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Abstract

In this paper we consider Lamé system of equations on a polygonal
domain with mixed boundary conditions of Dirichlet-Neumann type.
An explicit L2 norm estimate for the gradient of the solution of this
problem is established. This leads to an explicit bound of the H1 norm
of this solution. Note that the obtained upper-bound is not optimal.
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1 Introduction

The static equilibrium of a deformable structure occupying a domain Ω
subset of R2 is governed by the Lamé linear elasto-static system of equations,
see [4]. In this paper, we restrict the study to a convex domain Ω whose
boundary has a polygonal shape that posses m + 1 edges with m ≥ 2. We
denote by Γ = ∪Γi := ∂Ω its boundary and by d(Ω) its diameter. This
system is given by


Lu = f a.e in Ω,

σ · −→ni = gi on (Γ− Γ0) ∩ Γi,
u = 0 on Γ0.

1 ≤ i ≤ m (1)

We assume that condition (H2) of Theorem 2.3 stated in the paper [8]
is satisfied by Γ. This condition is formulated in (5) below. The vector
function u = (u1, u2) satisfying the system (8) describes a displacement in
the plane. In this model, we impose a Dirichlet homogeneous condition on
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Γ0 and a Neumann condition on the rest of the boundary. The equality on
the boundary is understood in the sense of the trace. We denote L the Lamé
operator defined by:

Lu := −div σ(u) = −div[2µε(u) + λTr ε(u)Id] (2)

The data functions f and g at the right hand side satisfy f ∈ [L2(Ω)]2

and g ∈ [H
1
2 (Γ)]2. The vector −→ni represents the outside normal to Γi. We

write µ and λ the Lamé’s coefficients. We place ourselves in the isotropic
framework, the deformation tensor ε is defined by

ε(u) =
1

2
(∇u+∇tu), (3)

The weak form of problem (8) is (see [2], [4]):
find u ∈ V ; ∀v ∈ V∫

Ω
2µε(u)ε(v) + λ div u div v dx =

∫
Ω
fv dx+

∫
Γ−Γ0

gv dσ(x) (4)

where

V = {v ∈ [H1(Ω)]2; v = 0 on Γ0}

The problem of existence and uniqueness in V of the solution of (4) is classic,
(see [2]).

If we denote θ the interior angle between Γj and Γk such that Γj∩Γk 6= ∅
and if we denote γ the interior angle between the Neumann part of the
boundary ΓN and the Dirichlet part of the boundary ΓD such that ΓN∩ΓD 6=
∅, then we impose

θ ≤ 2π, γ ≤ π. (5)

The reason behind this assumption on the boundary is to get a better regu-
larity of the solution of the weak problem (4). Precisely, in that case we have,

following [8], u ∈ [H
3
2

+δ(Ω)]2 for somme positive δ, which implies in particu-

lar, using the appropriate Sobolev embedding, see [1], that u ∈ [C0, 1
2

+δ(Ω)]2

i.e. u is (1
2 + δ)−holder continuous. Let us denote

||ε(u)||0,Ω :=(

∫
Ω
ε(u)ε(u) dx)

1
2 , ||∇u||0,Ω :=(

∫
Ω
|∇u1|2 + |∇u2|2 dx)

1
2 .

By using the second Korn inequality, see [6], the trace and the Poincaré’s
inequalities, one easily get from (4) the following estimate

||∇u||0,Ω ≤
1

ck

1

2µ
(cp||f ||0,Ω + cp,t||g|| 1

2
,Γ), (6)

where cp,t is a constant that depends of Poincaré constant and the con-
stant of trace inequality. ck is the constant of the Korn’s inequality. Note
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that the value of the constant ck and cp,t appearing in (6) are unknown
and can not be explicitly lower-bounded in the general case. We propose to
determine explicitly these constants. The main result of this work is stated
in the following theorem:

Théorèm 1. The unique weak solution u of (4) on the polygonal domain Ω
admits the explicit upper bound

||∇u||0,Ω ≤
3

µ
(cp||f ||0,Ω + ctr||g|| 1

2
,Γ) (7)

where cp := d(Ω), ctr := 2
√
d(Ω) and d(Ω) represent the diameter of Ω.

