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Abstract

In this paper we consider Lamé system of equations on a polygonal
domain with mixed boundary conditions of Dirichlet-Neumann type.
An explicit L? norm estimate for the gradient of the solution of this
problem is established. This leads to an explicit bound of the H' norm
of this solution. Note that the obtained upper-bound is not optimal.
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1 Introduction

The static equilibrium of a deformable structure occupying a domain 2
subset of R? is governed by the Lamé linear elasto-static system of equations,
see [5]. In this paper, we restrict the study to a convex domain  whose
boundary has a polygonal shape that posses m + 1 edges with m > 2. We
denote I' = UT; its boundary and d(f2) its diameter. This system is given
by

Lu=f ae in £,
o-m,=g; on ([—To)NIy, 1<i<m (1)
u=0 on TIj.

We assume that condition (Hz) of Theorem 2.3 stated in the paper [9]
is satisfied by I'. This condition is formulated in (5) below. The vector
function u = (u',u?) satisfying the system (8) describes a displacement in

the plane. In this model, we impose a Dirichlet homogeneous condition on
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I'p and a Neumann condition on the rest of the boundary. The equality on
the boundary is understood in the sense of the trace. We denote L the Lamé
operator defined by:

Lu := —divo(u) = —div[2ue(u) + A Tre(u)ld] (2)

The data functions f and g at the right hand side satisfy f € [L?(Q)]? and

g€E€H %(F —T'0)]2. The vector n represents the outside normal to I';. We
write u and A the Lamé’s coefficients. We place ourselves in the isotropic
framework, the deformation tensor ¢ is defined by

e(u) = %(Vu + V), (3)

The weak form of problem (1) is (see [2], [5]):
find ueV; YwveV

/QZ,LLeS(u)E(U) + Adivu dive dox = /va dx —|—/F gv do(x)  (4)

Ty

where
V={ve[HQ]?* v=0 on Ty}

The problem of existence and uniqueness in V' of the solution of (4) is classic,
(see [2]).

If we denote 6 the interior angle between I'; and I';, such that fj NLy # 0
and if we denote v the interior angle between the Neumann part of the
boundary I'y and the Dirichlet part of the boundary I'p such that I'yNI'p #
(), then we impose

0 < 2m, v <. (5)
The reason behind this assumption on the boundary is to get a better regu-
larity of the solution of the weak problem (4). Precisely, in that case we have,
following [9], u € [H 3t (€2)]? for some positive a, which implies in particu-
lar, using the appropriate Sobolev embedding, see [1], that u € [C’O’%‘W ()2
i.e. uis (3 + a)—holder continuous. Let us denote

le@)llo = /Q e(wew) dr)¥,  [[Vullog :=( /Q Vul2 + Va2 d)?.

By using the second Korn inequality, see [7], the trace and the Poincaré’s
inequalities, one easily gets from (4) the following estimate

09 + ¢pellg]

11
Vulloo < 25 (e llf Lr-ry)s (6)

where ¢, is a constant that depends of Poincaré constant and the con-
stant of trace inequality. ¢ is the constant of the Korn’s inequality. Note



Explicit H'-Estimate 3

that the value of the constant ¢j and ¢, appearing in (6) are unknown
and can not be explicitly lower-bounded in the general case. We propose to
determine explicitly these constants. The main result of this work is stated
in the following theorem:

Theorem 1. The unique weak solution u of (4) on the polygonal domain
admits the explicit upper bound

1V

2
0,0 =< E(CPHfHQQ+Ct7“HgH%,F—FO) (7)
where ¢, 1= d(Q), ¢t = 24/d(Q2) and d() represent the diameter of €.

The estimate (7) is similar to (6), the constants that are present are the
same. Before demonstrating this theorem, it is useful to go through some
remarks and results. Denote x;, for 1 < ¢ < m, the vertex of the polygon
that connects I';_1 with I'; and zg the one that connects I';,, to I'g. Define
the auxiliary function u. € H*(Q) as the unique solution to the following
Dirichlet problem

{Luez a.e in £,

ue =u? on T. (8)

Where u? is the trace of the function

Pe(r)u(z) (9)

L] Vi,0 < i < m then ¢, is defined by

on the boundary I'; if e < 5

¢e(2) =0, lz-ml[<e, 0<i<m;
de(2) :exp[—W], e <|lz—xll<e, 0<i<m
de() =1, e<|lz—=ml, 0<i<m,

let us denote
D;.:={r € R* suchthat [[z— | <€}

We easily see that ¢. € CY(Q), consequently, there will be no jump when
passing to the distributionnal derivative and thus Vu, € L?(Q) ie. u, €
H'(Q). It is shown, using Lebesgue’s dominated convergence theorem for
instance, that ||¢e — 1||or, — 0 i.e. we have convergence in L? along the
edge I';. The functions ¢. are identically zero on a small neighborhood of
the respective vertices of the polygon.

