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Explicit H1-Estimate for the solution of the Lamé
system with mixed boundary conditions.
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aL2CSP, U.M.M.T.O, 15000 Tizi-Ouzou, ALGERIA

Abstract

In this paper we consider Lamé system of equations on a polygonal domain with

mixed boundary conditions of Dirichlet-Neumann type. An explicit L2-estimate

for the gradient of the solution of this problem is established. This leads to an

explicit bound of the H1 norm of this solution. Note that the obtained explicit

upper bound is not optimal.

Keywords: Lamé system; Korn’s inequality; Poincaré inequality; inequality of

trace; explicit estimates.
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1. Introduction

The static equilibrium of a deformable structure occupying a domain Ω sub-

set of R2 is governed by the Lamé linear elasto-static system of equations, see [1].

In this paper, we restrict the study to a domain Ω whose boundary has a polyg-

onal shape that posses m+ 1 edges with m ≥ 2. We denote by Γ = ∪Γi := ∂Ω

its boundary and by d(Ω) its diameter. This system is given by


Lu = f a.e in Ω,

σ · −→ni = gi on (Γ− Γ0) ∩ Γi,

u = 0 on Γ0.

1 ≤ i ≤ m (1)
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We assume that condition (H2) of Theorem 2.3 stated in the paper [2] is

satisfied by Γ. This condition is formulated in (5) below. The vector function

u = (u1, u2) satisfying the system (1) describes a displacement in the plane.

In this model, we impose a Dirichlet homogeneous condition on Γ0 and a Neu-

mann condition on the rest of the boundary. The equality on the boundary is

understood in the sense of the trace. We denote L the Lamé operator defined

by:

Lu := −div σ(u) = − div[2µε(u) + λTr ε(u)Id] (2)

The data functions f and g at the right hand side satisfy f ∈ [L2(Ω)]2 and

g ∈ [H
1
2 (Γ)]2. The vector −→ni represents the outside normal to Γi. We write µ

and λ the Lamé’s coefficients. We place ourselves in the isotropic framework,

the deformation tensor ε is defined by

ε(u) =
1

2
(∇u+∇tu), (3)

The weak form of problem (1) is (see [1], [3]):

find u ∈ V ; ∀v ∈ V∫
Ω

2µε(u)ε(v) + λ div u div v dx =

∫
Ω

fv dx+

∫
Γ−Γ0

gv dσ(x) (4)

where

V = {v ∈ [H1(Ω)]2; v = 0 on Γ0}

The problem of existence and uniqueness in V of the solution of (4) is classic,

(see [3]).

If we denote θ the interior angle between Γj and Γk such that Γj ∩ Γk 6= ∅

and if we denote γ the interior angle between the Neumann part of the boundary

ΓN and the Dirichlet part of the boundary ΓD such that ΓN ∩ΓD 6= ∅, then we

impose

θ ≤ 2π, γ ≤ π. (5)

The reason behind this assumption on the boundary is to get a better regularity

of the solution of the weak problem (4). Precisely, in that case we have, following
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[2], u ∈ [H
3
2 +ε(Ω)]2, which implies in particular, using the appropriate Sobolev

embedding, see [4], that u ∈ [C0, 12 +ε(Ω)]2 i.e. u is ( 1
2 + ε)−holder continuous.

Let us denote

||ε(u)||0,Ω :=(

∫
Ω

ε(u)ε(u) dx)
1
2 , ||∇u||0,Ω :=(

∫
Ω

|∇u1|2 + |∇u2|2 dx)
1
2 .

By using the second Korn inequality, see [5], the trace and the Poincaré’s

inequalities, one easily get from (4) the following estimate

||∇u||0,Ω ≤
1

ck

1

2µ
(cp||f ||0,Ω + cp,t||g|| 1

2 ,Γ
), (6)

where cp,t is a constant that depends of Poincaré constant and the constant

of trace inequality. ck is the constant of the Korn’s inequality. Note that the

value of the constant ck and cp,t appearing in (6) are unknown and can not be

explicitly lower-bounded in the general case. We propose to determine explicitly

these constants. The main result of this work is stated in the following theorem:

Theorem 1.1. The unique weak solution u of (4) on the polygonal domain Ω

admits the explicit upper bound

||∇u||0,Ω ≤
3

µ
(cp||f ||0,Ω + ctr||g|| 1

2 ,Γ
) (7)

where cp := d(Ω), ctr := 2
√
d(Ω) and d(Ω) represent the diameter of Ω.