The estimate (7) is similar to (6), the constants that are present are
the same. Before demonstrating this theorem, it is useful to go through
some remarks and results. Denote xi the vertices of the polygon. Define
the auxiliary function uε ∈ H1(Ω) as the unique solution to the following
Dirichlet problem

{
Luε = f a.e in Ω,
uε = udε on ∂Ω.

(8)

Where udε is the trace of the function

φi,ε(x)u(x) (9)

on the boundary ∂Ω with


φi,ε(x) = 0, ||x− xi|| ≤ ε2

φi,ε(x) = exp4[− (ε2−||x−xi||2)1+β

εδ(||x−xi||2−ε4)
1
4

], ε2 < ||x− xi|| < ε

φi,ε(x) = 1, ε ≤ ||x− xi||

The choice of β > 0, δ > 1 will be more clear in the proof of lemma (2)
below. Let us denote

Di,ε := {x ∈ R2 such that ||x− xi|| < ε}.

We easily see that φi,ε ∈ C1(Ω) ⊂ H1(Ω) and thus uε ∈ H1(Ω). It is shown,
using Lebesgue’s dominated convergence theorem, that ||φε−1||0,Di,ε∩Γi → 0
i.e. we have convergence in L2 along the edge Γi. The functions φi,ε are
identically zero on a small neighborhood of the respective vertices of the
polygon.

In the sequel, we denote by uε the vector-valued function uε = (u1
ε , u

2
ε ).



Explicit H1-Estimate 4

2 Weak problem for uε and an approximation re-
sult

First of all, we construct the weak problem verified by the approximating
function uε. With the approximating displacement uε ∈ V is associated the
approximating stress tensor

σε := 2µε(uε) + λTr ε(uε)I, (10)

since Luε = div σε = f , then σε ∈ [H(div)(Ω)]2×2. For a fixed ε, by density of
the regular functions in the space H(div)(Ω), there exists σnε ∈ [C∞(Ω)]2×2

such that σnε → σε in [H(div)(Ω)]2×2. This means

||σnε − σε||div,Ω := ||div σnε − div σε||0,Ω + ||σnε − σε||0,Ω → 0 (11)

when n → ∞. We put div σnε = fn, then integrating by part against a test
function v ∈ [C∞(Ω)]2 yields the following∫

Ω
σnε∇v =

∫
Ω
fnv +

∫
Γ
σnε · −→n vdσ.

Passing to the limit in n using (11), we find ∀v ∈ C∞(Ω)∫
Ω
σε∇v =

∫
Ω
fv + < σε · −→n , v >

[H
1
2 ]′(Γ)×[H

1
2 ](Γ)

,

where σε · −→n =: gε ∈ [H
1
2 (Ω)]′ is the image of the normal component σε

by the trace operator on Γ. Since C∞(Ω) is a dense subset of V ⊂ H1(Ω),
then, according to the definition (3) and the expression (10), the function
uε satisfy

∀v ∈ V,∫
Ω

2µε(uε)ε(v) +

∫
Ω
λdiv uε div v =

∫
Ω
fv + < gε, v >

[H
1
2 ]′(Γ)×H

1
2 (Γ)

.

(12)

Let us recall, (see [7]), that the H
1
2−norm in one dimension is defined by:

||u|| 1
2
,∂Ω := (||u||20,∂Ω +

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|2

|x− y|2
dxdy)

1
2

Lemme 2. The function φi,ε admits the following limit

||φi,ε − 1|| 1
2
,∂Ω → 0 as ε→ 0
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Proof. We write∫
∂Ω

∫
∂Ω

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy)

1
2 =

m∑
i=1

∫
Γi

∫
Γi

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy)

1
2 .