In the sequel, we denote u. the vector-valued function u, = (ul,u?).
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2 Weak problem for u. and an approximation re-
sult

First of all, we construct the weak problem verified by the approximating
function u.. With the approximating displacement u. € V is associated the
approximating stress tensor

oc i =2pe(ue) + ATre(ue)l, (10)

since Lu, = div o, = f, then o, € [H(div)(2)]**2. For a fixed ¢, by density of
the regular functions in the space H(div)({2), there exists o7 € [C™°(Q)]?>*?
such that o — o in [H(div)(©2)]>*2. This means

(11)

when n — co. We put dive = f", then integrating by part against a test
function v € [C*(Q)]2 NV yields the following

/J?Vv:/fnv—l-/ag-ﬁ)vda.
Q Q r

Passing to the limit in n using (11), we find Yo € [C®(Q)]?NV

R . %
/QUer—/QfUJF S Te U > (o)< [H 3 (P—To)’

where 0.7 =: g. € [H% (I'—Tp)]’ is the image of the normal component o by
the trace operator on I'. Since, following the main result in [4], [C*(Q2)]2NV
is a dense subset of V' C H'(f2), then, according to the definition (3) and
the expression (10), the function . satisfy

ol — e |aiv.0 = || divol —

Yv eV,
/92,u5(u5)5(v) —i—/ﬂx\dwu6 dive = /va + < ge,v >[H%},(F7FO)XH%(F7FO);
(12)

this is the weak problem satisfied by the approximating function ..
Let us recall, (see [8]), that the H2—norm in one dimension on T'; is

defined by:
u(a) - u(y)
lollyr, = (e, + [ [ R =t oy

Remark 2. For any sufficiently small € > 0, it is possible to overlap Q with
a collection of open sets (VV;)]- such that for any j, Wi NT is either empty
or equals one of the following subsets: for some 0 <i<m —1

l\.’)\»—‘

1) T ={zely 0<|lz—ax| <2e};
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2) TP :={zely 0<|lz— x| < 2e};
3) I‘fﬁf ={zxely; |lzv—all > ge and ||z — xiy1|] > ge};
4) T ={zeliUTi; ||z -zl <€
and for i =m
1) The={zeT,; 0<|lz—zn| <2€;
2) T2 :={zeTlm; 0<|lz— ol <2}
3) Ff;f ={zxeln; |lz—an|> ge and ||z — xol| > ;e};
4) The={zreTl,,UTly |lz—=x| <€}
let (19 )i, with supp U5 C W5, a Cl-partition of unity with respect to this

overlap; since 19; € H2( ) then

|6 = 1|1 p = [l(¢e = 1) 219 [ESS

1e=1) > llar +Z|| =Dl g

j,supp19§ cry

IN

e =g, + G Dllge =Dl

Ms 1 11

H¢6 - 1||%,I‘i + (m =+ 1)H(¢e - 1)||07rg’E (13)

o

1=
So, using the definition and symmetry of ¢., we get for all 0 < i <m

19e = lsp, =M@= > Flhp,

Jysuppd;CLy

<l@e=1) > Ky +l0e-1) > Kl

. 1,e . 2,e
J,suppdsCL; J,supp¥§CL;

+ll6e=1 D> Kl + 2@ = Dl pa

. 3,€
j,suppﬂj-CFi

3
Z [ = 1l e + 218 = Ul e

= 2/[ — 11y g +20Je — 1]y pac

thus we have

|9 (2) — de(y)[? 1
16 =113 p, < 2/l - 1"01“16—’_2/16/15 Haf HQ dwdy)?

+2H( e — )HOI?’E. (14)
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Lemma 3. The functions ¢. admit the following limit for all 0 <i <m

Hﬁbe—lﬂ%&%o as €—0

Proof. If we choose the vertex point z; as the origin of the R?-orthonormal
coordinate system and I'; supported by the positive half x—axis then the
abscisses of = € T'; =0, 2¢ verify

|z — zif| = || = .
the H-semi-norm on I'; writes by using the definition of ¢.

o= [ R <2 [ [ S

(15)

Consider the decomposition of (15) into four partial double integrals

/ / o \x—y\z - dedy =0,

this is obvious.
1
€2 (e~y)

2
exp| —exp| —
//|¢6 ddy<//\ (“2 ) ] [ —G== dedy
|z — y|?

