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Abstract

In this paper we consider Lamé system of equations on a polygonal
convex domain with mixed boundary conditions of Dirichlet-Neumann
type. An explicit L? norm estimate for the gradient of the solution
of this problem is established. This leads to an explicit bound of the
H' norm of this solution. Note that the obtained upper-bound is not
optimal.

keywords: Lamé system; Korn’s inequality; Poincare’s inequality; in-
equality of trace; explicit estimates.

AMS subject classification: 35J57, 74B05
12

1 Introduction

The static equilibrium of a deformable structure occupying a domain 2
subset of R? is governed by the Lamé linear elasto-static system of equations,
see [5]. In this paper, we restrict the study to a convex domain 2 whose
boundary has a polygonal shape that posses m + 1 edges with m > 2. We
denote I' = UT'; its boundary and d(f2) its diameter. This system is given
by

Lu=f ae in £,
o-mi=g¢g; on (' = Ty)NTy, 1<i<m (1)
u=0 on T

We assume that condition (Hz) of Theorem 2.3 stated in the paper [9]

is satisfied by I". This condition is formulated in (5) below. The vector

function u = (u!,u?) satisfying the system (8) describes a displacement in
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the plane. In this model, we impose a Dirichlet homogeneous condition on
I'yp and a Neumann condition on the rest of the boundary. The equality on
the boundary is understood in the sense of the trace. We denote L the Lamé
operator defined by:

Lu:= —divo(u) = —div[2ue(u) + X Tre(u)ld] (2)

The data functions f and g at the right hand side satisfy f € [L?(Q)]? and

g€e[H %(F —T'9)]2. The vector 7. represents the outside normal to I';. We
write u and A the Lamé’s coefficients. We place ourselves in the isotropic
framework, the deformation tensor ¢ is defined by

e(u) = %(Vu + Vi), (3)

The weak form of problem (1) is (see [2], [5]):
find wueV; YveV

/Q 2pe(u)e(v) + Adivu dive do /Q fodo+ /F g do(z) (&)

_1"0

where
V={ve[H Q)] v=0 on Ty}

The problem of existence and uniqueness in V' of the solution of (4) is classic,
(see [2]).

If we denote 6 the interior angle between I'; and 'y, such that I'; NT # 0
and if we denote v the interior angle between the Neumann part of the
boundary I'y and the Dirichlet part of the boundary I'p such that I'yN'p #
(), then we impose

0 < 2m, v <. (5)

The reason behind this assumption on the boundary is to get a better regu-
larity of the solution of the weak problem (4). Precisely, in that case we have,
following [9], u € [H 3t (€2)]? for some positive o, which implies in particu-
lar, using the appropriate Sobolev embedding, see [1], that u € [C’O’%‘“X (Q))?
i.e. wis (3 + a)—holder continuous. Let us denote

le(llog = /Q cwew) dz)}, (| Vullog = /Q Tl 4 (V2P )

By using the second Korn inequality, see [7], the trace and the Poincaré’s
inequalities, one easily gets from (4) the following estimate

1
IVulloo < —

1
Ckﬂ(cpuf

0,0 + Cptllg] %,F—Fo)’ (6)
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where ¢, is a constant that depends of Poincaré constant and the con-
stant of trace inequality. ¢ is the constant of the Korn’s inequality. Note
that the value of the constant ¢j and ¢, appearing in (6) are unknown
and can not be explicitly lower-bounded in the general case. We propose to
determine explicitly these constants. The main result of this work is stated
in the following theorem:

Theorem 1. The unique weak solution u of (4) on the polygonal domain §2
admits the explicit upper bound

3
Vullog < (A + ¢l fllog +ewllglly r-r,) (7)

where ¢, 1= d(Q), ¢t = 24/d(2) and d(2) represent the diameter of €.

The estimate (7) is similar to (6), the constants that are present are the
same. Before demonstrating this theorem, it is useful to go through some
remarks and results. Denote z;, for 1 < ¢ < m, the vertex of the polygon
that connects I';_1 with I'; and zg the one that connects I',,, to I'g. Define
the auxiliary function u, € H'(2) as the unique solution to the following
Dirichlet problem

(8)

Ue = U,

Luc=f ae in €
d on T.