Remarking that∫
Γi

∫
Γi

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy)

1
2 = 2

∫ ε

0

∫ ε

0

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy)

We begin by considering the decomposition into four partial double in-
tegrals

1)

∫ ε2

0

∫ ε2

0

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy = 0

2)(

∫ ε

ε2

∫ ε

ε2

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy)

1
2 = (

∫ ε

ε
2

∫ ε

ε
2

| exp4[ − (ε2−x2)1+β

εδ(x2−ε4)
1
4

]− exp4[ − (ε2−y2)1+β

εδ(y2−ε4)
1
4

]|2

|x− y|2
dxdy)

1
2

Since x → exp(x) is exp(B)−lipschitzian on [−B,B] and the function x →
− (ε2−x2)1+β

εδ(x2−ε4)
1
4

is monotonic on [A, ε] with A > ε2 then the function x →

exp4(− (ε2−x2)1+β

εδ(x2−ε4)
1
4

) is exp(− (ε2−A2)1+β

εδ(A2−ε4)
1
4

)−lipschitzian on [− (ε2−x2)1+β

εδ(A2−ε4)
1
4
, 0] for

x ∈ [A, ε].

(

∫ ε

ε2

∫ ε

ε2

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy)

1
2

≤ (

∫ ε

ε2

∫ ε

ε2
L2
| (ε

2−x2)1+β

(x2−ε4)
1
4
− (ε2−y2)1+β

(y2−ε4)
1
4
|2[(exp() + exp())(exp2() + exp2())]

ε2δ|x− y|2
dxdy)

1
2

≤ (

∫ ε

ε2

∫ ε

ε2

|(ε2 − x2)1+β(y2 − ε4)
1
4 − (x2 − ε4)

1
4 (ε2 − y2)1+β|2|x− y|2

ε2δ(x2 − ε4)
1
2 (y2 − ε4)

1
2 |x− y|2

dxdy)
1
2

≤ (

∫ ε

ε2

∫ y

ε2
()2dxdy)

1
2 + (

∫ ε

ε2

∫ x

ε2
L2 |(ε2 − x2)1+β(y2 − ε4)

1
4 − (x2 − ε4)

1
4 (ε2 − y2)1+β|2|x− y|2

ε2δ(x2 − ε4)
1
2 (y2 − ε4)

1
2 |x− y|2

dydx)
1
2

≤ (

∫ ε

ε2

∫ y

ε2
()2dxdy)

1
2 + (

∫ ε

ε2

∫ x

ε2
L2 |(ε2 − x2)1+β − (ε2 − y2)1+β|2|x− y|2

ε2δ(y2 − ε4)
1
2 |x− y|2

dydx)
1
2

≤ (

∫ ε

ε2

∫ y

ε2
()2dxdy)

1
2 + (

∫ ε

ε2

∫ x

ε2
L2 (x+ y)2

ε2δ(y2 − ε4)
1
2

dydx)
1
2

≤ ε3−2δ(1− ε2)→ 0
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by adequaltly choosing 1 < δ < 3
2 .

3)

∫ ε2

0

∫ ε

ε2

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy

=

∫ ε2

0

∫ ε

ε2

| exp[ − (ε2−x2)1+β

(x−ε2)
1
4 )(x+ε2)

1
4

]|8

εδ|x− y|2
dxdy

≤ ε2
∫ ε

2

ε2
| 1

|x− ε2|2
| exp[ − 1

(x− ε2)
1
4

(ε2 − x2)1+β

εδ(x+ ε2)
1
4

]|8dx

+ ε2
∫ ε

ε
2

1

|x− ε2|2
| exp[ − 1

(x− ε2)
1
4

(ε2 − x2)1+β

εδ(x+ ε2)
1
4

]|8dx

→ 0,

the limit is obtained by choosing adequaltly β > 0, δ > 1 and using the
property of the exponential function for the first term and adequate ma-
jorizations fot the second term.