The function F(x) := exp| % ] is C1(]€?,€]) and thus lipschitz. We
have, using the fact that  — F’(z) is increasing on [¢?, 5], that

1 3
Fwls o gee ) = by
Vz € [¢2,5]. On the other hand
ez 2
P < o en() =i La

Va € [§,€]. Therefore we conclude that

]F/(m)] <L:= maX(Ll,Lg) < L1+ Lo
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for all = € [€2,¢]. This yields

/ /2 . \w—y\; = dedy)

N|=

1
] _Z
e pelatyen) + SR a7l -y
< (/ 2 — g2 dxdy)?

1 1 %
€2 2 1 € € e2(l—e . 1
/ eXP(l )[Pdady)? + (/ / | 1( 5 exp( 2 )|2dxdy)?
2 €(l—e) —€ 2 Je (5 —¢€)
—0 as e—0
e Iﬂc—yl2
2 2 1
62( x) € re 1 o, €2(e—x)
dxd _— ———\dzd
/.L|x—@9“p[ ey eyt | é o ap o Ty IR
14 € 1
9 €27 (1 —¢) 9 1 9. €2(2¢)
< € /62 mexp [ —ﬁ]dl’—'— € . Wexp [ 7](1[1]

3
1 €2 (1—e)
€ exp(——) 1 e
- 1—c¢

—+0 as €—0,

here we used the properties of the exponential function and elementary
majorizations.

€)
bl 2 Jexpl —£2050 |
//‘|!wyP dedy t// uiw dedy = 0,

proceed in the same way as for 3).

Combining these integrals on one hand and using the facts: ||¢.
0 and 2[|(¢e — 1)||y pac — 0 for all 0 < i < m on the other hand yield, using
(14), the result of lemma 3. Consequently, using (13), it yields also

6 =113 =0

O]

Since w is (% + a)—holder continuous and thus uniformly continuous on
€2, the result of lemma (3) implies

ue = ull < lu(ge = Dl p < llulloo,rllée = 1113 1 = 0.

One proves the following approximation lemma;:
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Lemma 4. The function ue defined by (8) and the distribution g. defined
in problem (12) satisfy the following limits

a) [[Vue = Vullo.o =0, ) |lge = gl —0

(H3]',"—T
ase— 0

Proof. a) Consider the linear operator G that associate, for the fixed f €
L*(Q), to each u? € ig (T") the corresponding unique solution u of problem

(8).
G (H (D), ||10) = ACV,
ul = ur — K(ud) = u.
Where (A, ||.||g1(q)) denote the range of H? (") under G. The inverse oper-
ator G~! identifies with the trace operator which is obviously well defined

and bijective for v € A. Using the trace inequality on ', Yu € A, there
exists ¢ > 0

lulls p < cllVullog

this implies the continuity of the linear bijective operator G~!. By the
Banach isomorphism theorem the operator G is continuous, this means that
there exists c_1 > 0 such that for all ©u € A we have

IVullo.o < calfully

thus
IV~ Vucllog < eoalfu— uells 0, (16)

as a consequence of lemma (3), this proves a).
b) We make the same reasoning as for a). Given g € [H%(I‘ —To)], let
w € V be the unique solution of

/02/15(111)5(1)) + Adivw dive de =< g,v >[H%(F—F0)]/,H%(F—FO) WMo e V.
(17)

choosing v = w, there exist ¢ > 0 such that
IVwllo.o < ¢lg]l (18)

[H3 (P—To)]'”

Let K be the operator that associate to each data g € [H%(F —T)] the
solution function w of the corresponding problem (17):

K:[H:(L-Ty) - BCV
9 — K(g) =w.
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Where (B, || [|g1(q)) denote the range of [H%]’(F —T'g) under K. Following
existence and uniqueness result for problem (17), K is well defined, further-
more it is linear and invertible. An equivalent formulation of (18) is: there

exists a constant ¢’ > 0 such that Vg € [H%(I‘ —T)]’, we have

/
1K@ < Ellgll 1y 0y

i.e. K is continuous. Then, according to Banach’s isomorphism theorem,
we deduce that 3¢_; > 0 such that

191t oy < -l Vullog (19)

Rewriting (4) with g € H2(T — Ty) = D C [H2(T — Iy)]’ then substracting
(4) and (12) member-to-member, one find that u — u, satisfy: Yo € V,

/QQ/L(E(UJ—&(U))&(U)—F)\ div(ue—u) dive dz =< gc—g,v >H‘%(F—Fo),H%(F—F0) .

