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Abstract

In this paper we consider the Lamé system on a polygonal convex
domain with mixed boundary conditions of Dirichlet-Neumann type.
An explicit L2 norm estimate for the gradient of the solution of this
problem is established. This leads to an explicit bound of the H1 norm
of this solution. Note that the obtained upper-bound is not optimal.
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1 Introduction

The static equilibrium of a deformable structure occupying a domain Ω
subset of R2 is governed by the Lamé linear elasto-static system, see [5]. In
this paper, we restrict the study to a convex domain Ω whose boundary has
a polygonal shape that posses m+ 1 edges with m ≥ 2. We denote Γ = ∪Γi
its boundary and d(Ω) its diameter. This system is given by


Lu = f a.e in Ω,

σ · −→ni = gi on (Γ− Γ0) ∩ Γi,
u = 0 on Γ0.

1 ≤ i ≤ m (1)

We need to assume that the components Γi of the boundary Γ fulfill a
condition similar to (H2) of Theorem 2.3 stated in the paper [9]. Actually,
for our purpose, a stronger condition is needed and it is formulated in (5)
below. The vector function u = (u1, u2) satisfying the system (8) describes a
displacement in the plane. In this model, we impose a homogeneous Dirichlet
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condition on Γ0 and a Neumann condition on the rest of the boundary. The
equality on the boundary is understood in the sense of the trace. We denote
L the Lamé operator defined by:

Lu := −div σ(u) = −div[2µε(u) + λTr ε(u)Id] (2)

We assume the data functions f and g at the right hand side to satisfy
f ∈ [L2(Ω)]2 and g ∈ [H

1
2 (Γ − Γ0)]2. The vector −→ni represents the outside

normal to Γi. We write µ and λ the Lamé’s coefficients. We place ourselves
in the isotropic framework, the deformation tensor ε is defined by

ε(u) =
1

2
(∇u+∇tu), (3)

The weak form of problem (1) is (see [2], [5]):
find u ∈ V ; ∀v ∈ V∫

Ω
2µε(u)ε(v) + λ div u div v dx =

∫
Ω
fv dx +

∫
Γ−Γ0

gv dσ(x) (4)

where

V = {v ∈ [H1(Ω)]2; v = 0 on Γ0}

The problem of existence and uniqueness in V of the solution of (4) is classic,
(see [2]).

If we denote θ the interior angle between the edges Γj and Γk such that
Γj ∩Γk 6= ∅ and if we denote γ the interior angle between the Neumann part
of the boundary ΓN and the Dirichlet part of the boundary ΓD such that
ΓN ∩ ΓD 6= ∅, then we impose

θ ≤ π, γ ≤ π. (5)

The reason behind this assumption on the boundary is to get a better regu-
larity of the solution of the weak problem (4). Precisely in that case we have,

following [9], u ∈ [H
3
2

+ι(Ω)]2 for some positive ι, which implies in particular,

using the appropriate Sobolev embedding, see [1], that u ∈ [C0, 1
2

+ι(Ω)]2 i.e.
u is (1

2 + ι)−holder continuous. Let us denote

||ε(u)||0,Ω :=(

∫
Ω
ε(u)ε(u) dx)

1
2 , ||∇u||0,Ω :=(

∫
Ω
|∇u1|2 + |∇u2|2 dx)

1
2 .

By using the second Korn inequality, see [7], the trace and the Poincaré’s
inequalities, one easily gets from (4) the following estimate

||∇u||0,Ω ≤
1

ck

1

2µ
(cp||f ||0,Ω + cp,t||g|| 1

2
,Γ−Γ0

), (6)
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where cp,t is a constant that depends of Poincaré constant and the con-
stant of trace inequality. ck is the constant of the Korn’s inequality. Note
that the value of the constant ck and cp,t appearing in (6) are unknown
and can not be explicitly lower-bounded in the general case. We propose to
determine explicitly these constants. The main result of this work is stated
in the following theorem:

Theorem 1. The unique weak solution u of (4) on the polygonal domain Ω
admits the explicit upper bound

||∇u||0,Ω ≤
1
√
µ

[1 + d(Ω)||f ||0,Ω + 8(|Γ|+ ||g||20,Γ)], (7)

where d(Ω) represent the diameter of Ω and |Γ| the measure of the bound-
ary of Ω.

Estimate (7) is similar to estimate (6) in the sense that the constants
appearing there are the same. Before demonstrating this theorem, it is
useful to go through some remarks and results. These auxiliary results are
needed in order to adequately get a decomposition of the solution of the main
problem, which belongs to H1(Ω), into functions that are still in H

1
2 (Γ).

Denote xi, for 1 ≤ i ≤ m, the vertex of the polygon that connects Γi−1 with
Γi and x0 the one that connects Γm to Γ0. Define the auxiliary function
uε ∈ H1(Ω) as the unique solution to the following Dirichlet problem

{
Luε = f a.e in Ω,
uε = udε on Γ.

(8)

Where udε is the trace on the boundary Γ of the function

φε(x)u(x) (9)

such that if ε < |Γi|
2 ∀i, 0 ≤ i ≤ m then φε is defined by


φε(x) = 0, ||x− xi|| ≤ ε2, 0 ≤ i ≤ m;

φε(x) = exp[− ε
1
2 (ε−||x−xi||)
||x−xi||−ε2 ], ε2 < ||x− xi|| < ε, 0 ≤ i ≤ m;

φε(x) = 1, ε ≤ ||x− xi||, 0 ≤ i ≤ m,
let us denote

Di,ε := {x ∈ R2 such that ||x− xi|| < ε2}.

We easily see that φε ∈ C0(Ω), consequently, there will be no jump when
passing to the distributional derivative and thus ∇uε ∈ L2(Ω) i.e. uε ∈
H1(Ω). It is shown, using Lebesgue’s dominated convergence theorem for
instance, that ||φε − 1||0,Γi → 0 i.e. we have convergence in L2 along the
edge Γi. The functions φε are identically zero on a small neighborhood of
the respective vertices of the polygon.

In the sequel, we denote uε the vector-valued function uε = (u1
ε , u

2
ε ).
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2 Weak problem for uε and approximation results

First of all, we construct the weak problem verified by the approximating
function uε. With the approximating displacement uε ∈ V is associated the
approximating stress tensor

σε := 2µε(uε) + λTr ε(uε)I, (10)

since Luε = div σε = f , then σε ∈ [H(div)(Ω)]2×2. For a fixed ε, by density of
the regular functions in the space H(div)(Ω), there exists σnε ∈ [C∞(Ω)]2×2

such that σnε → σε in [H(div)(Ω)]2×2. This means

||σnε − σε||div,Ω := ||div σnε − div σε||0,Ω + ||σnε − σε||0,Ω → 0 (11)

when n→∞. We pose div σnε = fn, then integrating by part against a test
function v ∈ [C∞(Ω)]2 ∩ V yields the following∫

Ω
σnε∇v =

∫
Ω
fnv +

∫
Γ
σnε · −→n vdσ.

