeat k times: pick a node i up at random according to the distribution π. Pick up at random (uniformly) a path visiting i.

The goal of the linear programming system is to optimize the minimal probability p min of a state to be visited by a random path.

Let us illustrate this approach on the example depicted in Fig. 1. Note that if the goal is to cover a given proportion of the set of states (for instance) Step 4. can be replaced by: generate paths as soon as the wanted proportion of states are visited by these paths. There are 16 successful paths of strictly positive length less than or equal to 3 reported in Table 1. Since the automaton is deterministic, one can identify successful paths with their labels. Let S exa be this set of paths.

There are 4 out of 16 paths of S exa visiting state 2. Therefore, the probability of visiting state 2 by uniformly generated paths of S exa is 1 4 . In order to generate a path visiting 2, one has to generate averagely 4 tests. Moreover, for this example α i,j 's matrix is

    1 1 1 1 0.25 1 1 13 1 6
0.825 0.25 1 1 0.375 0.25

6 13 1     .
For instance, α 1,i = 1 for every i since all paths visit 1. Similarly, α 3,4 = 1 since all paths visiting 4 also visits 3. There are four paths (b, ba, baa and acd) of needed length visiting 2 and, among these paths, only acd visits 4. Therefore α 4,2 = 1 4 . The resolution 3 of linear programming systems [START_REF] Aichernig | Incremental refinement checking for test case generation[END_REF] provides in this context the solution: π 1 = 0, π 2 = 0.526315, π 3 = 0, and π 4 = 0.473685. In this context, the biased approach covers all states averagely with less than 3 generated paths.

The bottleneck of this approach is Step 2. since computing the α i,j s requires many manipulations on the graphs (it requires to compute the (A i) j): for each i = j, Algorithm NumPaths has to be applied to graphs 4 times larger than the initial ones. The complexity is in O(n 3 N log N) with quite large involved constants, making the approach intractable for big n's.

Contributions

In this paper we propose to not exactly compute the α i,j s but instead to approximate them by using statistical sampling, as described in Section 2. Experimental results on several examples of communication protocols models are provided in Section 3. The paper reports on very promising experimental results: the computation time is significantly better for a similar quality of the large graphs coverage.

Approximating the Linear Programming Systems

In this section, we propose to approximate the coefficients α i,j by α approx i,j by using classical sampling techniques. Using m times Algorithm RandomPath, one can count as m i the number of paths visiting i, and m i,j the number of paths visiting both i and j. If m i = 0 then α approx i,j = mi,j mj .

Approximation Algorithm

More precisely, let there be a trim finite automaton A = (Q, A, E, I, F), a strictly positive integer m, a strictly positive integer N and a strictly positive integer r (the parameter r is used to provide some bounds on the precision of the approximation: each evaluation of a parameter is estimated using a sample of size at least r).

(Step 1): Generate m successful paths in A of length less than or equal to N uniformly. For each i ∈ Q, let m approx i be the number of these paths visiting i, and m approx i,j be the number of these paths visiting both i and j.

(Step 2): For each i, j ∈ Q, i = j (a) If r = 0 and m approx j = 0, then let α approx i,j = 0, (b) If m approx j > r, let α approx i,j = m approx i,j /m approx j , (c) If m approx j ≤ r, generate r paths visiting i and set α approx i,j
as the proportion of these paths visiting j. 3 Resolutions have been performed using the lp_solve solver.

(Step 2): For each i ∈ Q, α approx i,i = 1.
Let us illustrate the approach on the example depicted in Fig. 1, with N = 4 and r = 0. Rather than compute exactly the α i,j 's, we randomly and uniformly generate 1000 paths of length less than or equal to 3. We obtain the following matrix for the α approx i,j :

    1 1 1 1 0.243 1 0.0835 0.1778 0.826 0.284 1 1 0.288 0.284 0.4697 1     .
The resolution of systems provides the solution π 1 = 0, π 2 = 0.538019, π 3 = 0 and π 4 = 0.461981.