Where u? is the trace of the function

Pe(z)u(x) (9)
on the boundary T'; if € < % Vi, 0 < i < m then ¢, is defined by

be() =0 |z —zf] <€, 0<i<m;
Pe(z) :eXP[—WL e <|lz—xill<e, 0<i<m
oe(x) =1, e<|lz -], 0<i<m,

let us denote
D;c:={r € R* suchthat [[z— | <€}

We easily see that ¢. € C(Q), consequently, there will be no jump when
passing to the distributionnal derivative and thus Vu. € L*(Q) i.e. u, €
H'(Q). It is shown, using Lebesgue’s dominated convergence theorem for
instance, that |[¢. — 1|Jo,r; — 0 i.e. we have convergence in L? along the
edge I';. The functions ¢, are identically zero on a small neighborhood of
the respective vertices of the polygon.

In the sequel, we denote u. the vector-valued function u. = (ul,u?).
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2 Weak problem for u, and an approximation re-
sult

First of all, we construct the weak problem verified by the approximating
function u.. With the approximating displacement u. € V is associated the
approximating stress tensor

oc i =2pe(ue) + ATre(ue)l, (10)

since Lu, = div o, = f, then o, € [H(div)(2)]**2. For a fixed ¢, by density of
the regular functions in the space H(div)(f2), there exists o7 € [C™°()]?>*?
such that o — o in [H(div)(£2)]>*2. This means

(11)

when n — co. We put dive = f", then integrating by part against a test
function v € [C*(Q)]2 NV yields the following

/J?Vv:/fnv—l-/ag-ﬁ)vda.
Q Q r

Passing to the limit in n using (11), we find Yo € [C®(Q)]?NV

R . %
/QUer—/QfUJF S Oe U > (o)< [H 3 (P—To)’

where 0.7 =: g. € [H% (I'—Tp)]’ is the image of the normal component o by
the trace operator on I'. Since, following the main result in [4], [C*(Q2)]2NV
is a dense subset of V' C H'(f2), then, according to the definition (3) and
the expression (10), the function . satisfy

o — e |aiv.0 = || divol —

Yv eV,
/Q2,u5(u5)5(v) —i—/ﬂx\dwu6 dive = /va + < ge,v >[H%},(F7FO)XH%(F7FO);
(12)

this is the weak problem satisfied by the approximating function ..
Let us recall, (see [8]), that the H2—norm in one dimension on T'; is

defined by:
u(a) - u(y)
lollyr, = (e, + [ [ R =t oy

Remark 2. For any sufficiently small € > 0, it is possible to overlap Q) with
a collection of open sets (VV;)]- such that for any j, Wi NT is either empty
or equals one of the following subsets: for some 0 <i<m —1

l\.’)\»—‘

1) T ={zely 0<|lz—ax| <2e};



Explicit H'-Estimate )

2) T2 :={zely 0<|lz— x| < 2e};
3) I‘fﬁf ={zxely; |lzv—all > ge and ||z — xig1|] > ge};
4) T ={zeliUTi; ||z -zl <€
and fori=m
1) The={zeT,; 0<|lz—zn| <2;
2) T2 :={zeTm; 0<|lz— ol <2}
3) Ff;f ={zxeln; |lz—an|> ge and ||z — xol| > ;e};
4) Tof={zel,Uly |lz— 0l <€}
let (19 )i, with supp U5 C W5, a Cl-partition of unity with respect to this

overlap; since 19; € H2( ) then

|6 = 1|1 p = [I(¢ = 1) 219 [ESS

1e=1) > llar +Z|| =Dl g

J,supp?5Cly

IN

e =g, + (Dl ge =Dl

Ms 1 11

H¢6 - 1||%,I‘i + (m =+ 1)H(¢e - 1)||07rg’E (13)

[e=]

1=
So, using the definition and symmetry of ¢., we get for all 0 < i <m

lge=1llr, =1l —1) > Do,

Jysuppd;CLy

<l@e=1) > Ky +l0e-1) > Kl

. 1,e . 2,e
J,suppdsCL; J,supp¥§CL;

+ll6e=1 D> Kl + 2@ = Dl pa

. 3,€
j,suppﬂj-CFi

3
Z [ = 1l e + 218 = Ul e

= 216 = 1[5 b + 2l — 1] e

thus we have

|$e(2) — de(y)[? 1
16 =113 p, < 2/l - 1"01“16—’_2/16/15 Haf HQ dwdy)?