Passing to the limit in n using (11), we find ∀v ∈ [C∞(Ω)]2 ∩ V∫
Ω
σε∇v =

∫
Ω
fv + < σε · −→n , v >

[H
1
2 ]′(Γ−Γ0)×[H

1
2 ](Γ−Γ0)

,

where σε ·−→n =: gε ∈ [H
1
2 (Γ−Γ0)]′ is the image of the normal component σε

by the trace operator on Γ. Since, following the main result in [4], [C∞(Ω)]2∩
V is a dense subset of V ⊂ H1(Ω), then, according to the definition (3) and
the expression (10), the function uε satisfy

∀v ∈ V,∫
Ω

2µε(uε)ε(v) +

∫
Ω
λ div uε div v =

∫
Ω
fv + < gε, v >

[H
1
2 ]′(Γ−Γ0)×H

1
2 (Γ−Γ0)

;

(12)

this is the weak problem satisfied by the approximating function uε.
Let us recall, (see [8]), that the H

1
2−norm in one dimension on Γi is

defined by:

||u|| 1
2
,Γi

:= (||u||20,Γi +

∫
Γi

∫
Γi

|u(x)− u(y)|2

||x− y||2
dx dy)

1
2 .

Remark 2. For any sufficiently small ε > 0, it is possible to cover Ω with
a collection of open sets (W ε

j )j such that for each j, W ε
j ∩ Γ is either empty

or equals one of the following subsets: for some 0 ≤ i ≤ m− 1

1) Γ1,ε
i := {x ∈ Γi; 0 < ||x− xi|| < 2ε};
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2) Γ2,ε
i := {x ∈ Γi; 0 < ||x− xi+1|| < 2ε};

3) Γ3,ε
i := {x ∈ Γi; ||x− xi|| >

3

2
ε and ||x− xi+1|| >

3

2
ε};

4) Γ4,ε
i = {x ∈ Γi ∪ Γi+1; ||x− xi+1|| < ε2};

and for i = m

1) Γ1,ε
m := {x ∈ Γm; 0 < ||x− xm|| < 2ε};

2) Γ2,ε
m := {x ∈ Γm; 0 < ||x− x0|| < 2ε};

3) Γ3,ε
m := {x ∈ Γm; ||x− xm|| >

3

2
ε and ||x− x0|| >

3

2
ε};

4) Γ4,ε
m = {x ∈ Γm ∪ Γ0; ||x− x0|| < ε2}

let (ϑεj)j, with supp ϑεj ⊂ W ε
j , a C1-partition of unity with respect to this

cover; since ϑεj ∈ H
1
2 (Γ) then

||φε − 1|| 1
2
,Γ = ||(φε − 1)

∑
j

ϑεj || 1
2
,Γ

≤
m∑
i=0

||(φε − 1)
∑

j,suppϑεj⊂Γi

ϑεj || 1
2
,Γi

+
m∑
i=0

||(φε − 1)|| 1
2
,Γ4,ε
i

≤
m∑
i=0

||φε − 1|| 1
2
,Γi

+ (m+ 1)||(φε − 1)|| 1
2
,Γ4,ε

0

=
m∑
i=0

||φε − 1|| 1
2
,Γi

+ (m+ 1)||(φε − 1)||
0,Γ4,ε

0
(13)

So, using the definition and symmetry of φε, we get for all 0 ≤ i ≤ m

||φε − 1|| 1
2
,Γi

= ||(φε − 1)
∑

j,suppϑεj⊂Γi

ϑεj || 1
2
,Γi

≤ ||(φε − 1)
∑

j,suppϑεj⊂Γ1,ε
i

ϑεj || 1
2
,Γi

+ ||(φε − 1)
∑

j,suppϑεj⊂Γ2,ε
i

ϑεj || 1
2
,Γi

+ ||(φε − 1)
∑

j,suppϑεj⊂Γ3,ε
i

ϑεj || 1
2
,Γi

+ 2||(φε − 1)|| 1
2
,Γ4,ε
i

≤
3∑
j=1

||φε − 1|| 1
2
,Γj,εi

+ 2||φε − 1|| 1
2
,Γ4,ε
i

= 2||φε − 1|| 1
2
,Γ1,ε
i

+ 2||φε − 1|| 1
2
,Γ4,ε
i

thus we have

||φε − 1|| 1
2
,Γi
≤ 2||φε − 1||

0,Γ1,ε
i

+ 2(

∫
Γ1,ε
i

∫
Γ1,ε
i

|φε(x)− φε(y)|2

||x− y||2
dx dy)

1
2

+ 2||(φε − 1)||
0,Γ4,ε

i
. (14)
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Lemma 3. The functions φε admit the following limits

for all 0 ≤ i ≤ m ||φε − 1|| 1
2
,Γi
→ 0 as ε→ 0

Proof. If we choose the vertex point xi as the origin of the R2-orthonormal
coordinate system such that Γi is supported by the positive half x−axis then
the abscisses of x ∈ Γ1,ε

i ≡]0, 2ε[ satisfy

||x− xi|| = |x| = x.

the H
1
2 -semi-norm of φε on Γi writes

|φε − 1|21
2
,Γi

:=

∫
Γi

∫
Γi

|φε(x)− φε(y)|2

||x− y||2
dx dy . (15)

it yields by using the definition of φε

|φε − 1|21
2
,Γi
≤ 2

∫ ε

0

∫ ε

0

|φε(x)− φε(y)|2

|x− y|2
dx dy . (16)

Consider the decomposition of (16) into four partial double integrals

1)

∫ ε2

0

∫ ε2

0

|φε(x)− φε(y)|2

|x− y|2
dx dy = 0,

this is obvious.

2)

∫ ε

ε2

∫ ε

ε2

|φε(x)− φε(y)|2

|x− y|2
dx dy ≤

∫ ε

ε2

∫ ε

ε2

| exp[ − ε
1
2 (ε−x)
(x−ε2)

]− exp[ − ε
1
2 (ε−y)
(y−ε2)

]|2

|x− y|2
dx dy .