In this example, there are 243 paths visiting 2, 826 paths visiting 3 and 288 paths visiting 4. Therefore, running the algorithm with r = 250 will change the second column of the matrix since m approx 2 < 250. In this case, the automaton for the paths visiting 2 is computed. Generating 250 paths visiting state 2 provides the following matrix:

    1 1 1 1 0.243 1 0.0835 0.1778 0.826 0.256 1 1 0.288 0.256 0.4697 1     .
The resolution of systems provides the solution π 1 = 0, π 2 = 0.524965, π 3 = 0 and π 4 = 0.475035. Section 3 describes more experiments and provides details, both on the quality of the results and on the time to compute the α i,j 's.

Notice too that, as mentioned in [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF], the optimal solution leads to a loss of randomness: many π i 's a null. It is proposed in [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF] to fix minimal probability to the π i 's. It can be directly adapted in our approach by adding, in the programming linear system, some inequations of the form π i ≥ ε. This situation would not be considered in the experiments developed in this paper.

Complexity

We investigate in this section the worst case complexity of the proposed algorithm. Step (1) can be performed in time O(mnN log 2 N + mn 2): first the m paths are generated in time O(mnN log 2 N). These paths are not stored but a table t of size m × n is filled in the following way: t[i][j] = 1 if the i-th path visits state j, and t[i][j] = 0 otherwise. It is done on the fly and in time O(nm). The m approx i are calculated by computing columns sums in time O(nm) too. Similarly, each m approx i,j can be computed in time O(m). Therefore, computing all of them is performed in time O(mn 2).

Step Step 3 is performed in time O(n).

In conclusion, if we denote by s the number of calls to Step 2-(c), the complexity is: O(((sr + m)nN log 2 N + mn 2).

A small r (for instance r = 0) will provide a small s (s = 0), but a coarser approximation, as exposed in the next section.

Precision of the α approx

i,j

's

Each α i,j is the parameter of Bernoulli's Law (see [START_REF] Mitzenmacher | Probability and computing -randomized algorithms and probabilistic analysis[END_REF]Section 2.2]). The precision of the estimation can classically be obtained using either Bienaymé-Chebyshev's Inequality [START_REF] Bienaymé | Considérations à l'appui de la découverte de Laplace[END_REF][START_REF] Chebishev | Des valeurs moyennes[END_REF] or Hoeffding's Inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF].

First, assuming that m approx j > r, then Bienaymé-Chebyshev's Inequality provides for any ε > 0:

P(|α approx i,j -α i,j | ≥ ε) ≤ α i,j (1 -α i,j) ε 2 m approx j ≤ 1 4ε 2 r ,
and if m approx j ≤ r, it provides:

P(|α approx i,j -α i,j | ≥ ε) ≤ α i,j (1 -α i,j) ε 2 r 2 ≤ 1 4ε 2 r .
In order to have an ε = 0.1 precision with a 0.95 confidence level, r has to be fixed to 500 (this is an upper bound).

Secondly, one can have another evaluation using Hoeffding's Inequality (better in most of cases): for any 0 < ρ < 1,

P |α approx p,q -α p,q | ≥ ε ≤ 2e -2rε 2 .
In order to have an ε = 0.1 precision with a 0.95 confidence level, r has to be fixed to 185 (this is also an upper bound).

Let us note that the two above inequalities provide upper bounds that are not very tight: for states j frequently visited by random paths, m j will be significantly greater than r, and the estimation of the algorithm will be very precise. As it is shown in the next section, running the algorithm with r = 0 frequently provides very acceptable solutions and very good solutions with r = 10. For r = 10 the two bounds above do not ensure precise estimations: Hoeffding's Inequality states that with a 0.8 confidence level we have an estimation of α i,j with ε = 0.34. An hypothesis explaining why r = 10 works is that it is important to detect whether while visiting j the probability to also visit i is significant. But it's not critical to know how significtant it is, for instance if α i,j = 0.1 or 0.4; it is important to know that generating a path visiting j will quite frequently provide a path visiting i.

Finally, other statistical tools can be used to obtain bounds on r, for instance the well-known central limit theorem.

Experiments

This section is dedicated to an experimental evaluation of the proposed approximation-based approach. In Section 3.1 the set of used automata is described. Section 3.2 explains the experimental protocol. Finally, the obtained experimental results are provided in Section 3.3, both for the quality of the approach and for computation time.