4)

∫ ε

ε2

∫ ε2

0

|φi,ε(x)− φi,ε(y)|2

|x− y|2
dxdy =

∫ ε

ε2

∫ ε2

0

| exp[ − y2−ε2
(y−ε2)(y+ε2)

]|2

|x− y|2
dxdy → 0,

proceed in the same way as for 3).
Using and combining adequatly these integrals on one hand and using

the fact ||uε − u||∞,∂Ω ≤ ||u||∞,Ω||φi,ε − 1||0,∂Ω → 0 on the other hand yield
the desired limit.

Since u is (1
2 + δ)−holder continuous, the result of lemma (2) implies

||uε − u|| 1
2
,∂Ω → 0 ≤ ||u||∞,∂Ω||φi,ε − 1|| 1

2
,∂Ω → 0.

One proves the following approximation lemma:

Lemme 3. The function uε defined by (9) satisfy the following limits

a) ||∇uε −∇u||0,Ω → 0, b) ||gε − g||
[H

1
2 ]′,Γ
→ 0

as ε→ 0

Proof. a) Consider the linear operator G that associate, for the fixed f ∈
L2(Ω), to each ud ∈ H

1
2 (Γ) the corresponding unique solution u of problem

(8).

G : [H
1
2 (Γ)]→ A ⊂ H1(Ω)

ud → K(ud) = u.
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Where A denote the range of H
1
2 (Γ) under G. The operator G is well

defined. Using the trace inequality on Γ, there exist c > 0

||ud|| 1
2
,Γ ≤ c||∇u||0,Ω

this implies the continuity of the operator G. By the Banach isomorphism
theorem the operator G−1 is continuous, this means that there exist c−1 > 0
such that for all u ∈ A we have

||∇u||0,Ω ≤ c−1||u|| 1
2
,Γ

thus
||∇u−∇uε||0,Ω ≤ c−1||u− uε|| 1

2
,Γ → 0, (13)

this proves a).

b) We make the same reasoning as for a). Given g ∈ [H
1
2 (Γ − Γ0)]′, let

w ∈ V be the unique solution of∫
Ω

2µε(w)ε(v) + λdivw div v dx =< g, v >
H−

1
2 (Γ),H

1
2 (Γ)

,∀v ∈ V. (14)

choosing v = w we obtain

||∇u||0,Ω ≤ c′||g||
[H

1
2 (Γ)]′

. (15)

Let K be the operator that associate to each data g ∈ [H
1
2 (Γ − Γ0)]′ the

solution function w of the corresponding problem (14):

K : [H
1
2 (Γ− Γ0)]′ → B ⊂ V

g → K(g) = w.

Where B denote the range of [H
1
2 ]′(Γ − Γ0) under K. Following existence

and uniqueness result for problem (14), K is well defined. An equivalent

formulation of (15) is: there exist a constant c > 0 such that ∀g ∈ [H
1
2 (Γ)]′,

we have
||K(g)||H1 ≤ c′||g||

[H
1
2 ]′(Γ)

= c′||g||
[H

1
2 ]′
,

i.e. K is continuous, furthermore it is linear and bijective. Then, according
to Banach’s isomorphism theorem, we deduce that ∃c′−1 > 0 such that

||g||
[H

1
2 (Γ)]′

≤ c′−1||∇w||0,Ω. (16)

Rewriting (4) with g ∈ H
1
2 (Γ) ≡ D ⊂ [H

1
2 (Γ)]′ then Subtracting (4) and

(12) member-to-member, one find that u− uε satisfy: ∀v ∈ V,∫
Ω

2µ(ε(uε)−ε(u))ε(v)+λ div(uε−u) div v dx =< gε−g, v >
H−

1
2 (Γ),H

1
2 (Γ)

.

(17)
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Applying (16) to w = uε − u we get:

||gε − g||
[H

1
2 (Γ)]′

≤ c′−1||∇uε −∇u||0,Ω.

Considering (13), we infer b).