The function F (x) := exp[ − ε
1
2 (ε−x)
(x−ε2)

] is C1(]ε2, ε[) and thus lipschitz. We

have, using the fact that x→ F ′(x) is increasing on [ε2, ε2 ], that

|F ′(x)| ≤ ε
1
2 (1− ε)
ε(1

2 − ε)2
exp(

− ε
1
2

2
1
2 − ε

) =: L1,

∀x ∈ [ε2, ε2 ]. On the other hand

|F ′(x)| ≤ ε
1
2

ε(1− ε)
exp(

2

1− ε
) =: L2,

∀x ∈ [ ε2 , ε]. Therefore we conclude that

|F ′(x)| ≤ L := max(L1, L2) ≤ L1 + L2
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for all x ∈ [ε2, ε]. This yields

(

∫ ε

ε2

∫ ε

ε2

|φε(x)− φε(y)|2

|x− y|2
dx dy)

1
2

≤ (

∫ ε

ε2

∫ ε

ε2

| ε
1
2

ε(1−ε) exp( 2
1−ε) + ε

1
2 (1−ε)
ε( 1

2
−ε)2 exp(

− ε
1
2
2

1
2
−ε )|2|x− y|2

|x− y|2
dx dy)

1
2

≤ (

∫ ε

ε2

∫ ε

ε2
| ε

1
2

ε(1− ε)
exp(

2

1− ε
)|2 dx dy)

1
2 + (

∫ ε

ε2

∫ ε

ε2
|ε

1
2 (1− ε)
ε(1

2 − ε)2
exp(

− ε
1
2

2
1
2 − ε

)|2 dx dy)
1
2

→ 0 as ε→ 0.

3)

∫ ε2

0

∫ ε

ε2

|φε(x)− φε(y)|2

|x− y|2
dx dy

≤
∫ ε2

0

∫ ε
2

ε2

1

|x− ε2|2
exp2[ −ε

1
2 (ε− x)

(x− ε2)
] dx dy +

∫ ε2

0

∫ ε2

ε
2

1

|x− ε2|2
exp2[ −ε

1
2 (ε− x)

(x− ε2)
] dx dy

≤ ε2
∫ ε

2

ε2

1

|x− ε2|2
exp2[ −ε

1
2

+1(1− ε)
2(x− ε2)

] dx +ε2
∫ ε

ε
2

1

| ε2 − ε2|2
exp2[

ε
1
2 (2ε)

( ε2 − ε2)
] dx

≤
ε

1
2 exp(− ε

3
2 (1−ε)
x )

1− ε
]x=ε
x=0 +

1

(1
2 − ε)2

ε

2
exp2[

2ε
1
2

(1
2 − ε)

]

→ 0 as ε→ 0,

here we used the properties of the exponential function and elementary
majorizations.

4)

∫ ε

ε2

∫ ε2

0

|φε(x)− φε(y)|2

|x− y|2
dx dy =

∫ ε

ε2

∫ ε2

0

| exp[ − ε
1
2 (y−ε)
(y−ε2)

]|2

|x− y|2
dx→ 0,

proceed in the same way as for 3).
Combining these integrals on one hand and using the facts:

||φε − 1||0,Γ → and 2||(φε − 1)||
0,Γ4,ε

i
→ 0

for all 0 ≤ i ≤ m on the other hand yield, using (14), the result of lemma 3.
Consequently, using (13), it yields also

||φε − 1|| 1
2
,Γ → 0.

Since u is (1
2 + ι)−holder continuous and thus uniformly continuous on

Ω, the result of lemma (3) implies

||uε − u|| 1
2
,Γ ≤ ||u(φε − 1)|| 1

2
,Γ ≤ ||u||∞,Γ||φε − 1|| 1

2
,Γ → 0.

One proves the following approximation lemma:
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Lemma 4. The function uε defined by (8) and the distribution gε appearing
in problem (12) satisfy respectively the following limits

a) ||∇uε −∇u||0,Ω → 0, b) ||gε − g||
[H

1
2 ]′,Γ−Γ0

→ 0

as ε→ 0.

Proof. a) The RHS, f ∈ L2(Ω), of problem (8) being fixed, consider the

linear operator G that associate to each ud ∈ H
1
2 (Γ) the corresponding

unique solution u of problem (8).

G : (H
1
2 (Γ), ||.|| 1

2
,Γ)→ A ⊂ V,

ud := u|Γ → K(ud) = u.

Where (A, ||.||H1(Ω)) denote the range of H
1
2 (Γ) under G. The inverse oper-

ator G−1 identifies with the trace operator which is obviously well defined
and bijective for u ∈ A. Using the trace inequality on Γ, there exists c > 0
such that ∀u ∈ A

||u|| 1
2
,Γ ≤ c||∇u||0,Ω

this implies the continuity of the linear bijective operator G−1. According to
the Banach isomorphism theorem the operator G is continuous, this means
that there exists c−1 > 0 such that for all u ∈ A we have

||∇u||0,Ω ≤ c−1||u|| 1
2
,Γ

thus, using the limit proved in lemma (3)

||∇u−∇uε||0,Ω ≤ c−1||u− uε|| 1
2
,Γ → 0, (17)

this proves a).

b) We do the same reasoning as for a). Given g ∈ [H
1
2 (Γ − Γ0)]′, let

w ∈ V be the unique solution of∫
Ω

2µε(w)ε(v) + λ divw div v dx =< g, v >
[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

, (18)

for all v ∈ V . Choosing v = w, there exists c′ > 0 such that

||∇w||0,Ω ≤ c′||g||
[H

1
2 (Γ−Γ0)]′

. (19)

Let K be the operator that associate to each data g ∈ [H
1
2 (Γ − Γ0)]′ the

solution function w of the corresponding problem (18):

K : [H
1
2 (Γ− Γ0)]′ → D ⊂ V

g → K(g) = w.
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Where (D, || ||H1(Ω)) denote the range of [H
1
2 ]′(Γ−Γ0) under K. Following

existence and uniqueness result for problem (18), K is well defined, further-
more it is linear and invertible. An equivalent formulation of (19) is: there

exists a constant c′ > 0 such that ∀g ∈ [H
1
2 (Γ− Γ0)]′, we have

||K(g)||H1 ≤ c′||g||
[H

1
2 ]′(Γ−Γ0)

i.e. K is continuous. Then, according to Banach’s isomorphism theorem,
we deduce that ∃c′−1 > 0 such that

||g||
[H

1
2 (Γ−Γ0)]′

≤ c′−1||∇w||0,Ω. (20)

Rewriting (4) with g ∈ H
1
2 (Γ − Γ0) ≡ D ⊂ [H

1
2 (Γ − Γ0)]′ then subtracting

(4) and (12) member-to-member, one find that u− uε satisfy: ∀v ∈ V,∫
Ω

2µ(ε(uε)−ε(u))ε(v)+λ div(uε−u) div v dx =< gε−g, v >
[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

.