Benchmark

Experiments have been done on several automata modeling communication protocols designed for the FAST tool [3] available4 online as a library of parametric counter automata (the parameter can be, for instance, the of states of the automaton and the number of transitions. The fourth column provides the eccentricity5 of the automaton, that is the maximal distance of an edge to the initial states. Finally, the last column gives the approximate number of successful paths in the automaton of length less than or equal to twice the eccentricity. Note that in these graphs all states are final.

Experimental Protocol

For each protocol, we have measured the number of tests/generated paths required to cover either 50%, or 90%, or 95%, or 99%, or 100% of the states. Several values close to 100% have been chosen since many biased approaches have been introduced to handle rare events, and many methods will efficiently cover 50% or 70% of the graph. It is harder to cover the remaining last states. We have compared 5 different approaches. First, the RW Approach consists in performing isotropic random walks in the automaton: once in a state, the next one is picked up uniformly among its neighbours. The path ends either when it reaches a dead-end state, or when its length is twice the eccentricity. The second approach, denoted Uniform, is the one introduced in [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF]: paths of length bounded by twice the eccentricity are uniformly generated. The approach denoted Exact is the biased approach proposed in [START_REF] Denise | Coverage-biased random exploration of large models and application to testing[END_REF], where the linear system is exactly computed. The Approx 10 and Approx 1000 approaches are the ones proposed in this article: for 10 [resp. 1000] the α i,j 's are approximated using 10n [res. 1000n] randomly generated paths, where n is the number of states. Note that comparing the distribution π given by the exact approach and the approximation-based approaches is not easy. Indeed, a linear programming system may have different optimal solutions. Let us consider for instance the example depicted in Fig. 5. The set of successful paths visiting 3 is the same as the set of successfully paths visiting 4. Therefore, in any optimal solutions of the linear programming system given π 3 = x and π 4 = y, one can do the following changes: π 3 = z and π 4 = t with z + t = x + y, and we also obtain an optimal solution.

Qualitative Experimental Results

Since the test generation procedures are randomized, performance is stochastic. For each example and each coverage proportion, each approach has been experimented 100 times. For each case, we report on the average number of tests obtained in order to cover the wanted proportion, but also the minimum number of tests (the best case), and the maximum number of tests (the worst case).

Results presented in Figs. 3 and4 are obtained with r = 0 : there is no a priori guarantee on the precision of the approximations. Results presented in Fig. 6 are obtained with r = 0 and with r = 10 (and in one case with r = 50). For instance, the second table in Fig. 3 of the set of the states, the RW approach requires on average 790 paths. In the best case (of the experiments), it only requires 159 paths, and in the worst case 2062 paths have been generated. For the same coverage, the Uniform approach requires 35.45 paths in average. The Exact approach only requires 15.5 paths in average. Relatively to the other approaches, the performance of RW deeply depends on the topology of the automaton. For instance, for Prodcons10 or Ttp8 or Moesi2, RW is ugly, and requires much more tests to (partially) cover the set of states. For Fms1, RW is as efficient as Exact. For some automata, there is no result for RW: after hours of computation, the approach was not able to cover 90% of the set of states. In these cases, some states occur with a so low probability on random walks, that in practice it is not possible to generate a path visiting them.

One can see that for Barber1, Dekker1, Fms1, Moesi2, Kanban1, Ttp8 and Prodcons10, all biased approaches are better (cover the set of states with less paths) than the uniform one. Moreover, the Exact approach is better than the approximate ones, but not significantly with the Approx 1000. Consider for instance Fms1: the Uniform approach requires on average 87.6 paths to cover 99% of the states. With Approx 10 this number falls to 48.1, and it falls to 40.3 with Approx 1000. The Exact approach requires 29.8 paths on average.

The results for Lift3 are similar but the Approx 1000 is not so close to the Exact approach. For Berkeley3, Illinois3 and Dragon3, the Exact approach is clearly more efficient to cover the set of states. It is similar for Consistency3, but only for the 100% coverage criterion. A significant case is Illinois3: the Exact approach requires on average a unique path to cover all states, while the Approx 1000 approach requires 47 paths. For all these examples there is a huge number of paths, and many states j are visited with a very low probability by a path: the corresponding α i,j 's are set to zero since r = 0, thus providing a very bad approximation. For instance, for Illinois3, 84 states over the 103 states are not visited by any random paths. We run the experiment with Approx 1000 and r = 10. The obtained results are presented in Fig. 6: these results are much better and close to the ones of the Exact approach.