(20)
Applying (19) to w = ue — u we get:
/
Considering (16), we infer b). O

Remark 5. As a consequence of the previous lemma we have: Yv € V' and
Vo > 0 there exists g > 0 such that V0 < € < ¢q

| P gvdo (@)= < 90 > dyir gy b rorgy | =<9 7900 > e rg i oory) |

< lg — gell [lvllv

[H3)/(r-T)

<

Bl

We take now the idea of decomposition: consider the range of u by a
sobolev extension operator

P:HY Q) —» HY(R?)

which is always possible for the lipschitz domain €2, this function is still
denoted u. Given € > 0, there exists (€2f);=1,, an overlap of Q and a
C'-partition of unity (¢5); with respect to this overlap such that if Mf =
supp 5 C €25 the following two conditions are satisfied:

(i) cl:
I)Vi=1,m—1: OM;f intersects I' in exactly two points p; and p;1;
pi € Di e NTi_1,pi41 € Diy1, N1 such that (supp gfuc) NI C Iy,
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2) for =0 OMj intersects I' in exactly two points gp and g,
dm € Do NIy, q1 € D1 NIy such that (supp gfue) NI C Iy,

3) for i=m OMY, intersects I' in exactly two points r,,—1 and 7
Tm—1 € Do NTp—1,70 € D1 NI such that (supp ¢5,ue) NI C Ty,

(i) e2: Vi 2(p+ N maxp=i; ||V (egud)llogmnos < o

Put ue; := pue. Since we are looking for explicit estimates, we should
use Poincaré, trace and Korn’s inequalities relatively to suitable geometrical
configuration i.e. for which they are explicitly formulated. The configuration
that best fits our polygonal domain € is the half-plane R?>* containing the
domain €2 for Korn’s inequality, the square S; with edge’s length equal to
d(€2) for the other two inequalities. Thus we determine theses constants
thanks to results available for this type of domains. All this suggests to
extend by zero the functions u.; outside 2. The definition of the functions
ue,; is adapted to make such an extension.

3 Technical tools

We introduce some useful lemmas, which will play essential roles in proving
theorem (1).

3.1 Extension of the functions u.;

Given € > 0, we consider for i, 1 <7 < m, the extension by zero of u.; from
Q to the half-plane R?>* containing Q such that I'; ¢ OR?>T. The extended
function is defined by

Uei = Ue g, a.e. reMfNQ, (21)
Ue; =0, z € R — MfNQ.
We have obviously the following
|0z, Ge,illore+ = |10z, teillo,mene = |0z, ue,il|0,p1:n02- (22)

The inequalities are established for the extended H' regular functions de-
fined on a square containing {2.
3.2 Explicit constant in the Poincaré inequality

We show in the following lemma that the function wu.; € V; satisfy the
Poincaré inequality for which we determine explicitly the constant.
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Lemma 6. For alli, 0 < i < m, the function uc; satisfy:

lue,illoe < d(Q)|Vuelloo, (23)
the constant d(2) means the diameter of ).

Proof We establish Poincaré inequality for one of the two components

U Z,l = 1, 2, the same estimate hold with the other. Note abcd the square
S, such that a = (al,ag) b= (by,be),c = (01,02) et d = (di,d2) and such
that I'; C S; == [e, d]; so u =0on 0S4 —

Since ﬂlm- is absolutely continuous on the lines parallel to the coordinate

axis, then applying the fundamental theorem of calculus to ﬂlw on
Sq for 1 = 1,2, we have for all (z1,22) € [a1,d1] X [ag, bo]

’L~LZE7Z-($1,:U2) = / awlu”(s x9)ds —|—u (al,xg).
a1
Since (a1, x2) € 0S4 — Iy, then Y(z1, z2) € [a1,d1] X [az, be]

i(x1,22) / oy U H (s,xz2)ds.