The estimate (7) is similar to (6), the constants that are present are the same.

Before demonstrating this theorem, it is useful to go through some remarks and

results. Consider the auxiliary function uε ∈ V defined by:

uε(x) = φε(x)u(x) (8)

with:


φε(x) = 0, ||x− xi|| ≤

√
ε

2

φε(x) = 1− exp[
(||x−xi||2− ε

22
)2

||x−xi||2−ε ],
√
ε

2 < ||x− xi|| <
√
ε

φε(x) = 1,
√
ε ≤ ||x− xi||
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the functions φε ∈ C2(R2) are identically zero on a sufficiently small neigh-

borhood of the vertices.

In the sequel, we denote by uε the vector-valued function uε = (u1
ε , u

2
ε).

2. Weak problem for uε and an approximation result

First of all, we construct the weak problem verified by the approximating

function uε. With the approximating displacement uε ∈ V is associated the

approximating stress tensor

σε := 2µε(uε) + λTr ε(uε)I, (9)

since Luε = div σε = fε, then σε ∈ [H(div)(Ω)]2×2. For a fixed ε, by density

of the regular functions in the space H(div)(Ω), there exists σnε ∈ [C∞(Ω)]2×2

such that σnε → σε in [H(div)(Ω)]2×2. This means

||σnε − σε||div,Ω := || div σnε − div σε||0,Ω + ||σnε − σε||0,Ω → 0 (10)

when n → ∞. We put div σnε = fnε , then integrating by part against a test

function v ∈ [C∞(Ω)]2 yields the following∫
Ω

σnε∇v =

∫
Ω

fnε v +

∫
Γ

σnε · −→n vdσ.

Passing to the limit in n using (10), we find ∀v ∈ C∞(Ω)∫
Ω

σε∇v =

∫
Ω

fεv + < σε · −→n , v >
[H

1
2 ]′(Γ)×[H

1
2 ](Γ)

,

where σε · −→n =: gε ∈ [H
1
2 (Ω)]′ is the image of the normal component σε by

the trace operator on Γ. Since C∞(Ω) is a dense subset of V ⊂ H1(Ω), then,

according to the definition (3) and the expression (9), the function uε satisfy

∀v ∈ V,∫
Ω

2µε(uε)ε(v) +

∫
Ω

λ div uε div v =

∫
Ω

fεv + < gε, v >
[H

1
2 ]′(Γ)×H

1
2 (Γ)

. (11)

One proves the following approximation lemma:

Lemma 2.1. The function uε defined by (8) satisfy the following limits

a) ||∇uε −∇u||0,Ω → 0, b) ||fε − f ||0,Ω → 0, c) ||gε − g||
[H

1
2 ]′,Γ

→ 0
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Proof:. a) It is easy to see that φε ∈ C1(B(xi,R2)). It is shown using Lebesgue’s

dominated convergence theorem that ||φε−1||p,Ω → 0 for all p > 1, which implies

that ||φε − 1||∞,Ω → 0. On the other hand

||∇uε −∇u||0,Ω = ||u∇φε + φε∇u−∇u||0,Ω

≤ ||u∇φε||0,Ω + ||(φε − 1)∇u||0,Ω.

Using the fact that u is ( 1
2 + ε)−holder continuous we have

||∇uε −∇u||0,Ω ≤ ||u||∞||∇φε||0,Ω + ||(φε − 1)||∞,Ω||∇u||0,Ω.

One time again, the application of the dominated convergence theorem implies

that

||∇φε||0,Ω → 0,

therefore

||∇uε −∇u||0,Ω → 0. (12)

We prove the two remaining points b) and c) simultaneously. Rewriting (4) with

g ∈ H 1
2 (Γ) ≡ D ⊂ [H

1
2 (Γ)]′ and choosing v = u we obtain

||∇u||0,Ω ≤ c(||f ||0,Ω + ||g||
[H

1
2 (Γ)]′

). (13)

Let K be the operator that associate to each data pair (f, g) ∈ L2(Ω)× [H
1
2 (Γ)]′

the solution function u of the corresponding problem (11):

K : L2(Ω)× [H
1
2 (Γ)]′ → H1(Ω)

(f, g)→ K(f, g) = u.

Following existence and uniqueness result for problem (11), K is well defined.