+2H( e — )HOI?’E. (14)
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Lemma 3. The functions ¢. admit the following limit for all 0 <i <m

Hd)e—lH%’Fi%O as €—0

Proof. If we choose the vertex point z; as the origin of the R?-orthonormal
coordinate system and I'; supported by the positive half x—axis then the
abscisses of = € T'; =0, 2¢ verify

|z — zif| = || = .
the H-semi-norm on I'; writes by using the definition of ¢.

o= [ R <2 [ [ S

(15)

Consider the decomposition of (15) into four partial double integrals

/ / o \w—y\z - drdy =0,

this is obvious.
1
€2 (e~y)

2
exp| —exp[ —F—
// |¢6 ddy<//‘ o | e dady
|z —yl?

The function F(x) := exp| % ] is C1(]€?, €]) and thus lipschitz. We
have, using the fact that  — F”(z) is increasing on [¢?, 5], that

1 2
Fwls o gee ) = by
Vz € [¢2,5]. On the other hand
€z 2
P < o) =i La

Va € [§,€]. Therefore we conclude that

’F/<I‘)’ <L:= maX(Ll,Lg) < L1+ Ly
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for all = € [€2,¢]. This yields

/ /2 . \%—y\; = dedy)

N|=

1
5 _e2
¢ pelatyen) + S a7l -y
< (/ 2 — g2 dxdy)?

1 1 %
€2 2 1 € € e2(l—e . 1
/ eXP(l )[Pdady)z + (/ / | 1( 5 exp( 2 )|2dxdy)?
2 €(l—e) —€ 2 Je (5 —¢€)
—0 as e€—0
e Iﬂc—yl2
2 2 1
62( x) € re 1 9, €2(e—x)
dxd _ ————|dzd
/.L|x—@9“p[ ey et | é Tz e
14 € 1
9 €27 (1 —¢€) 9 1 9. €2(2¢)
< € /62 mexp [ —ﬁ]dl’—'— € . Wexp [ ei]dlﬂ

3
1 €2 (1—e)
L€ exp(——) 1 €
- 1—c¢

—+0 as €—0,

here we used the properties of the exponential function and elementary
majorizations.

—¢)
Oe(x e | exp[ 62 112
//‘|!wyP dedy t// uiw dedy = 0,

proceed in the same way as for 3).

Combining these integrals on one hand and using the facts: ||¢.
0 and 2[|(¢e — 1)||y pac — 0 for all 0 < i < m on the other hand yield, using
(14), the result of lemma 3. Consequently, using (13), it yields also

6 =113 =0

O]

Since w is (% + a)—holder continuous and thus uniformly continuous on
€2, the result of lemma (3) implies

ue = ull3 < lu(ge = Dl p < llulloo,rllge = 1113 1 = 0.

One proves the following approximation lemma;:
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Lemma 4. The function ue defined by (8) and the distribution g. defined
in problem (12) satisfy the following limits

a) [[Vue = Vullo.o =0, ) |lge = gl —0

(H3]',"—To
as € — 0

Proof. a) Consider the linear operator G that associate, for the fixed f €
L%*(Q), to each u? € big (T") the corresponding unique solution u of problem

(8).
G (H3 (D), ||10) = ACV,
ul = ur — K(ud) = u.
Where (A, [|.||g1(q)) denote the range of H? (") under G. The inverse oper-
ator G~! identifies with the trace operator which is obviously well defined

and bijective for v € A. Using the trace inequality on ', Yu € A, there
exists ¢ > 0

lulls p < cllVullog

this implies the continuity of the linear bijective operator G~!. By the
Banach isomorphism theorem the operator G is continuous, this means that
there exists c_1 > 0 such that for all ©u € A we have