Using Cauchy-Schwarz inequality V(z1, z2) € [a1,d1] X [ag, ba]

- 1 1
|¢mmmnsm—m4/|xlasmﬂ@w

al
Taking the square of the two hand sides of this inequality and using the
fact |21 — a] < d(Q2): Y(x1,22) € [a1,d1] X [ag, ba] yields

dy
i@ (1, 22)| <Mrd/ mlmsmﬂw<am/ 00yl 5(s5, 22)|2ds.

al

Integrating on Sy with respect to the variables x; and xs:

b2 d1 b2 dl dl
labils, = [ [l an)Pdnday <a@) [ [ [ uil (s.00)Pdsdrada
a2z al az al al

< d*(Q) / ]&tﬂlﬁ’i(s, z9)|2dsdx,.
Sq

According to definition 21 and by considering (22) we get
l
(Vg5 0

L2
‘ |ue,i

We infer that

lueilld o = llue illg ot 11ugl6 o < d*( Q) IVue i[5 oHVugsl[§ o) = d*(D)[Vuesl[§ o-
O
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3.3 Explicit constant in the trace inequality

Using mainly the inequality of Poincaré stated in lemma (6), one establishes
a trace inequality on I'; for the function wu.; with an explicit constant.

Lemma 7. For all i, the functions u.; satisfy:
[ueillor; < crl[Vueilloo (24)
where ¢ := 2,/d(Q2) is the trace constant.

Proof. Let tc; be defined on Sy such that F C 90Sy3. We establish trace
inequality for one of the two components u i+l = 1,2, the same estimate
hold with he other. Applying the 1nequahty of trace on the boundary of a
prallelogram (see lemma 4.2 in [3]) for ﬁi,i on S;, yields

i . o 15| L olSdl
llaell6.r, < lladllfs, < 215 ,H 28] 1Vie,il[5.5,
Using estimate (6) we find
o 151 p2 5dl 1o -
Vil 2—|| Vi,
” ZHOF = |S| ( )H + |S| H ue,z”(],Sd’

hence by simplifying
e l[o.r, < 4d(Q)]|Vigl[§ s,
[Ize 4]
Using 21 defining ﬂlm- and (22) we have
b.r, < 4dQ)|IVul,I3 o-

l
| |ue,i
Summing over [ = 1,2 we get

o.r, < 4d(Q)l[Vueillf o-

We need also the following elementary technical lemma:

Lemma 8. Assume v € H'(Q), then
le@)llog < IVullo ,  Ildivulloe < V2([Vullog. (25)

Proof. On one side

6ui ou?
/’E )l dw = Z/ oz 83:1 Z/|Bm] 893j axi)dx

1 2. oud
< - il
<5 [vu+ §j jl<| P12
1 1
<5 [ (9uB+ 59l +Vufp)ds
Q
< [ 1Vulds = |90l
Q
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1

Therefore ([ [e(w)]3 dz)2 < ||[Vullo,o. On the other side

/ div?u dx = / |05, ut + Opyu?Pda < /(lﬁxlul\ + |0z u?|) 2 da
Q Q Q
< 2/ 100,02 + 00,022z
Q

<2 [ [Vul+ [Vu?f3do = 2|V
Q

Therefore ([, divZu dx)% < \/§HVUHO,Q-

4 Proof of Theorem 1

To prove the estimate of theorem (1), we choose as a test function in (12) the
compactly supported functions ue; and use Korn’s inequality, Poincaré’s and
trace’s inequalities to explicitly upper bound ||Vuc ;||o,o. This leads, thanks
to the approximation lemma (4), to explicitly upper bound ||Vul|o q.

Proof. Let ¢y be as defined in remark (5) and fix € < €.
Step (i) At first, we establish an upper bound estimate for ||e(uei)||0.0. We
recall that u. verifies:

Yv eV, /QQME(UE)E(UH—)\ div ue divo doe = /va dz+ < ge,v >[H%]/(F—Fo),H%(F—Fo)’

this function is expressed ue = Y ;| Ue; = > ; Ue;. Choose v = uc;, this
gives

/ 2ue? (Ue,i) + Mdiv? Uei dx = Z / pe(ue j)e(ei) + Adivaue j divue; de
E "]#Z GmMG

* / S ueidTt < geei >y _pg) mhrorg) -

Using remark (5) and since the sequence ||uc ||y is uniformly bounded for
all ¢, we get

/ 2pue? (ues) + A div? u, i de = Z / pe (e j ) (tei) + Adivue j divue; dz
e et smMs
)

+/ fumdx—i—/ gueido(x) + —.
: . "t

7
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Applying Cauchy-Schwarz inequality yields

/ 2 (ue;) + Adiv? ue; do <Y 2plle(uc) o.Menne |[€ ()| lo,aennze
M R
+ 2)\” div uE,jHO,MfﬂM; H div Ueﬂ" IO,MfﬂM;