An equivalent formulation of (13) is: there exist a constant c > 0 such that

∀(f, g) ∈ L2(Ω)× [H
1
2 (Γ)]′, we have

||K(f, g)||H1 ≤ c||(f, g)||
L2×[H

1
2 ]′

= c(||f ||L2(Ω) + ||g||
[H

1
2 ]′

),
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i.e. K is continuous, furthermore it is linear and bijective. Then, according to

Banach’s isomorphism theorem, we deduce that ∃c−1 > 0 such that

||f ||0,Ω + ||g||
[H

1
2 (Γ)]′

≤ c−1||∇u||0,Ω. (14)

Subtracting (4) and (11) member-to-member, one find that u−uε satisfy: ∀v ∈

V,∫
Ω

2µ(ε(uε)− ε(u))ε(v) + λ div(uε − u) div v dx =< gε − g, v >
H−

1
2 (Γ),H

1
2 (Γ)

.

(15)

Applying (14) to uε − u we get:

||fε − f ||0,Ω + ||gε − g||
[H

1
2 (Γ)]′

≤ c−1||∇uε −∇u||0,Ω.

Considering (12), we infer b) and c).

�

We take now the idea of decomposition: we consider the image of u by an

extension operator

P : H1(Ω)→ H1(R2)

which is always possible for the lipschitz domain Ω. Given ε > 0; there exists

(Ωεi)i=1,m an overlap of Ω and a C1 partition of unity (ϕεi)i with respect to

this overlap such that if M ε
i = supp ϕεi ⊂ Ωεi the following two conditions are

satisfied:

(i) c1 : ∀i = 1,m : Γ∩∂Mi ∈ Dε in such a way that (supp ϕεiuε)∩Γ ⊂ Γi,

(ii) c2 : ∀ i 6= j: 2(µ+ λ) maxk=i,j ||∇(ϕεkuε)||0,Ωε∩Ωεj
≤ ε,

where

Dε := {x ∈ R2 such that ||x− xi|| < ε}.

Put uε,i := ϕεiuε. Since we are looking for explicit estimates, we should use

these inequalities relatively to a geometrical configuration for which they are

explicitly formulated. The configuration that best fits our polygonal domain Ω
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is the half-plane R2+ containing the domain Ω for Korn’s inequality, the square

Sd with edge’s length equal to d(Ω) for the other two inequalities. Thus we

determine theses constants thanks to results available for this type of domains.

All this suggests to extend by zero the functions uε,i outside Ω. The definition

of the functions uε,i is adapted to make such an extension.

3. Technical tools

We introduce some useful lemmas, which will play essential roles in proving

theorem (1.1).

3.1. Extension of the functions uε,i

Given ε > 0, we consider for i, 1 ≤ i ≤ m, the extension by zero of uε,i

from Ω to the half-plane R2+ containing Ω such that Γi ⊂ ∂R2+. The extended

function is defined by ũε,i = uε,i, a.e. x ∈M ε
i ∩ Ω,

ũε,i = 0, x ∈ R2+ −M ε
i ∩ Ω.

(16)

We have obviously the following

||∂xi ũε,i||0,R2+ = ||∂xi ũε,i||0,Mε
i ∩Ω = ||∂xiuε,i||0,Mε

i ∩Ω. (17)

The inequalities are established for the extended H1 regular functions defined

on a square containing Ω.

3.2. Explicit constant in the Poincaré inequality

We show in the following lemma that the function uε,i ∈ Vi satisfy the

Poincaré inequality for which we determine explicitly the constant.

Lemma 3.1. For all i, 1 < i < m, the function uε,i satisfy:

||uε,i||0,Ω ≤ d(Ω)||∇uε,i||0,Ω, (18)

the constant d(Ω) means the diameter of Ω.
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Proof:. We establish Poincaré inequality for one of the two components ulε,i, l =

1, 2, the same estimate hold with the other. Note abcd the square Sd such that

a = (a1, a2), b = (b1, b2), c = (c1, c2) et d = (d1, d2) and such that Γi ⊂ Si :=

[c, d]; so ũlε,i = 0 on ∂Sd − Γi.

Since ũlε,i is absolutely continuous on the lines parallel to the coordinate

axis, then applying the fundamental theorem of calculus to ũlε,i on

Sd for l = 1, 2 , we have for all (x1, x2) ∈ [a1, d1]× [a2, b2]

ũlε,i(x1, x2) =

∫ x1

a1

∂x1 ũ
l
ε,i(s, x2)ds+ ũlε,i(a1, x2).