IVullo.o < calfully

thus
IV~ Vucllog < eoalfu— uells 0, (16)

as a consequence of lemma (3), this proves a).
b) We make the same reasoning as for a). Given g € [H%(I‘ —To)], let
w € V be the unique solution of

/Q2u5(w)5(v) + Adivw dive de =< g,v >[H%(F—F0)]/,H%(F—FO) WMo e V.
(17)

choosing v = w, there exist ¢ > 0 such that
IVwllo.o < ¢lg]l (18)

[H3(0-To))""

Let K be the operator that associate to each data g € [H%(F —T)] the
solution function w of the corresponding problem (17):

K:[H:(T-Tg) =DcCV
9 — K(g) =w.
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Where (D, || ||f1(q)) denote the range of [H%]’(F —T'g) under K. Following
existence and uniqueness result for problem (17), K is well defined, further-
more it is linear and invertible. An equivalent formulation of (18) is: there
exists a constant ¢’ > 0 such that Vg € [H%(I‘ —T)]’, we have

1K ()] < ¢ Hgll[H2 J/(F—Ty)

i.e. K is continuous. Then, according to Banach’s isomorphism theorem,
we deduce that 3¢’ ; > 0 such that

gl < c4][Vuwlloo. (19)

[H2(C-To))
Rewriting (4) with g € HE(F —Ty)=DC [H%(F —T'p)]" then substracting
(4) and (12) member-to-member, one find that u — u, satisfy: Yo € V,

/S)2u(5(u5)—£(u))€(v)+)\ div(ue—u) dive de =< ge—g,v >H7%(F_FO)’

3(0-Ty)
(20)
Applying (19) to w = ue — u we get:

< 4||Vue — Vullo -

19e = 91l 13 o _pgyy =

Considering (16), we infer b). O

Remark 5. As a consequence of the previous lemma we have: For allv € V,
there exists eg > 0 such that V0 < € < ¢

| r_r, gvdo(T)= < 9V > by roy b rorgy | T <97 90V >[H%y(r—ro),H%(r—ro> |
1
< — ||V

and such that ||[Vue — Vulloo < 3.
For the rest of the paper, we fix €, 0 < € < €.

Remark 6. We take now the idea of decomposition. Fix an open cover
(Qi)iem D Q of the convex domain §). This cover is choosen such that
for all i, Q; NT = Ty and Q; intersects I' at exactly two points. These
two points must belong respectively to D; . and D;y1 . where the successive
indices correspond respectively to those of the extremities x; and x;11 of I';.
There exists, (1;); € C*°(82), a C°—partition of unity with respect to that
cover. Put uc; := P;u.. The definition of the cover is required to satisfy the
following condition: for all i # j,

1
fPde < ———
/Qiﬂgj ‘ ‘ 4<m + 1)4
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Thus
m m
Ue = E Yiue = § Ue, i
=0 =0

Since we are looking for explicit estimates, we should use Poincaré, trace
and Korn’s inequalities relatively to suitable geometric configurations i.e.
for which they are explicitly formulated. The configuration that best fits our
polygonal convex domain  is the half-plane R*t containing the convez polyg-
onal domain 0 for Korn’s inequality, the square Sq with edge’s length equal
to d(QY) for the other two inequalities. Thus we determine theses constants
thanks to results available for this type of domains. All this suggests to ex-
tend by zero the functions u.; outside the convex domain ). The definition
of the functions u.; is adapted to make such an extension.

3 Technical tools

We introduce some useful lemmas, which will play essential roles in proving
theorem (1).

3.1 Extension of the functions u.;

We consider for i, 1 <7 < m, the extension by zero of u.; from the convex
domain € to the half-plane R** containing 2 such that I'; ¢ OR?*. The
extended function is defined by

Uei = Ue,is a.e. x € Q; N, (21)
fLeﬂ;:O, $€R2+—Qiﬂﬁ.
We have, obviously, the following
|10z, te,illo g2+ = [|0z,tec,ill0,0:00 = |10z, eill0,0.n0- (22)

The inequalities are established for the extended H' regular functions de-
fined on a square containing the convex polygonal domain 2.