Applying (20) to w = uε − u we get:

||gε − g||
[H

1
2 (Γ−Γ0)]′

≤ c′−1||∇uε −∇u||0,Ω.

Considering (17), we infer b).

Remark 5. A consequence of the previous lemma: for arbitrary small β > 0,
there exists ε1 > 0 such that ∀ε, 0 < ε < ε1 we have

i) ||gε − g||
[H

1
2 (Γ−Γ0)]′

≤ β, ii) ||∇uε −∇u||0,Ω ≤ β

iii) Since by assumption g ∈ H
1
2 (Γ − Γ0) then, by using the continuity

of the canonical embedding

I : H
1
2 (Γ− Γ0)→ L2(Γ− Γ0),

we have

||g||0,Γ−Γ0 ≤ ||g|| 1
2
,Γ−Γ0

.

3 Auxiliary lemmas

Let ε1 be such as defined in remark (5). For the rest of the paper, we fix ε,
0 < ε < ε1.

Before presenting a proof of the main result, we intend to state two
auxiliary lemmas. These lemmas are established using, principally, Theorem
2.1 proved in [10]. In order to apply the later result, (assumption 1.2) in
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that same paper need to be met. Our polygonal domain satisfy very well
that assumption.

These lemmas convey the essential idea in the demonstration of the main
result. The idea is to carry out a particular decomposition, alluded to in the
introduction, of the approximating function to the solution uε of problem
(8). This key idea is illustrated in the following example. Consider v ∈ to
be the solution of problem silmilar to (8)

{
Lv = f a.e in Ω,
v = vd on ∪i Γi.

Let’s decompose this problem into two other problems

Si1


Lvi1 = f a.e in Ω,
vi1 = vd on Γi.

vi1 = 0 on ∪i Γi − Γi.
Si2


Lvi2 = f a.e in Ω,
vi2 = 0 on Γi.

vi2 = vd on ∪i Γi − Γi.

Provided that the problems are well posed, the functions vi1 and vi2 are
well defined. On the other hand, it is easy to see that vi1 = v on Γi does
not generally imply σ(vi1) · n = σ(v) on Γi. So the idea is to find a decom-
position that makes such a property to be fulfilled. i.e. such that vi1 can be
approximated by a function vi,n1 such that σ(vi,n1 ) · n is an approximation of
σ(vi1) on Γi in the sense of trace. The adequate use of Theorem 2.1 proved
in [10] can make this decomposition possible.

Using the principal result in ([4]), we can find (upε )p ∈ C∞(Ω) such that
for each p, upε vanishes on the same part of Γ where does uε and such that

||∇upε −∇uε||0,Ω → 0 as p→∞ (21)

If we denote

fp := L(upε ) gεp := σ(upε ) · ~n (22)

then, a particular consequence of (21) is: given an arbitrary small β > 0,
we can fix p such that

||∇upε −∇uε||0,Ω ≤
1

4
√
µ
, (23)

and, by using the Banach isomorphism theorem with homogeneous Dirich-
let condition on Γ0, we get

(i) ||fp − f ||0,Ω ≤
1

4
√
µ

(ii) ||gεp − gε||[H 1
2 (Γ−Γ0)]′

≤ β. (24)

We fix, for the rest of the paper, p for which (23) and (24) are fulfilled.
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Lemma 6. Let δ0 be an arbitrary small number. There exists two functions
u1 and u2 such that

i) upε = u1 + u2.

ii)


L(u1) = f1 in Ω
u1 = 0 on Γ− Γ0

u1 = 0 on Γ0


L(u2) = f2 in Ω
u2 = upε on Γ− Γ0,
u2 = 0 on Γ0.

iii) σ(u1) · ~n = 0 on Γ and thus, σ(u2) · ~n = gεp on Γ.

iv) f2 := fp − f1 satisfy ||fp − f1||0,Ω ≤ δ0
2m .

Proof. Let δ0 > 0 be an arbitrary small number. Consider the decomposition

upε := w + z

where w and z are respectively the solutions of the following problems
L(w) = fp in Ω
w = 0 on Γ− Γ0

w = 0 on Γ0


L(z) = 0 in Ω
z = upε on Γ− Γ0

z = 0 on Γ0 ;

observe that σ(w) · ~n does not necessary equal zero and thus σ(z) · ~n
does not necessary equal g. Nevertheless, by density, there is functions
wn ∈ C∞0 (Ω) such that

||∇wn −∇w||0,Ω → 0 as n→∞.

One should note that, following the definition of compactly supported
functions in Ω, σ(wn) · ~n = 0 on ∂Ω for all n.

Using the same argument as in the proof of lemma (4), and for the fixed
homogeneous Dirichlet boundary condition, there exists C0 > 0 depending
merely on the domain Ω such that

||L(wn)− fp||0,Ω ≤ C0||∇wn −∇w||0,Ω → 0 as n→∞, (25)

thus, there exists an element w∗ in {wn}n∈N that satisfy the estimate

||L(w∗)− fp||0,Ω ≤
δ0

m
. (26)

Decompose w := w∗ + w2 where w2 is a solutions of
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L(w2) = fp − L(w∗) in Ω
w2 = 0 on Γ− Γ0

w2 = 0 on Γ.

One should remark that

σ(w2) · ~n+ σ(z1) · ~n = gεp ,

indeed, σ(w2) · ~n+ σ(z1) · ~n = σ(u) · ~n− σ(w∗) · ~n = gεp − 0. Pose

u1 := w∗ , u2 := w2 + z1 ,

and
f1 := L(w∗) , f2 := fp − L(w∗),

this concludes the lemma.

It should be pointed out that we repeatedly apply the essential argument
in lemma (4), namely the Banach isomorphism theorem, in order to obtain
estimates for the inverse of some operators.