Since (a1, x2) ∈ ∂Sd − Γi, then ∀(x1, x2) ∈ [a1, d1]× [a2, b2]

ũlε,i(x1, x2) =

∫ x1

a1

∂x1 ũ
l
ε,i(s, x2)ds.

Using Cauchy-Schwarz inequality ∀(x1, x2) ∈ [a1, d1]× [a2, b2]

|ũlε,i(x1, x2)| ≤ |x1 − a|
1
2 (

∫ x1

a1

|∂x1 ũ
l
ε,i(s, x2)|2ds) 1

2 .

Taking the square of the two hand sides of this inequality and using the fact

|x1 − a| ≤ d(Ω): ∀(x1, x2) ∈ [a1, d1]× [a2, b2] yields

|ũlε,i(x1, x2)|2 ≤ |x1 − a|
∫ x1

a1

|∂x1
ũlε,i(s, x2)|2ds ≤ d(Ω)

∫ d1

a1

|∂x1
ũlε,i(s, x2)|2ds.

Integrating on Sd with respect to the variables x1 and x2:

||ũlε,i||20,Sd =

∫ b2

a2

∫ d1

a1

|ũlε,i(x1, x2)|2dx1dx2 ≤ d(Ω)

∫ b2

a2

∫ d1

a1

∫ d1

a1

|∂xũlε,i(s, x2)|2dsdx2dx1

≤ d2(Ω)

∫ ∫
Sd

|∂xũlε,i(s, x2)|2dsdx2.

According to definition 16 and by considering (17) we get

||ulε,i||20,Ω ≤ d2(Ω)||∇ulε,i||20,Ω.

We infer that

||uε,i||20,Ω = ||u1
ε,i||20,Ω+||u2

ε,i||20,Ω ≤ d2(Ω)(||∇u1
ε,i||20,Ω+||∇u2

ε,i||20,Ω) = d2(Ω)||∇uε,i||20,Ω.

�
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3.3. Explicit constant in the trace inequality

Using mainly the inequality of Poincaré stated in lemma (3.1), one estab-

lishes a trace inequality on Γi for the function uε,i with an explicit constant.

Lemma 3.2. For all i, the functions uε,i satisfy:

||uε,i||0,Γi ≤ ctr||∇uε,i||0,Ω (19)

where ctr := 2
√
d(Ω) is the trace constant.

Proof:. Let ũε,i be defined on Sd such that Γi ⊂ ∂Sd. We establish trace in-

equality for one of the two components ulε,i, l = 1, 2, the same estimate hold with

he other. Applying the inequality of trace on the boundary of a prallelogram

(see lemma 4.2 in [6]) for ũlε,i on Si, yields

||ũlε,i||20,Γi ≤ ||ũ
l
ε,i||20,Si ≤ 2

|S|
|Sd|
||ũlε,i||20,Sd + 2

|Sd|
|S|
||∇ũlε,i||20,Sd .

Using estimate (3.1) we find

||ũlε,i||20,Γi ≤ 2
|S|
|Sd|

d2(Ω)||∇ũlε,i||20,Sd + 2
|Sd|
|S|
||∇ũlε,i||20,Sd ,

hence by simplifying

||ũlε,i||20,Γi ≤ 4d(Ω)||∇ũlε,i||20,Sd .

Using 16 defining ũlε,i and (17) we have

||ulε,i||20,Γi ≤ 4d(Ω)||∇ulε,i||20,Ω.

Summing over l = 1, 2 we get

||uε,i||20,Γi ≤ 4d(Ω)||∇uε,i||20,Ω.

�

We need also the following elementary technical lemma:

Lemma 3.3. Assume v ∈ H1(Ω), then

||ε(u)||0,Ω ≤ ||∇u||0,Ω , ||div u||0,Ω ≤
√

2||∇u||0,Ω. (20)
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Proof:. On one side∫
Ω

|ε(u)|22 dx =
1

4

2∑
i,j=1

∫
Ω

(
∂ui

∂xj
+
∂uj

∂xi
)2dx =

1

2

2∑
i,j=1

∫
Ω

| ∂u
i

∂xj
|2 + (

∂ui

∂xj

∂uj

∂xi
)dx

≤ 1

2

∫
Ω

(|∇u|22 +
1

2

2∑
i,j=1

(| ∂u
i

∂xj
|2 + |∂u

j

∂xi
|2))dx

≤ 1

2

∫
Ω

(|∇u|22 +
1

2
(|∇u|22 + |∇u|22))dx

≤
∫

Ω

|∇u|22dx = ||∇u||2L2(Ω)2 .