3.2 Explicit constant in the Poincaré inequality

We show in the following lemma that the function w.; € V; satisfy the
Poincaré inequality for which we determine explicitly the constant.

Lemma 7. For alli, 0 <1i < m, the function uc; satisfy:
l[teillo.0 < d(Q)[|Vueillog, (23)

the constant d(2) means the diameter of ).
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Proof We establish Poincaré inequality for one of the two components

Ue, Z,l = 1,2, the same estimate hold with the other. Note abcd the square
Sy such that a = (al,ag) b= (b1,b2),c = (01,02) et d = (di,d2) and such
that I'; C S; := [¢,d]; so u =0on dS; —

l

Since 1, ; is absolutely continuous on the lines parallel to the coordinate

axis, then applymg the fundamental theorem of calculus to u ; on
Sq for 1 = 1,2, we have for all (z1,z2) € [a1,d1] X [ag, bg]

i(x1,22) / oy U “ (s,z2)ds + ﬁiyi(al,xg).
Since (a1,x2) € 0Sq —I';, then V(z1, z2) € [a1,d1] X [ag, b2]

i(x1,22) / 1 U ” (s,x2)ds.

Using Cauchy-Schwarz inequality V(x1,x2) € [a1,d1] X [az, b2]

- 1 1
i (1, 22)] < |1 — al( / Doyl (5, 22)|2ds)’.

al

Taking the square of the two hand sides of this inequality and using the
fact |z1 — a|] < d(Q): V(x1,z2) € [a1,d1] X [ag, ba] yields

dy
i 41, 7)< |21 —al / 00yl (5, 22)|2ds < d(Q) / 00yl 5(s5, 22)|2ds.

al

Integrating on S; with respect to the variables z; and xo:

; bo di . ba dy dy )
a2, = / / (1, ) Py < d(9) / / / Ol (s, 72) [Pdsdadiy
a al a2 ai al

< () / B4 (5, 22) Pdsdcy.
Sa

According to definition 21 and by considering (22) we get

(VeI o

l
Hue,i 5

We infer that

llueill§.o = [luéil 6 otugil6.o < P Q([Vug |5 o+1VuZ |3 o) = d* ()| Vuealld o

O]
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3.3 Explicit constant in the trace inequality

Using mainly the inequality of Poincaré stated in lemma (7), one establishes
a trace inequality on I'; for the function wu.; with an explicit constant.

Lemma 8. For all i, the functions u.; satisfy:
ueillor; < corl[Vueilloo (24)

where ¢y := 2,/d(Q2) is the trace constant.

Proof. Let tu; be defined on Sy such that F C 0S,. We establish trace
inequality for one of the two components u i+l = 1,2, the same estimate
hold with he other. Applying the 1nequahty of trace on the boundary of a
prallelogram (see lemma 4.2 in [3]) for ﬂéi on S;, yields

_ _ |S| 1Sa] | o -~
Hule,ng,Fi < HU’E,’L'HO,Si = |S |H €, + 25 |S‘ Hvule,zHg,Sd
Using estimate (7) we find
o 151 12 |5

~l 112
” z||0F = |S | ( )HV +2-—=r |S| Hvue,iHO,Sd’

hence by simplifying
~1 ~1
llag|l6.r, < 4d(Q)|| Vi3 s,-

Using 21 defining ﬂlm- and (22) we have

(D) Vug, I3 0-

I 112
| |ue,i
Summing over [ = 1,2 we get

(QVueillf o
O

To prove estimate (7), we construct auxiliary approximating functions
’8 " that are solution of a problem that is similar to (12). These auxiliary
functlons enjoy an orthogonality property, this allows us to deduce easily
and explicitly, using Korn’s inequality, Poincaré’s and trace’s inequalities,

an upper bound ||Vu;||o.o and therefore prove the main theorem.
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4 Proof of theorem 1

The space V C H' has a countable dense basis then it is a separable Hilbert
spaces. So, it admits a countable orthonormal Hilbert basis {e!},cn resp.
{e!'} ;e with respect to the inner product defined over V,

< u,v >p= / e(u)e(v) + divu divvdx  resp. < u,v >y:i= / VuVvdx
Q Q

these are indeed inner products on V, one can see it by considering the
Poincaré’s and Korn’s inequalities.