1)
0.0 | [ueillor; + N

+ [ flo,aze lueillo.ne + g

Lemma (8) allows us to write the following

/ 2p” (uei) + Adiviue; do <Y 2|V llo.arerne | Vauello,vennre
M Jii
+ 20| Ve jllo,ae e | Vel lo,argrns

1)
o,I" + ﬁ

+ 1 lo,aze lueillo.o + [lgllo.r |[ue
Using (23) and (24) we get

/ 2pe® (ue) + Adiv? uei do <Y (204 20| Vuello.enare [ Vueallo g
M¢ .
i 3

)
0.0t —F—

vm

+pllflloarg [ Vueillog + curllgllor: [[Vue,

The condition ¢2 of the definition of the partition of unity gives

. €
[ 20 ) + AV s d < [ Fuealloas; + ol lloa [ Ve
M

0,M¢

N

(26)
)
+ cerl|gllo,r: || Vel loare + N
Estimate (26) becomes
9 € o
2ulle(ue)lo,ne < Ve Ova(ﬁ + ¢pll fllo,nze + cerllgllor; + ﬁ)

(27)

Step (ii) We give a lower-bound for ||e(ue i)||o,a¢ in term of |[Vul|o ase for
all 4, 1 <14 < m. Since the deformation is a linear application with respect
to the first derivatives of uc ;, then with the same notation as in (21) and by
using (22) we have

2ule ()15 pev = 2ulle(@ea)lld o = 2ulle(uea)lI§ are- (28)
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Applying the estimate in corollary 1.2.2 of [6] to ., gives

1 - -
3 X 20]| Vi[5 ga+ < 2p0lle(@ei)[|F gos -
Hence, by using (28), Vi, 1 <i <m+ 1, we get
I Vueill3 o = nllVael[§ gor < 2ulle(@e)|[f ger = 2plle(uen)llfo-  (29)
Combining (27) and (29) we get for all ¢

HHVUe,i”%,M; < / 2#52(Ue7i) + A div? Ue,i dx
M¢

k3

€

— £l gl 75ﬁ)
C € C .+
m+ P 0,M¢ + Cirllg]lo,r; )

< [Vueillo,ae (

i.e.

)
Ve ; . 30
|V ot (30)

Taking the square of the two hand sides of (30) and using Young inequality

€
0,Mf = Jm + cpl| fllons + cirllg

2 2
€ 0
MQHVUe,iH%,M; < 4(% + C;%HfH(Q),M; + C%THQH(%,Q + E)

By summing over ¢ = 0, m
1Y IVueilldo < 42+ I aee + i D llgllir, +6%). (31)

Applying the appropriate identity on the left hand side of (31)

IV uilfo <28 Y [ Ve Vueda (32)
i i£j MiﬁMj
J
+4( + I fllga + gl r_r, + %)

Cauchy-Schwarz inequality yields using condition ¢2

2/,62/ Vue,iVue,jdx < 2u2||Vu67¢||M;mM;||VuE,j MfﬂM; < 62.
MfﬁM;

Inequality (32) becomes
PIVuel§ o < € +4( + Gl fII3 o + cirllgllo.r-r, +62),

taking the square root of the two hand sides,

1
[[Vellon < ;(36 + 2¢p[| fllo. + 2¢tr]|gllo,r-1o + 0)-
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Letting € — 0 and using the approximation lemma (4), V§ > 0

1
Vello.o < 2 2ellFllo.0 + 2eurllgllor—ro +9). (33)

Since g € H 2 (I' = T'g), by continuity of the injection
I:Hz( —Tg) — LAT —Ty),

the estimate in Theorem (1) is deduced immediately from (33).
0

Finally, in order to get the explicit H! estimate of u., and so that of u,
we use the poincaré inequality (23) to bound ||uc||o,o at one hand and the
estimate (7) at the other hand.

Conclusion

In the point of view of numerical analysis, estimate of theorem (1) is inter-
esting. Indeed, error estimates in finite element method of the type

lu —upllon < Ch||Vullog

involve the quantity ||Vul|o,o. Assuming that the constant C' can be calcu-
lated, then it is possible to explicitly bound ||Vul|oo which implies a better
estimate of ||ul|on-

Another interesting fact in the estimation (7) that makes it effective is
that it does not depend on the characteristic parameters of the polygonal
domain 2, namely, the edges’s length, their number as well as the measures
of the angles. The estimate is therefore indifferently applicable to all poly-
gons. All this allows the possibility to generalize this result to a C! class
domain.
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