In conclusion, for the quality of the coverage, running Approx 10 with r = 10 seems to be an efficient solution.

Computation Time

Let us note first that for all approaches, generating paths is done practically in a very efficient way. As mentioned before, the bottleneck step is the computation of the linear programming system. In Table 3, the time (in seconds) used to compute the linear programming system is given for the protocols Berkeley3, Consistency3, Dragon3, Lift3 and Illinois3. The results are similar for the other protocols. For Illinois3, using Approx 1000 is less efficient than using the Exact approach. The reason is that the automaton is quite small. However, for other cases, using the approximation-based approaches is faster. And it is significantly faster for large automata. For instance, for Consistency3, while the Exact approach requires more than 11 hours, and only about 90 minutes are needed for Approx 1000 (with r = 0). In all cases, the best compromise seems to use Approx 10 with r = 10: the computation time is strongly better, and the quality of the biased approach is similar to the Exact approach, except for Consistency. For this protocol, we run the Approx 10 with r = 50 and we obtain better results, closer to the Exact approach, with a very short computation time (about 2 minutes, in comparison to 11 hours for the Exact approach).

Experiments on Large Graphs

We have experimented the approaches on a model of the Centralserver2 protocol, which has 2523 states and 18350 transitions, an eccentricity of 63, and about 8, 04 10 113 successful paths of length less or equal to 126. By computing the first α i,j 's, we estimate that the computation time of the linear programming system with Exact will require about 200 days. The linear programming system with Approx 10 and Approx 1000 (r = 10) has been computed respectively in 81 seconds and in 24 minutes. The obtained qualitative results compared to Uniform are given in Table 4.

We also used the algorithm proposed in [START_REF] Carayol | Distribution of the number of accessible states in a random deterministic automaton[END_REF] to randomly generate two trim automata with respectively 5659 states (with 17007 transitions) and 11251 states (with 33753 transitions). The approximated linear programming system obtained by the Approx 10 and Approx 1000 approaches (with r = 10) has been computed in respectively 5.5s and 613s for the first graph, and in respectively 26.3s and 1162s for the second graph.

Conclusion

In this paper we proposed an approximation-based approach for the random biased exploration of large models. It has been experimented on several examples: in practice the approximation is not too coarse, and the quality of the generated test suites to cover the states of the model is excellent compared to the exact approach and to the other random approaches. For computation time, using approximation is significantly better since the approach can be used on graphs with more than 10000 states. In the future we plan to investigate recent advances in optimization in order to improve the computation time.

Figure 1 :Figure 2 :

 12 Figure 1: Illustrating example.

 2-(a) is performed in time O(1) as well as Step 2-(b). Step 2-(c) is performed in time O(rnN log 2 N): computing the specific automaton is done in time O(n) (under the hypothesis that the number of transitions is in O(n)).

Figure 4 :

 4 Figure 4: Comparative results (2) for number of generated tests

Figure 5 :

 5 Figure 5: Illustrating example with different optimal solutions.

Table 1]

 1 for more details.

	length paths	number of paths
	1	a, b	2
	2	aa, ab, ac, ba	4
	3	aaa, aab, aba, abb, aac, abc, aca, acb, acd, baa	10

Table 1 :

 1 Successful paths of length less than or equal to 3 for Example 1.

Table 2 :

 2 first column contains the name of the protocol with the value of the parameter. The second and the third columns respectively report on the number

	Name	States Transitions Eccentricity Nb. of paths
	Barber1	15	18	5	74
	Berkeley3	1376	3974	51	1, 33 10 39
	Consistency3	806	1206	600	5, 63 10 153
	Csm1	24	57	8	934000
	Dekker1	86	178	17	8, 80 10 11
	Dragon3	103	696	50	2, 34 10 93
	Fms1	120	582	14	1, 41 10 20
	Illinois3	103	307	100	2, 23 10 90
	Kanban1	160	1151	14	3, 31 10 20
	Lift3	499	587	302	7, 24 10 59
	Moesi2	22	43	11	3, 84 10 8
	Prodcons10	286	660	20	3, 51 10 7
	Ttp8	3201	6765	32	4, 30 10 7

Table 2 :

 2 Graphs used for benchmarking.

Table 3 :

 3 reports on the result for Dekker1: in order to cover 95% Time to compute the linear programming system.