We take now the idea of decomposition: consider the range of u by a
sobolev extension operator

P : H1(Ω)→ H1(R2)

which is always possible for the lipschitz domain Ω, this function is still
denoted u. Given ε > 0; there exists (Ωε

i)i=1,m an overlap of Ω and a
C1 partition of unity (ϕεi)i with respect to this overlap such that if M ε

i =
supp ϕεi ⊂ Ωε

i the following two conditions are satisfied:

(i) c1 : ∀i = 1,m : Γ∩∂Mi ∈ Dε in such a way that (supp ϕεiuε)∩Γ ⊂
Γi,

(ii) c2 : ∀ i 6= j: 2(µ+ λ) maxk=i,j ||∇(ϕεkuε)||0,Ωεi∩Ωεj
≤ ε,

Put uε,i := ϕεiuε. Since we are looking for explicit estimates, we should
use Poincaré, trace and Korn’s inequalities relatively to suitable geometrical
configuration i.e. for which they are explicitly formulated. The configuration
that best fits our polygonal domain Ω is the half-plane R2+ containing the
domain Ω for Korn’s inequality, the square Sd with edge’s length equal to
d(Ω) for the other two inequalities. Thus we determine theses constants
thanks to results available for this type of domains. All this suggests to
extend by zero the functions uε,i outside Ω. The definition of the functions
uε,i is adapted to make such an extension.

3 Technical tools

We introduce some useful lemmas, which will play essential roles in proving
theorem (1).

3.1 Extension of the functions uε,i

Given ε > 0, we consider for i, 1 ≤ i ≤ m, the extension by zero of uε,i from
Ω to the half-plane R2+ containing Ω such that Γi ⊂ ∂R2+. The extended
function is defined by{

ũε,i = uε,i, a.e. x ∈M ε
i ∩ Ω,

ũε,i = 0, x ∈ R2+ −M ε
i ∩ Ω.

(18)
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We have obviously the following

||∂xi ũε,i||0,R2+ = ||∂xi ũε,i||0,Mε
i ∩Ω = ||∂xiuε,i||0,Mε

i ∩Ω. (19)

The inequalities are established for the extended H1 regular functions de-
fined on a square containing Ω.

3.2 Explicit constant in the Poincaré inequality

We show in the following lemma that the function uε,i ∈ Vi satisfy the
Poincaré inequality for which we determine explicitly the constant.

Lemme 4. For all i, 1 < i < m, the function uε,i satisfy:

||uε,i||0,Ω ≤ d(Ω)||∇uε,i||0,Ω, (20)

the constant d(Ω) means the diameter of Ω.

Proof. We establish Poincaré inequality for one of the two components
ulε,i, l = 1, 2, the same estimate hold with the other. Note abcd the square
Sd such that a = (a1, a2), b = (b1, b2), c = (c1, c2) et d = (d1, d2) and such
that Γi ⊂ Si := [c, d]; so ũlε,i = 0 on ∂Sd − Γi.

Since ũlε,i is absolutely continuous on the lines parallel to the coordinate

axis, then applying the fundamental theorem of calculus to ũlε,i on
Sd for l = 1, 2 , we have for all (x1, x2) ∈ [a1, d1]× [a2, b2]

ũlε,i(x1, x2) =

∫ x1

a1

∂x1 ũ
l
ε,i(s, x2)ds+ ũlε,i(a1, x2).

Since (a1, x2) ∈ ∂Sd − Γi, then ∀(x1, x2) ∈ [a1, d1]× [a2, b2]

ũlε,i(x1, x2) =

∫ x1

a1

∂x1 ũ
l
ε,i(s, x2)ds.

Using Cauchy-Schwarz inequality ∀(x1, x2) ∈ [a1, d1]× [a2, b2]

|ũlε,i(x1, x2)| ≤ |x1 − a|
1
2 (

∫ x1

a1

|∂x1 ũlε,i(s, x2)|2ds)
1
2 .

Taking the square of the two hand sides of this inequality and using the
fact |x1 − a| ≤ d(Ω): ∀(x1, x2) ∈ [a1, d1]× [a2, b2] yields

|ũlε,i(x1, x2)|2 ≤ |x1−a|
∫ x1

a1

|∂x1 ũlε,i(s, x2)|2ds ≤ d(Ω)

∫ d1

a1

|∂x1 ũlε,i(s, x2)|2ds.