Remark 9. Consider V as a Hilbert space for the inner product <,>y.
Following the definition of an orthonormal basis of a Hilbert space we have:
for alli, 0 < i <m, VB > 0 there exists a finite linear combination

Ti

il _. . B
g ailer; =t ug;
T=1

of elements {elm}Tep =: B! C {el} en, with I' a finite subset of N with 7;
elements, such that

Ti
lluei =Y abfel ifl1a < B. (25)
T=1

foralli, 0 <i<m

The same remark holds for the case where the inner product is
< U,V >pi= / VuVvdzr.
Q

in this case, the finite subset corresponding to Bf in the previous remark is
denoted BY'.
Let uc; be as defined in remark (6). Recall that ), uc; € V satisfy

/Q g(zi:um-)g(vw(divzi:ue,i)(divv)dx_ /Q Frdx + /F e (29

for all v € V. One should remark that the functions u.; are not necessarily
two by two orthogonal; in which case, this would yield immediatly the de-
sired result. So, the idea is to approximate the functions u; on one hand by

7/3 ?'l

. . . 5l .
functions . that are orthogonal with respect to a new basis B; built from

7ﬁ7ll

elements of Bf and on the other hand by u_; that are orthogonal with re-

spect to another new basis Eli built from elements of Bf/. This construction
is detailed below. These approximating functions solve a similar problem as
(26).
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Let {B!} and {B! 1} be the finite dimensional subspaces of V spanned by
the sets Bll- and Bll- 41 corresponding to indices ¢ and i+ 1 as defined in remark
(9). Let us explain the procedure of construction of the approximating
functions within these two subspaces. Suppose that BINB! ; = {eiji Lt #0.
For simplicity of presentation we supposed that the intersection contains
only one element, the same reasoning works equally for the case where the
intersection contains more than one element. Let us modify Lei}i L1 =

. C . .l .
i,i+1 € H-1(Q) into a distribution Jriv1 € H~1(Q) such that, if Eiﬂ-ﬂ eV
is the solution function of

_ —l .
{Lei,z’+1(fc):f*,¢+1 a.e in {,

ei,i+1 = ei,i+1 on I
then, it does satisfy the two following hypothesis
hl) = — L(éi7i+1)(a:) and x — L(elm(x))

are linearly independent for all 0 < 7 < 7;, consequently, the same hold for
Eiﬂ-ﬂ and elm» forall 0 <7 < 7.

1

—1 l _1 l 1 !
(h2) |’V€*,z‘+1_ve*,z‘+1|’0,ﬂ < C(||€*,¢+1_€*,z’+1‘|é,r+||L€*,z‘+1_L€*,i+1||fl,Q) < m

This last hypothesis can be realized by writing
1225, = Lelill-10 < [[hn = Ball-10 + |7 — Lel il -10

where, by density, h, € L?(Q) can be taken so that ||h, — fi7i+1||_1’g <

. —l - T .
m; posing f, ;11 = hn with h,, = hy, on § except on a sufficiently small

region of 2 where it is equal to zero such that ||k, — hy||—1.0 < m
Consider the new set Eﬁ 11 that consists of the same elements as B! 11

except for efm 41 Which is replaced by Eiﬂ- 41- Since {Ei 41} is of finite di-
mension and its elements are, following the construction of eiji 41, linearly
independent then, by a Gram schmidt process, we build from these elements
a sequence of orthogonal functions that forms an orthogonal basis for the set

spanned by Eé 11- The resulting set is of the same dimension as the former.

Thus, the set Eé U B;y1 contains 7; + 7341 orthogonal elements. Repeatring
R . .

the same procedure with B;UB;11 and B2, for all 0 <14 < m, as described

previously, we construct a collection of finite subsets {Ei}z’:oTn that contains
only orthogonal elements and assumption (h2) is met for all ¢ within these
basis sets.

There exists coefficients (af’il )7 such that u’f ;, writes in the basis B!