Lemma 7. Let u1, u2 be such as defined in lemma (6). Given δ1, δ2 > 0
arbitrary small numbers, there exists m functions u2,i, 1 ≤ i ≤ m, such that

u2,i = 0 on Γ− Γi,

and such that gi := σ(u2,i) · ~n satisfy

||gi − gεp||0,Γi ≤
δ1

m
. (27)

moreover, u′2 :=
∑m

i=1 u2,i satisfy

||∇(u1 + u′2)−∇upε ||0,Ω ≤ δ2. (28)

The proof is done in two main steps. In the first one, we construct the
functions u2,i and in the second step we prove that these functions actually
satisfy estimate (27) and (28).

Proof. Let δ1, δ2 be arbitrary small numbers. The functions u2,i will be
defined by introducing the intermediate functions Xi, Yi, Ỹ

n
i and Vi respec-

tively in subsections a), b), c) and d). As we define these functions, we
demonstrate some estimates that will be used to derive (27) and (28) in the
second step.
Step 1: Fix i, 1 ≤ i ≤ m. Consider the decomposition
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u2 = Xi +
∑
j 6=i

Xj = Xi + Zi ,

where Xi and Zi are the solutions of

(P1)


L(Xi) = 0 in Ω
Xi = upε on Γi
Xi = 0 on Γ− Γi ∪ Γ0

Xi = 0 on Γ0

(P ′1)


L(Zi) = f2 in Ω
Zi = 0 on Γi
Zi = upε on Γ− Γi ∪ Γ0

Zi = 0 on Γ0.

One should notice that these two problems are well posed, this can be seen
by considering the regularity of upε on the boundary and the fact that upε
vanish identically on a neighborhood of the the vertices. Since Ω is a Lips-
chitz domain, it possesses the W 1,2-Sobolev extension property.

a) According to (theorem 2.1, [10]) see Index A at the end, there exists
Xn
i ∈ C∞0 (R2) such that we have

(h1) ||∇Xn
i −∇Xi||0,Ω ≤

δ3

m
(h2) supp(Xn

i ) ∩ (Γ− Γi) = ∅,

where δ3 > 0 is an adequately chosen real number. A consequence of
(h2) is:

(h3) σ(Xn
i ) · ~n = 0 on Γ− Γi , Xn

i = 0 on Γ− Γi.

Furthermore, with the homogeneous Dirichlet condition on Γ−Γi being
fixed in the problem P1 and in the problem solved by Xn

i then, using the
Banach isomorphism theorem, there exists C1 > 0 such that

||σ(Xn
i ) ·~n−σ(Xi) ·~n||0,Γi + ||L(Xn

i )−0||0,Ω ≤ C1||∇Xn
i −∇Xi||0,Ω ≤

C1δ3

m
.

We choose δ3 in assumption (h1) such that

(c1) :
C1δ3

m
<

δ0

4m

where δ0 is a positive real number whose choice will be precised later
(see condition (c4) below). Fix n1 such that Fn1

i := L(Xn1
i ) satisfy

||Fn1
i − 0||0,Ω ≤

δ0

4m
. (29)

Denote X̃n1
i := Xi −Xn1

i , it does satisfy

Xn1
i + X̃n1

i + Zi = upε (30)
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i.e.
L(Xn1

i ) = Fni in Ω
Xn1
i = xn1

i on Γi
Xn1
i = 0 on Γ− Γi


L(X̃n1

i ) = −Fni in Ω

X̃n1
i = upε − xn1

i on Γi
X̃n1
i = 0 on Γ− Γi ,

for the same reasons as for (P1) and (P2), these problems are well posed.
Considering (h3) and (30), the function X̃n1

i + Zi satisfy

(P3)


L(X̃n1

i + Zi) = −Fn1
i + f2 in Ω

X̃n1
i + Zi = upε − xn1

i on Γi
σ(X̃n1

i + Zi) · ~n = gεp on Γ− Γi ∪ Γ0

X̃n1
i + Zi = 0 on Γ0.

b) Let Yi be the function defined by

(P4)


L(Yi) = −Fn1

i + f2 in Ω
Yi = 0 on Γi

σ(Yi) · ~n = gεp on Γ− Γi ∪ Γ0

Yi = 0 on Γ0 ,

Thanks to assumption (5), this problem is well posed. There exists a
trace constant ct such that, using (h1), we have

||(upε − x
n1
i )||0,Γi ≤ ct × ||∇Xi −∇Xn1

i ||0,Ω ≤
ct × δ3

m
; (31)

for the fixed −Fn1
i + f2 ∈ L2(Ω), gεp ∈ L2(Γ − Γi ∪ Γ0) and the homo-

geneous Dirichlet condition on Γ0 in problems (P3) and (P4), and by using
an argument similar to that in part (a) of the proof of lemma (4) (Banach
isomorphism theorem), there exists a constant C3 > 0 such that

||∇Yi −∇(X̃n1
i + Zi)||0,Ω ≤ C3||Yi − (upε − x

n1
i )||0,Γi

= C3||0− (upε − x
n1
i )||0,Γi

≤ ct × C3δ3

m
, (32)

and by using the trace inequality again we have

||Yi − (X̃n1
i + Zi)||0,Γ−Γi ≤ ct||∇Yi −∇(X̃n1

i + Zi)||0,Ω

≤ c2
t × C3

δ3

m
. (33)
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Considering (30) and (h3), we easily see that X̃n1
i + Zi = upε on Γ− Γi;

and thus, estimates (32), (33) become respectively

||∇(Xn1
i + Yi)−∇upε ||0,Ω ≤

ct × C3δ3

m
. (34)

||Yi − upε ||0,Γ−Γi ≤
c2
t × C3δ3

m
. (35)

On the other hand, since Yi = 0 on Γi then, using the result (Theorem
2.1, [10]), there exists Y n

i ∈ C∞0 (R2) such that

(h4) ||∇Y n
i −∇Yi||0,Ω ≤

δ′1
m

and supp(Y n
i ) ∩ Γi = ∅ ,

where δ′1 > 0 is an adequately chosen real number, thus

σ(Y n
i ) · ~n = 0 on Γi and Y n

i = 0 on Γi (36)

for the homogeneous Dirichlet condition on Γi∪Γ0 for problem (P4) and
the problem solved by Y n

i , and using Banach isomorphism theorem, there
exists C ′1 > 0 such that

||L(Y n
i )− (−Fn1

i + f2)|| ≤ C ′1||∇Y n
i −∇Yi||0,Ω.