Therefore (
∫

Ω
|ε(u)|22 dx)

1
2 ≤ ||∇u||0,Ω. On the other side∫

Ω

div2 u dx =

∫
Ω

|∂x1u
1 + ∂x2u

2|2dx ≤
∫

Ω

(|∂x1u
1|+ |∂x2u

2|)2dx

≤ 2

∫
Ω

|∂x1
u1|2 + |∂x2

u2|2dx

≤ 2

∫
Ω

|∇u1|22 + |∇u2|22dx = 2||∇u||2L2(Ω)2 .

Therefore (
∫

Ω
div2u dx)

1
2 ≤
√

2||∇u||0,Ω.

�

4. Proof of Theorem 1.1

To prove the estimate of theorem (1.1), we choose as a test function in (11)

the compactly supported functions uε,i and use Korn’s inequality, Poincaré’s and

trace’s inequalities to explicitly upper bound ||∇uε,i||0,Ω. This leads, thanks to

the approximation lemma (2.1), to explicitly upper bound ||∇u||0,Ω.

Proof:. Fix ε > 0.

Step (i) At first, we establish an upper bound estimate for ||ε(uε,i)||0,Ω. We

recall that uε verifies:

∀v ∈ V,
∫

Ω

2µε(uε)ε(v)+λ div uε div v dx =

∫
Ω

fεv dx+ < gε, v >
[H

1
2 ]′(Γ),H

1
2 (Γ)

,

10



this function is expressed uε =
∑
i uε,i =

∑
i uεϕi. Choose v = uε,i, this gives∫

Mε
i

2µε2(uε,i) + λ div2 uε,i dx = −
∑
j,j 6=i

2

∫
Mε
i ∩Mε

j

µε(uε,j)ε(uε,i) + λ div uε,j div uε,i dx

+

∫
Mε
i

fεuε,idx+ < gε, uε,i >
[H

1
2 ]′(Γ),H

1
2 (Γ)

.

Applying Cauchy-Schwarz inequality yields∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
∑
j,j 6=i

2µ||ε(uε,j)||0,Mε
i ∩Mε

j
||ε(uε,i)||0,Mε

i ∩Mε
j

+ 2λ||div uε,j ||0,Mε
i ∩Mε

j
||div uε,i||0,Mε

i ∩Mε
j

+ ||fε||0,Mε
i
||uε,i||0,Mε

i
+ ||gε||

[H
1
2 ]′,Γ
||uε,i|| 1

2 ,Γi

Lemma (3.3) allows us to write the following∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
∑
j,j 6=i

2µ||∇uε,j ||0,Mε
i ∩Mε

j
||∇uε,i||0,Mε

i ∩Mε
j

+ 2λ||∇uε,j ||0,Mε
i ∩Mε

j
||∇uε,i||0,Mε

i ∩Mε
j

+ ||fε||0,Mε
i
||uε,i||0,Ω + ||gε||

[H
1
2 ]′,Γ
||uε,i|| 1

2 ,Γ
.

Using (18) and (19) we get∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
∑
j,j 6=i

(2µ+ 2λ)||∇uε,j ||0,Mε
i ∩Mε

j
||∇uε,i||0,Mε

i ∩Mε
j

+ cp||fε||0,Mε
i
||∇uε,i||0,Ω + ctr||gε||

[H
1
2 ]′,Γ
||∇uε,i||0,Ω

The condition c2 of the definition of the partition of unity gives∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤
ε

2
||∇uε,i||0,Mε

i
+ cp||fε||0,Mε

i
||∇uε,i||0,Mε

i

(21)

+ ctr||gε||
[H

1
2 ]′,Γ
||∇uε,i||0,Mε

i
.

Estimate (21) becomes

2µ||ε(uε,i)||20,Mε
i
≤ ||∇uε,i||0,Mε

i
(ε+ cp||fε||0,Mε

i
+ ctr||gε||

[H
1
2 ]′,Γ

). (22)

11



Step (ii) We give a lower-bound for ||ε(uε,i)||0,Mε
i

in term of ||∇u||0,Mε
i

for all

i, 1 ≤ i ≤ m. Since the deformation is a linear application with respect to the

first derivatives of uε,i, then with the same notation as in (16) and by using (17)

we have

2µ||ε(ũε,i)||20,R2+ = 2µ||ε(ũε,i)||20,Ω = 2µ||ε(uε,i)||20,Mε
i
. (23)

Applying the estimate in corollary 1.2.2 of [7] to ũε,i gives

1

2
× 2µ||∇ũε,i||20,R2+ ≤ 2µ||ε(ũε,i)||20,R2+ .