	(seconds)	Berkeley3 Consistency3 Dragon3 Lift3 Illinois3
	Exact	26401	40964	29	4337	18
	Approx 10 (r = 0)	1	58	1	8	0.4
	Approx 1000 (r = 0)	186	5794	21	813	39
	Approx 10 (r = 10)	16	110	1	12	1
	Approx 1000 (r = 10)	208	5890	25	862	41
	Approx 10 (r = 50)	-	124	-	-	-

Table 4 :

 4 Results for Centralserver2.

	r=0	90%	95%		99%		100%
	Uniform	10.56 4-30 23 6-100 64.7 10-400 85.3 10-400
	Approx 10	5.4 3-14	9 4-46	24.7 8-107	34.9 9-137
	Approx 1000	4.4 3-7	6.6 4-23	13.9 6-37		18.9 7-51
	Exact	3.9 3-6	5.5 4-9	9.5 6-20		13.1 6-24
	Approx 10 (r = 10)	3.8 3-4	5.4 4-7	8.9 6-15		12.9 8-23
	Approx 1000 (r = 10)	3.7 3-5	5.3 4-7	9.0 7-14		12.4 7-20
	Lift3, 499 states, 587 transitions				
	r=0	90%	95%		99%		100%
	Uniform	22.5 7-101 35.8 12-135 69.6 24-267 112.1 34-317
	Approx 10	18.3 9-47	29.1 12-76	63.2 15-231	98.5 34-267
	Approx 1000	14.7 6-29	25.2 11-55	56.7 13-184	87.2 13-319	Dragon3, 103 states, 696 transitions
	Exact	10.8 6-17	15 7-25		22.8 10-41	29.9 10-57
	Approx 10 (r = 10)	10.6 5-17	14.6 6-29		23.5 12-47	30.7 16-79
	Approx 1000 (r = 10)	10.1 6-18	14.3 8-26		22.6 14-42	29.5 14-79
	r=0	90%	95%			99%	100%
	Uniform	337 235-448	594 400-863	1551 993-2262	4470 2316-9974
	Approx 10	222 167-286 384.8 258-536 1014.6 655-1382 2886.6 1504-5251
	Approx 1000	189 134-247	323 232-498	854 467-1302	2116 1108-2886
	Exact	103 60-185	137.0 84-210	199.6 109-364	224.1 128-510
	Approx 10 (r=10)	102 66-149	138 80-280	207.0 107-399	233.6 140-412
	Approx 1000 (r=10)	102 67-202	137 86-256	206 112-423	231 122-508
	Berkley3, 1376 states, 3974 transitions				
	r=0	90%	95%	99%		100%
	Uniform	8.8 1-46	16 1-73	40.1 1-209 68.43 1-338
	Approx 10	7.5 1-27	12.1 1-46	30.1 1-150	56.9 1-314
	Approx 1000	6.2 1-38 11.25 1-61 29.1 1-210	48.3 1-234	Illinois3, 1524 states, 307 transitions
	Exact	1.0 1-2	1.0 1-2	1.0 1-2	1.1 1-2
	Approx 10 (r = 10)	1.0 1-2	1.0 1-2	1.1 1-2	1.2 1-3
	Approx 1000 (r = 10)	1.0 1-2	1.0 1-2	1.1 1-2	1.2 1-2
			Figure 6: Comparative results (3)

Computing test suites of a reduced size is a major issue in the testing process, since executing test on the system is frequently a complex issue (not adressed in this paper).

The approach can easily be adapted for transitions coverage.

http://www.lsv.fr/Software/fast/examples/examples.tgz

Eccentricity is an important parameter since it is the minimal length required for paths to have a chance to visit each state.