We choose δ′1 > 0 in assumption (h4) such that

(c2) :
C ′1δ

′
1

m
<

δ0

4m
,

where δ0 is as defined in lemma (6) i.e. need to satisfy condition (c4)
below. Fix n2 > n1 such that

hn2
i := L(Y n2

i ) (37)

satisfy

||hn2
i − (−Fn1

i + f2)||0,Ω ≤
δ0

4m
;

consequently, considering (iv) of lemma (6) and (29), we have

||hn2
i − 0|| ≤ δ0

m
. (38)

c) Denote Ỹ n2
i := Yi − Y n2

i , we have
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(P5)


L(Y n2

i ) = hn2
i in Ω

Y n2
i = 0 on Γi
Y n2
i = yn2

i on Γ− Γi ∪ Γ0

Y n2
i = 0 on Γ0

(P6)


L(Ỹ n2

i ) = −hn2
i − F

n1
i + f2 in Ω

Ỹ n2
i = 0 on Γi
Ỹ n2
i = Yi − yn2

i on Γ− Γi ∪ Γ0

Ỹ n2
i = 0 on Γ0 ,

estimate (34) rewrites

||∇(Ỹ n2
i + Y n2

i +Xn1
i )−∇upε ||0,Ω ≤

ct × C3δ3

m
, (39)

denote
g′ := σ(Ỹ n2

i ) · ~n ∈ L2(Γ− Γ0).

d) Let Vi be the function defined by

(P7)


L(Vi) = −hn2

i − F
n1
i + f2 in Ω

σ(Vi) · ~n = g′ on Γi
Vi = 0 on Γ− Γi ∪ Γ0

Vi = 0 on Γ0.

Set

u2,i := Xn1
i + Vi ,

Step 2: The functions u2,i are the unique solutions of


L(u2,i) = −hn2

i + f2 in Ω
u2,i = Xn1

i + Vi on Γi
u2,i = 0 on Γ− Γi ∪ Γ0

u2,i = 0 on Γ0.

Using the estimates established in step 1, we are ready to prove (27) and
(28).

Proof of estimate (27): Since σ(Vi) · ~n = σ(Ỹ n2
i ) · ~n on Γi, then we

have for gi := σ(Vi +Xn1
i ) · ~n

||gi − gεp||0,Γi = ||σ(Vi +Xn1
i ) · ~n− gεp||0,Γi

= ||σ(Ỹ n2
i +Xn1

i ) · ~n− σ(upε ) · ~n||0,Γi

Using (36)

||gi − gεp||0,Γi = ||σ(Ỹ n2
i + Y n2

i +Xn1
i ) · ~n− σ(upε ) · ~n||0,Γi

≤ ||σ(Ỹ n2
i + Y n2

i +Xn1
i ) · ~n− σ(upε ) · ~n||0,Γ−Γ0 ;
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for the fixed homogeneous Dirichlet condition on Γ0, and according to
the Banach isomorphism theorem, there exists a constant C2 > 0 depending
merely on Ω such that, using (39) and since we have Yi = Y n2

i + Ỹ n2
i

||gi − gεp||0,Γi ≤ ||σ(Yi +Xn1
i ) · ~n− σ(upε ) · ~n||0,Γ−Γ0

≤ C2||∇(Yi +Xn1
i )−∇upε ||0,Ω

≤ ct × C3C2δ3

m
.

If δ3 also fulfill condition

(c3) :
ct × C3C2δ3

m
<
δ1

m
,

where δ1 is the arbitrary small number assumed at the beginning of the
proof then, estimate (27) is proved.

In order to prove estimate (28), we need to estimate the trace of Xn1
i +Vi

on Γi.
1) Firstly remark, by using (h3), that

Vi +Xn1
i = 0 on Γ− Γi.

2) For the fixed −(hn2
i + Fn1

i − f2) ∈ L2(Ω), g′ ∈ L2(Γi) and the ho-
mogeneous Dirichlet condition on Γ0 in problems (P6) and (P7), the Banach
isomorphism theorem ensures the existence of a constant C4 > 0 depending
merely on Ω such that

||∇Vi −∇Ỹ n2
i ||0,Ω ≤ C4||Vi − Ỹ n2

i ||0,Γ−Γi = C4||0− (Yi − yn2
i )||0,Γ−Γi ,

hence, considering (h4) and using trace inequality, we have

C4||0− (Yi − yn2
i )||0,Γ−Γi ≤ ctC4||∇Yi −∇Y n2

i ||0,Ω ≤ ctC4
δ′1
m

,

thus,

||∇Vi −∇Ỹ n2
i ||0,Ω ≤ ctC4

δ′1
m
. (40)

Using trace inequality and (40) we obtain

||Vi − 0||0,Γi ≤ ||Vi − Ỹ
n2
i ||0,Γ ≤ ct||∇Vi −∇Ỹ

n2
i ||0,Ω ≤ c

2
t × C4

δ′1
m
. (41)

Estimates (31) and (41) imply
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||Vi +Xn1
i − u

p
ε ||0,Γi ≤ ||Vi − 0||0,Γi + ||Xn1

i − u
p
ε ||0,Γi

= ||Vi − 0||0,Γi + ||xn1
i − u

p
ε ||0,Γi

≤ c2
t × C4

δ′1
m

+
ctδ3

m
. (42)

Proof of estimate (28): Write u′2 :=
∑

i u2,i = ζ ′ + η′ where ζ ′ and η′

are respectively the solutions of
L(ζ ′) = −

∑m
i=1(hn2

i − f2) in Ω
ζ ′ = 0 on Γi
ζ ′ = 0 on Γ− Γi

(P8)


L(η′) = 0 in Ω
η′ =

∑m
i=1 u2,i on Γ− Γ0

η′ = 0 on Γ0,

and write u2 = ζ + η where ζ and η are the solutions of
L(ζ) = f2 in Ω
ζ = 0 on Γi
ζ = 0 on Γ− Γi

(P9)


L(η) = 0 in Ω
η = upε on Γ− Γ0

η = 0 on Γ0.