T
57l Pp— 57l l
U = orier; €V,
T=1
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then define ﬂf ’Z-l written in the basis Eé by

ol . — =l Z Bl ol
Uey * Oé* H—le* i+1 T aTZ T,

this is the auxiliary function for which we have replaced the common base
functions efm- 41, appearing in its expression as a linear combination and
belonglng to the intersection, by the modified ones. One can easily see that
*f . satisfy hypothesis (h2). We are now ready to present a proof of the
main result.

Proof. Since L( ) € H~1(Q) for all 4, we can not write an adequate weak

formulation s1m11ar to (12) for which ), Uf ’Z-l € V would be a solution. To
overcome this obstacle, we consider, following the main result of ([4]), an
approximating smooth function @ *E ! . € C®(Q) NV such that

1@k, — @ |he =0 as n— oo (27)

€Z7L

There exists £ € L2(Q) and ¢°}. € [H%(F—I‘o)]’ such that the function
> uem € V is a solution of

/ Zu“n ) + div( Zusln )divvdx = / fAlvdx+ < gg;ll,v > (28)

Q

for all v € V. By an appropriate choice of the linear combination in (25), we
can make the following estimate as small as we want

1
f = P00 + llge — 2,

by ey (29)

indeed, by an argument similar to that used in lemma (4), there exists
C > 0 such that

1f = Moo + llge —
< CHUG - eanIQ

= C||Vue — Va'! oo

€,7,Nn

= CHVZu”—vZuMHQQ
<CZHVUH— )y lloo

<CZHVu“—
<CZ\|Vu“—

gen” HQ]/F 1—\0

QwZHw = val} oo

*ﬁlu+cZHw ~va

El?’L




Explicit H'-Estimate 16

to conclude (29), we use (25) with 3 sufficiently small for the first term,
hypothesis (h2) for the second term of the last inequality and (27) for the
third term.

The same estimate (29) holds with Z/n
estimate (29), we get also

\/fﬁl ), —ue)

in place of u, lln Using the

1

e,z,n_u€1|’ < HfHO ot—

l l
< g§n7 Eﬂzn — Uey > S Hg H[H?]’F Ty H e,l,n UEZH
S (ngH[H%],,Ffro )Hue,z,n
< 1
~ 32(m+1)3

Choosing v = 7" in (28), we obtain

€,7,Nn

J el v an Sl o= [ g < ol

< / fg,LuQ,»—l— < gg;i,ue,i >+
Q

16(m +1)3
< Ueit < Geytei > +—— .
—/mf S R
Using remark (5) and the cauchy-schwarz inequality, we have
2n [ SOZTL L)+ (v ST e o
</fd+/ do+ ——— | Vueillog, + ——
Ue idx Ueido + ———||Vueillog, + —————=
= Jo, Tt by T T g )2 Y e 0 T g )8
1
—||Vueilloo, + =—=-
8(m i 1)2” U 7’L||0791 + 8(m+ 1)3
Letting n — oo
_B,l !
p [ S e
&
1 1
— ||Vu.. -

Now, either

1
Hvue,z‘HO,ﬂi < mt1 (%)

o< —
)H ezn ue,z”l,ﬂ = 32(m+1>3
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then, we have done with the explicit upper bound for the functoin ue;. Or

in this case, using (23) and (24) yield

/ Zuezn ezn dlvzueln dlvueln)dx

(),

1
, i(CprHO,Qi+Ct|’g’|0,Fi+m).
Using the orthogonality of the functions ﬂf ;, Withe respect to <, >,
le(@)|? (el fllog + collgllo,r, + ————).
€, — » e \-P )L L 4(m+1)2

Again, since €(ue ;) is linear with respect to the component of Vu, ; then,
using (h2) , we can have the following approximation

1

le(uea)llog < lle(@r;) Wm 1)

it yields in addition to ()
2] le( )||QQ<71 I [lo,c2: (cpllf1] Ll Am+1)2 ! )
plle(te s + || Vue; (c .+ .+
€1)110,Q > 4(m 1)3 €,1110,9; \Cp 0,9; t19(l0,T; (m 1)2