Integrating on Sd with respect to the variables x1 and x2:
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||ũlε,i||20,Sd =

∫ b2

a2

∫ d1

a1

|ũlε,i(x1, x2)|2dx1dx2 ≤ d(Ω)

∫ b2

a2

∫ d1

a1

∫ d1

a1

|∂xũlε,i(s, x2)|2dsdx2dx1

≤ d2(Ω)

∫ ∫
Sd

|∂xũlε,i(s, x2)|2dsdx2.

According to definition 18 and by considering (19) we get

||ulε,i||20,Ω ≤ d2(Ω)||∇ulε,i||20,Ω.

We infer that

||uε,i||20,Ω = ||u1
ε,i||20,Ω+||u2

ε,i||20,Ω ≤ d2(Ω)(||∇u1
ε,i||20,Ω+||∇u2

ε,i||20,Ω) = d2(Ω)||∇uε,i||20,Ω.

3.3 Explicit constant in the trace inequality

Using mainly the inequality of Poincaré stated in lemma (4), one establishes
a trace inequality on Γi for the function uε,i with an explicit constant.

Lemme 5. For all i, the functions uε,i satisfy:

||uε,i||0,Γi ≤ ctr||∇uε,i||0,Ω (21)

where ctr := 2
√
d(Ω) is the trace constant.

Proof. Let ũε,i be defined on Sd such that Γi ⊂ ∂Sd. We establish trace
inequality for one of the two components ulε,i, l = 1, 2, the same estimate
hold with he other. Applying the inequality of trace on the boundary of a
prallelogram (see lemma 4.2 in [3]) for ũlε,i on Si, yields

||ũlε,i||20,Γi ≤ ||ũ
l
ε,i||20,Si ≤ 2

|S|
|Sd|
||ũlε,i||20,Sd + 2

|Sd|
|S|
||∇ũlε,i||20,Sd .

Using estimate (4) we find

||ũlε,i||20,Γi ≤ 2
|S|
|Sd|

d2(Ω)||∇ũlε,i||20,Sd + 2
|Sd|
|S|
||∇ũlε,i||20,Sd ,

hence by simplifying

||ũlε,i||20,Γi ≤ 4d(Ω)||∇ũlε,i||20,Sd .

Using 18 defining ũlε,i and (19) we have

||ulε,i||20,Γi ≤ 4d(Ω)||∇ulε,i||20,Ω.

Summing over l = 1, 2 we get

||uε,i||20,Γi ≤ 4d(Ω)||∇uε,i||20,Ω.
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We need also the following elementary technical lemma:

Lemme 6. Assume v ∈ H1(Ω), then

||ε(u)||0,Ω ≤ ||∇u||0,Ω , ||div u||0,Ω ≤
√

2||∇u||0,Ω. (22)

Proof. On one side∫
Ω
|ε(u)|22 dx =

1

4

2∑
i,j=1

∫
Ω

(
∂ui

∂xj
+
∂uj

∂xi
)2dx =

1

2

2∑
i,j=1

∫
Ω
|∂u

i

∂xj
|2 + (

∂ui

∂xj

∂uj

∂xi
)dx

≤ 1

2

∫
Ω

(|∇u|22 +
1

2

2∑
i,j=1

(|∂u
i

∂xj
|2 + |∂u

j

∂xi
|2))dx

≤ 1

2

∫
Ω

(|∇u|22 +
1

2
(|∇u|22 + |∇u|22))dx

≤
∫

Ω
|∇u|22dx = ||∇u||2L2(Ω)2 .

Therefore (
∫

Ω |ε(u)|22 dx)
1
2 ≤ ||∇u||0,Ω. On the other side∫

Ω
div2 u dx =

∫
Ω
|∂x1u1 + ∂x2u

2|2dx ≤
∫

Ω
(|∂x1u1|+ |∂x2u2|)2dx

≤ 2

∫
Ω
|∂x1u1|2 + |∂x2u2|2dx

≤ 2

∫
Ω
|∇u1|22 + |∇u2|22dx = 2||∇u||2L2(Ω)2 .