If we deonte cjk the constant in the Korn inequality then the weak form
og the problem solved by ζ − ζ ′ yields

||∇ζ −∇ζ ′||0,Ω ≤ ckd(Ω)||f2 +
∑
i

(hn2
i − f2)||0,Ω

≤ d(Ω)(||f2||0,Ω +
∑
i

||hn2
i ||0,Ω +

∑
i

||f2||0,Ω)

using (iv) of lemma (6) and (38), we have

||∇ζ −∇ζ ′||0,Ω ≤ d(Ω)(
δ0

2m
+ δ0 +

δ0

2
). (43)

On the other hand, the Banach isomorphism theorem ensures, for the
null source term and the Dirichlet homogeneous condition on Γ0 in problems
(P8) and (P9), that there exists a constant C5 > 0 such that

||∇η −∇η′||0,Ω ≤ C5||η − η′||0,Γ−Γ0 = C5||upε −
m∑
i=1

u2,i||0,Γ−Γ0

≤ C5

m∑
i=1

||upε −
m∑
i=1

u2,i||0,Γi

= C5

m∑
i=1

||upε − u2,i||0,Γi .
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Applying estimate (42) with u2,i = Vi +Xn1
i

||∇η −∇η′||0,Ω ≤ C5(c2
t × C4δ

′
1 + ctδ3) (44)

Combining (43) and (44), we obtain using triangular inequality

||∇u2 −∇u′2||0,Ω ≤ ||∇ζ −∇ζ ′||+ ||∇η −∇η′||0,Ω

≤ d(Ω)(
δ0

2m
+ δ0 +

δ0

2
) + C5(c2

t × C4δ
′
1 + ctδ3),

Finally, if δ0, δ3 and δ′1 are subject to fulfill the condition

(c4) : d(Ω)(
δ0

2m
+ δ0 +

δ0

2
) + C5(c2

t × C4δ
′
1 + ctδ3) < δ2.

where δ2 is the arbitrary small number assumed at the beginning of the
proof then,

||∇upε −∇(u1 + u′2)||0,Ω ≤ δ2

This proves (45).

Remark 8. 1) Let gεp such as defined in (22), we can easily show that

||gεp||20,Γ−Γ0
≤ ||g||20,Γ−Γ0

+ δ2
6 , (45)

where δ6 is an arbitrary small positive real number. Indeed, write using
triangular inequality

| ||gεp||20,Γ−Γ0
−
∫

Γ−Γ0

ggεp dσ | = | < gεp, g
ε
p >[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

− < g, gεp >[H
1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

|

≤ | < gεp − g, gεp >[H
1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

|

≤ ||gεp − g||[H 1
2 (Γ−Γ0)]′

||gεp|| 1
2
,Γ−Γ0

≤ (||gεp − gε||[H 1
2 (Γ−Γ0)]′

+ ||gε − g||
[H

1
2 (Γ−Γ0]′

)||gεp|| 1
2
,Γ−Γ0

Since, following estimate (ii) of (24), gεp converges in [H
1
2 (Γ− Γ0)]′ i.e.

weakly in H
1
2 (Γ− Γ0) hence, there exists C ′ > 0 such that

||gεp|| 1
2
,Γ−Γ0

≤ C ′

for all p ∈ N. Thus,
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||gεp||20,Γ−Γ0
−
∫

Γ−Γ0

ggεp dσ ≤ C ′(||gεp − gε||[H 1
2 (Γ−Γ0)]′

+ ||gε − g||
[H

1
2 (Γ−Γ0)]′

) ,

using (i) of remark (5) and estimates (ii) of (24) and for an adequate
choice of β, the parameters p and ε can be chosen such that

||gεp||20,Γ−Γ0
−
∫

Γ−Γ0

ggεp dσ ≤ 2βC ′

and thus, Cauchy-Schwarz yields

||gεp||20,Γ−Γ0
≤
∫

Γ−Γ0

ggεp + 2βC ′ ≤ ||g||0,Γ−Γ0 ||gεp||0,Γ−Γ0 + 2βC ′ ,

Young inequality on the other hand gives us

||gεp||20,Γ−Γ0
≤ 1

2
||g||20,Γ−Γ0

+
1

2
||gεp||20,Γ−Γ0

+ 2βC ′

and hence, there exists p such that gεp satisfy

||gεp||20,Γ−Γ0
≤ ||g||20,Γ−Γ0

+ 4βC ′,

pose
δ2

6 := 4βC ′

since, following (i) of remark (5) and (24), β is arbitrary small then the
same holds with δ6.
2) on the other hand, if u2,i and hn2

i are respectively such as defined in
lemma (7) and (37) then

||L(u2,i)||0,Ω = ||hn2
i + f2||0,Ω ≤ ||hn2

i ||0,Ω + ||f2||0,Ω

≤ δ0

m
+

δ0

2m
=: τ, (46)

where δ0 is arbitrary small and satisfy (c4) and thus, τ is also arbitrary
small.
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3.1 Extension of the functions u2,i

We introduce some useful lemmas, which will play important roles in the
proof of theorem (1).

Since we are looking for explicit estimates, we should use Poincaré, trace
and Korn’s inequalities relatively to suitable geometric configurations i.e.
for which they are explicitly formulated. The configuration that best fits
our polygonal convex domain Ω is the half-plane R2+ containing the convex
polygonal domain Ω for Korn’s inequality, the square Sd with edge’s length
equal to d(Ω) for the Poincaré inequality and with edge Γi for the trace
inequality. These squares are taken to be subsets of the half-plane containing
Ω. Thus we determine these constants thanks to results available for this
type of domains. The need to consider the functions in and outside the
domain Ω suggests to extend by zero the functions u2,i outside the convex
domain Ω. The definition of the functions u2,i is adapted to make such an
extension.

We consider for i, 1 ≤ i ≤ m, the extension by zero of u2,i from the
convex domain Ω to the half-plane R2+ containing Ω such that Γi ⊂ ∂R2+.

ũ2,i =

{
u2,i, a.e. x ∈ Ω,

0, x ∈ R2+ − Ω.
(47)

We have, obviously, the following

||∂xi ũ2,i||0,R2+ = ||∂xi ũ2,i||0,Ω = ||∂xiu2,i||0,Ω. (48)

The inequalities are established for the extended H1 regular functions
defined on a square containing the convex polygonal domain Ω.

3.2 Explicit constant in the Poincaré inequality

We show in the following lemma that the function u2,i ∈ Vi satisfy the
Poincaré inequality for which we determine explicitly the constant.

Lemma 9. For all i, 0 ≤ i ≤ m, the function u2,i satisfy:

||u2,i||0,Ω ≤ d(Ω)||∇u2,i||0,Ω, (49)

the constant d(Ω) means the diameter of Ω.

Proof. We establish Poincaré inequality for one of the two components
ul2,i, l = 1, 2, the same estimate hold with the other. Note abcd the square
Sd, with edge’s length equal to d(Ω) and subset of the half-plane containing
Ω, such that a = (a1, a2), b = (b1, b2), c = (c1, c2) et d = (d1, d2) and such
that Γi ⊂ Si := [c, d]; so ũl2,i = 0 on ∂Sd − Γi.