Hence, by using (23), ∀i, 1 ≤ i ≤ m+ 1, we get

µ||∇uε,i||20,Ω = µ||∇ũε,i||20,R2+ ≤ 2µ||ε(ũε,i)||20,R2+ = 2µ||ε(uε,i)||20,Ω. (24)

Combining (22) and (24) we get for all i

µ||∇uε,i||20,Mε
i
≤

∫
Mε
i

2µε2(uε,i) + λ div2 uε,i dx ≤ ||∇uε,i||0,Mε
i
(ε+ cp||fε||0,Mε

i
+ ctr||gε||

[H
1
2 ]′,Γ

),

i.e.

µ||∇uε,i||0,Mε
i
≤ ε+ cp||fε||0,Mε

i
+ ctr||gε||

[H
1
2 ]′,Γ

. (25)

Taking the square of the two hand sides of (25) and using Young inequality

µ2||∇uε,i||20,Mε
i
≤ 3(ε2 + c2p||fε||20,Mε

i
+ c2tr||gε||2

[H
1
2 ]′,Γ

).

By summing over i = 1,m

µ2
∑
i

||∇uε,i||20,Ω ≤ 3(mε2 + c2p
∑
||fε||20,Mε

i
+ c2tr

∑
i

||gε||2
[H

1
2 ]′,Γ

). (26)

Applying the appropriate identity on the left hand side of (26)

µ2||∇
∑
i

uε,i||20,Ω ≤ 2µ2
∑
i6=j

∫
Mi∩Mj

∇uε,i∇uε,jdx (27)

+ 3(mε2 + c2p||fε||20,Ω + c2tr||gε||2
[H

1
2 ]′,Γ

).

Cauchy-Schwarz inequality yields using condition c2

2µ2

∫
Mε
i ∩Mε

j

∇uε,i∇uε,jdx ≤ 2µ2||∇uε,i||Mε
i ∩Mε

j
||∇uε,j ||Mε

i ∩Mε
j
≤ ε2.
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Inequality (27) becomes

µ2||∇uε||20,Ω ≤ ε2 + 3(mε2 + c2p||fε||20,Ω + c2tr||gε||2
[H

1
2 ]′,Γ

),

taking the square root of the two hand sides,

||∇uε||0,Ω ≤
1

µ
(ε
√

3m+ 1 + 3cp||fε||0,Ω + 3ctr||gε||
[H

1
2 ]′,Γ

).

Letting ε→ 0 and using the approximation lemma (2.1)

||∇u||0,Ω ≤
1

µ
(3cp||f ||0,Ω + 3ctr||g||

[H
1
2 ]′(Γ)

). (28)

Since g ∈ L2(Γ), by continuity of the injection

I : H
1
2 (Γ) ≡ D ⊂ [H

1
2 (Γ)]′ → [H

1
2 (Γ)]′,

the estimate in Theorem (1.1) is deduced immediately from (28).

�

Finally, in order to get the explicit H1 estimate of uε, and so that of u, we

use the poincaré inequality (18) to bound ||uε||0,Ω at one hand and the estimate

(7) at the other hand.

Conclusion

The result of this lemma is still valid if the structure occupies a non-convex

domain. Indeed, the convexity of the domain Ω does not affect since the essen-

tial tool used in the proof is the partition of the unity. In the point of view

of numerical analysis, estimate of theorem (1.1) is interesting. Indeed, error

estimates in finite element method of the type

||u− uh||0,Ω ≤ Ch||∇u||0,Ω

involve the quantity ||∇u||0,Ω. Assuming that the constant C can be calculated,

then it is possible to explicitly bound ||∇u||0,Ω which implies a better estimate

of ||u||0,Ω.

Another interesting fact in the estimation (7) that makes it effective is that

it does not depend on the characteristic parameters of the polygonal domain Ω,

13



namely, the edges’s length, their number as well as the measures of the angles.

The estimate is therefore indifferently applicable to all polygons. All this allows

the possibility to generalize this result to a C1 class domain.
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