1
m), (30)

i (|l o0 + cellgllor: +

for all i. On the other hand we give a lower-bound for ||e(uc;)||o,o, in term of
|| Vueilo,n, for all 4, 1 <4 < m. Since the deformation is a linear application
with respect to the first derivatives of u;, then with the same notation as
in (21) and by using (22) we have
=12 =112 2
2ple(tei)llorer = 2ulle(ei)lo.0 = 20lle(uc)lloq;- (31)

Applying the estimate in corollary 1.2.2 of [6] to . gives

1 - -
3 X 20] | Vit |6 ga+ < 2p0lle(@ed)[3 gos -
Hence, by using (31), Vi,0 <1i < m, we get

(32)

I Vueilld o = pllVieil[§ ger < 2ulle(tea)ll§ per = 2ulle (eI
Combining (30) and (32) gives

1
2(m+1)2

6.0 < lle(ued)llg, i (el fllo.; + [lglled [Vueillo.o + );
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thus

2(m+1)2
Taking the square and using elementary majorizations

1

TSI

Vel o = [Vueilld o, < 3(cpll £l 0, + cllgllir, +

summing over ¢ gives

1
_ 112 2 2 L
> > IFucila, < 3tes X \lGo, + e ol + X gy

posing g; = g on I'; and §; = 0 on I' —T';, define also fi=fonQand f; =0
elsewhere, we get

~'H%,Fi +

= 3(0172"]?1‘ o
Using the fact: for all 7,7, ¢ # j

IRE |/ Rl= [

in addition to an appropriate identity, we obtain

> < 3o Al o+ 2 g s e 2 il + +1> T

i

1
4(m +1)3

1
2 < _— 7: 0= =
|fPdz < 4(m +1)* and /ngg]dg 0

iﬂQj

3(cpll flIf 0+ tllgllEr + m)-
Using approximation again
IvaZy (uea)lloo + 505
yields
S IV o < < g 43l + ol + 5
2(m+1)3 ’ ’ 2(m+1)3
B.L'

Using the orthogonality of the functions w,_ ;" withe respect to <,>p

13" val!
7

);

2 2 2 11gl|2
5.0 <3l flIa+cillgllor + (m+1)?
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thus

1
13295 loa < Va(alIflo + callglor + ).

and the fact
m m , m , m
=Bl _p,l
93 =TS o €3 o~ i < 3 s
i=0 i=0 i=0 :0

if we choose [ sufficiently small in estimate (25) and following hypothesis
(h2), it follows

||VUEH%,Q§HVZUEJH%,Q—( +1 +HZVU e

i

1 1
_W+\[(CprHOQ+CtrH9HOF+ +1)
V3 2
IVuellog < ——(epllfllo.0 + cllgllor-—ro + ——), (33)
W m+1
considering (x), estimate (33) becomes
V3
IVuelloo < max[L, 7(0p||f||o,ﬂ + ctllgllor—ry +1)]. (34)

Actually, to meet exactly (7), the estimate (34) should be written for g €
H%(F) We can do this, since by assumption g € H%(F —T'p), by using the
continuity of the injection

I:H2(T —Ty) — LT —Ty),

the estimate in Theorem (1) for u. is deduced immediately from (33). We
conclude the theorem for u by applying lemma (4). O

Finally; in order to get the explicit H' estimate of u., and so that of u,
we use the poincaré inequality (23) to bound ||uc||o.o at one hand and the
estimate (7) at the other hand.

Conclusion

In the point of view of numerical analysis, estimate of theorem (1) is inter-
esting. Indeed, error estimates in finite element method of the type

[u —unllon < Ch|[Vullogo



Explicit H'-Estimate 20

involve the quantity ||Vul|o,o. Assuming that the constant C' can be calcu-
lated, then it is possible to explicitly bound ||Vul|on which implies a better
estimate of ||ul|o,q.

Another interesting feature of the estimation (7) that makes it effective is
that it does not depend on the characteristic parameters of the polygonal do-
main €2, namely, the edges’s length, their number as well as the measures of
the angles. The estimate is therefore indifferently applicable to all polygons.
All this allows the possibility to generalize this result, by approximation, to
a C! class domain.
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