Therefore (
∫

Ω div2u dx)
1
2 ≤
√

2||∇u||0,Ω.

4 Proof of Theorem 1

To prove the estimate of theorem (1), we choose as a test function in (12) the
compactly supported functions uε,i and use Korn’s inequality, Poincaré’s and
trace’s inequalities to explicitly upper bound ||∇uε,i||0,Ω. This leads, thanks
to the approximation lemma (3), to explicitly upper bound ||∇u||0,Ω.

Proof. Fix ε > 0.
Step (i) At first, we establish an upper bound estimate for ||ε(uε,i)||0,Ω. We
recall that uε verifies:

∀v ∈ V,
∫

Ω
2µε(uε)ε(v)+λ div uε div v dx =

∫
Ω
fεv dx+ < gε, v >

[H
1
2 ]′(Γ),H

1
2 (Γ)

,
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this function is expressed uε =
∑

i uε,i =
∑

i uεϕi. Choose v = uε,i, this
gives∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx = −
∑
j,j 6=i

2

∫
Mε
i ∩Mε

j

µε(uε,j)ε(uε,i) + λ div uε,j div uε,i dx

+

∫
Mε
i

fεuε,idx+ < gε, uε,i >
[H

1
2 ]′(Γ),H

1
2 (Γ)

.

Applying Cauchy-Schwarz inequality yields∫
Mε
i

2µε2(uε,i) + λdiv2 uε,i dx ≤
∑
j,j 6=i

2µ||ε(uε,j)||0,Mε
i ∩Mε

j
||ε(uε,i)||0,Mε

i ∩Mε
j

+ 2λ||div uε,j ||0,Mε
i ∩Mε

j
||div uε,i||0,Mε

i ∩Mε
j

+ ||fε||0,Mε
i
||uε,i||0,Mε

i
+ ||gε||

[H
1
2 ]′,Γ
||uε,i|| 1

2
,Γi

Lemma (6) allows us to write the following∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
∑
j,j 6=i

2µ||∇uε,j ||0,Mε
i ∩Mε

j
||∇uε,i||0,Mε

i ∩Mε
j

+ 2λ||∇uε,j ||0,Mε
i ∩Mε

j
||∇uε,i||0,Mε

i ∩Mε
j

+ ||fε||0,Mε
i
||uε,i||0,Ω + ||gε||

[H
1
2 ]′,Γ
||uε,i|| 1

2
,Γ.

Using (20) and (21) we get∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
∑
j,j 6=i

(2µ+ 2λ)||∇uε,j ||0,Mε
i ∩Mε

j
||∇uε,i||0,Mε

i ∩Mε
j

+ cp||fε||0,Mε
i
||∇uε,i||0,Ω + ctr||gε||

[H
1
2 ]′,Γ
||∇uε,i||0,Ω

The condition c2 of the definition of the partition of unity gives∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
ε

2
||∇uε,i||0,Mε

i
+ cp||fε||0,Mε

i
||∇uε,i||0,Mε

i

(23)

+ ctr||gε||
[H

1
2 ]′,Γ
||∇uε,i||0,Mε

i
.

Estimate (23) becomes

2µ||ε(uε,i)||20,Mε
i
≤ ||∇uε,i||0,Mε

i
(ε+ cp||fε||0,Mε

i
+ ctr||gε||

[H
1
2 ]′,Γ

). (24)

Step (ii) We give a lower-bound for ||ε(uε,i)||0,Mε
i

in term of ||∇u||0,Mε
i

for
all i, 1 ≤ i ≤ m. Since the deformation is a linear application with respect
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to the first derivatives of uε,i, then with the same notation as in (18) and by
using (19) we have

2µ||ε(ũε,i)||20,R2+ = 2µ||ε(ũε,i)||20,Ω = 2µ||ε(uε,i)||20,Mε
i
. (25)

Applying the estimate in corollary 1.2.2 of [5] to ũε,i gives

1

2
× 2µ||∇ũε,i||20,R2+ ≤ 2µ||ε(ũε,i)||20,R2+ .

Hence, by using (25), ∀i, 1 ≤ i ≤ m+ 1, we get

µ||∇uε,i||20,Ω = µ||∇ũε,i||20,R2+ ≤ 2µ||ε(ũε,i)||20,R2+ = 2µ||ε(uε,i)||20,Ω. (26)

Combining (24) and (26) we get for all i

µ||∇uε,i||20,Mε
i
≤
∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤ ||∇uε,i||0,Mε
i
(ε+ cp||fε||0,Mε

i
+ ctr||gε||

[H
1
2 ]′,Γ

),

i.e.

µ||∇uε,i||0,Mε
i
≤ ε+ cp||fε||0,Mε

i
+ ctr||gε||

[H
1
2 ]′,Γ

. (27)

Taking the square of the two hand sides of (27) and using Young inequality

µ2||∇uε,i||20,Mε
i
≤ 3(ε2 + c2

p||fε||20,Mε
i

+ c2
tr||gε||2

[H
1
2 ]′,Γ

).

By summing over i = 1,m

µ2
∑
i

||∇uε,i||20,Ω ≤ 3(mε2 + c2
p

∑
||fε||20,Mε

i
+ c2

tr

∑
i

||gε||2
[H

1
2 ]′,Γ

). (28)

Applying the appropriate identity on the left hand side of (28)

µ2||∇
∑
i

uε,i||20,Ω ≤ 2µ2
∑
i 6=j

∫
Mi∩Mj

∇uε,i∇uε,jdx (29)

+ 3(mε2 + c2
p||fε||20,Ω + c2

tr||gε||2
[H

1
2 ]′,Γ

).

Cauchy-Schwarz inequality yields using condition c2

2µ2

∫
Mε
i ∩Mε

j

∇uε,i∇uε,jdx ≤ 2µ2||∇uε,i||Mε
i ∩Mε

j
||∇uε,j ||Mε

i ∩Mε
j
≤ ε2.

Inequality (29) becomes

µ2||∇uε||20,Ω ≤ ε2 + 3(mε2 + c2
p||fε||20,Ω + c2

tr||gε||2
[H

1
2 ]′,Γ

),
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taking the square root of the two hand sides,

||∇uε||0,Ω ≤
1

µ
(ε
√

3m+ 1 + 3cp||fε||0,Ω + 3ctr||gε||
[H

1
2 ]′,Γ

).

Letting ε→ 0 and using the approximation lemma (3)

||∇u||0,Ω ≤
1

µ
(3cp||f ||0,Ω + 3ctr||g||

[H
1
2 ]′(Γ)

). (30)

Since g ∈ L2(Γ), by continuity of the injection

I : H
1
2 (Γ) ≡ D ⊂ [H

1
2 (Γ)]′ → [H

1
2 (Γ)]′,

the estimate in Theorem (1) is deduced immediately from (30).

Finally, in order to get the explicit H1 estimate of uε, and so that of u,
we use the poincaré inequality (20) to bound ||uε||0,Ω at one hand and the
estimate (7) at the other hand.

Conclusion

In the point of view of numerical analysis, estimate of theorem (1) is inter-
esting. Indeed, error estimates in finite element method of the type

||u− uh||0,Ω ≤ Ch||∇u||0,Ω

involve the quantity ||∇u||0,Ω. Assuming that the constant C can be calcu-
lated, then it is possible to explicitly bound ||∇u||0,Ω which implies a better
estimate of ||u||0,Ω.

Another interesting fact in the estimation (7) that makes it effective is
that it does not depend on the characteristic parameters of the polygonal
domain Ω, namely, the edges’s length, their number as well as the measures
of the angles. The estimate is therefore indifferently applicable to all poly-
gons. All this allows the possibility to generalize this result to a C1 class
domain.
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