Since ũl2,i is absolutely continuous on the lines parallel to the coordinate

axis, then applying the fundamental theorem of calculus to ũn,l1,i on
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Sd for l = 1, 2 , we have for all (x1, x2) ∈ [a1, d1]× [a2, b2]

ũl2,i(x1, x2) =

∫ x1

a1

∂x1 ũ
l
2,i(s, x2)ds+ ũl2,i(a1, x2).

Since (a1, x2) ∈ ∂Sd − Γi, then ∀(x1, x2) ∈ [a1, d1]× [a2, b2]

ũl2,i(x1, x2) =

∫ x1

a1

∂x1 ũ
l
2,i(s, x2)ds.

Using Cauchy-Schwarz inequality ∀(x1, x2) ∈ [a1, d1]× [a2, b2]

|ũl2,i(x1, x2)| ≤ |x1 − a|
1
2 (

∫ x1

a1

|∂x1 ũ
l
2,i(s, x2)|2ds)

1
2 .

Taking the square of the two hand sides of this inequality and using the
fact |x1 − a| ≤ d(Ω): ∀(x1, x2) ∈ [a1, d1]× [a2, b2] yields

|ũl2,i(x1, x2)|2 ≤ |x1−a|
∫ x1

a1

|∂x1 ũ
l
2,i(s, x2)|2ds ≤ d(Ω)

∫ d1

a1

|∂x1 ũ
l
2,i(s, x2)|2ds.

Integrating on Sd with respect to the variables x1 and x2:

||ũl2,i||20,Sd =

∫ b2

a2

∫ d1

a1

|ũl2,i(x1, x2)|2 dx dx ≤ d(Ω)

∫ b2

a2

∫ d1

a1

∫ d1

a1

|∂xũl2,i(s, x2)|2dsdx dx

≤ d2(Ω)

∫ ∫
Sd

|∂xũl2,i(s, x2)|2dsdx .

According to definition (47) and by considering (48) we get

||ul2,i||20,Ω ≤ d2(Ω)||∇ul2,i||20,Ω.

We infer that

||u2,i||20,Ω = ||u1
2,i||20,Ω + ||u2

2,i||20,Ω ≤ d2(Ω)(||∇u1
2,i||20,Ω + ||∇u2

2,i||20,Ω)

= d2(Ω)||∇u2,i||20,Ω.

3.3 Explicit bound for the trace of u2,i

Using mainly the inequality of Poincaré stated in lemma (9) and the trace
inequality for u2,i on the edge of a parallelogram (see lemma 4.2 in [3] ), one
establishes an explicit bound for the trace of the function u2,i on Γi.



Explicit H1-Estimate 23

Lemma 10. For all i, the function u2,i defined in lemma (7) satisfy:

||u2,i||0,Γi ≤ 16|Γi| ||gi||0,Γi + δ9, (50)

where δ9 is an arbitrary small real positive number.

Proof. Let u2,i be defined on the square SΓi with edge Γi such that SΓi is a
subset of the half-plane R2+ containing Ω. Let us write

u2,i = α+ % ,

this decomposition is made similarly to that presented in lemma (7) i.e.
such that on one hand

||L(α)||0,SΓi
and ||σ(α) · ~n− gi||0,Γi are small enough (51)

and on the other hand, α, % vanish respectively on ∂SΓi − Γi, Γi. We
prove (50) for u2,i considered as the trace on Γi of the function α. Decompose
α := α1 + α2 in the following way

L(α1) = L(α) in Ω
σ(α1) · ~n = 0 on Γi

α1 = 0 on ∂SΓi − Γi


L(α2) = 0 in Ω
σ(α2) · ~n = σ(α) · ~n on Γi,

α2 = 0 on ∂SΓi − Γi.

Applying the inequality of trace on the boundary of the the square SΓi ,
which is a parallelogram (see lemma 4.2 in [3]), for the components of u2,i

on Γi, it yields for both k = 1, 2

||αk||20,Γi ≤ 2
|Γi|
|Γi|2

||αk||20,SΓi
+ 2
|Γi|2

|Γi|
||∇αk||20,SΓi

,

simplifying,

||αk||20,Γi ≤ 2
1

|Γi|
||αk||20,SΓi

+ 2|Γi||∇αk||20,SΓi
,

using estimate (49) for the case where Ω is the square SΓi , with d(SΓi) =√
2|Γi| , yileds

||αk||20,Γi ≤ 2
2|Γi|2

4|Γi|
||∇αk||20,SΓi

+ 2|Γi||∇αk||20,SΓi

≤ 3|Γi|||∇αk||20,SΓi
,

applying Korn’s inequality for the extended function α̃ defined on the
half-plane R2+ containing SΓi , for which case Korn constant equals 1

2 , we
obtain
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||αk||20,Γi ≤ 12|Γi| ||ε(αk)||20,SΓi
. (52)

Since α1 and α2 satisfy

||ε(α1)||20,SΓi
=

∫
SΓi

L(α)α1 dx and ||ε(α2)||20,SΓi
=

∫
Γi

σ(α) · ~n α2 dσ,

then, using Cauchy-schwarz, this leads to estimates

||ε(α1)||0,SΓi
≤ 2
√

2|Γi| ||L(α)||0,SΓi
and ||ε(α2)||0,SΓi

≤ ||σ(α)·~n||0,Ω||α2||0,Γi ,

using these last estimates, (52) becomes

||α1||20,Γi ≤ 12× 8|Γi|2 ||L(α)||20,SΓi
, ||α2||20,Γi ≤ 12|Γi| ||σ(α) · ~n||0,Γi ||α2||0,Γi .

Using (46) and assumption (51), we can find δ5 and δ6 small enough such
that

||α1||0,Γi ≤ δ5, ||α2||0,Γi≤ 12|Γi| ||gi||0,Γi + δ6,

for all i. Hence, combining these two estimates, we obtain

||u2,i||0,Γi ≤ ||α1||0,Γi + ||α2||0,Γi ≤ δ9 + 16|Γi| ||gi||0,Γi

with δ9 = δ5 + δ6 arbitrary small.

4 Proof of theorem 1

We are ready now to present a proof of the main theorem. It uses, princi-
pally, lemma (6) and lemma (7).

Proof. Step 1: Let u1 be as defined in lemma (6), it is easy to check that
it satisfies

2µ

∫
Ω
ε(u1)ε(v) dx +λ

∫
Ω

div u1 div v dx =

∫
Ω
f1v dx

for all v ∈ H1
0 (Ω). Choose v = u1 and use Cauchy-Schwarz inequality

2µ||ε(u1)||20,Ω + λ||div u1||20,Ω ≤ ||f1||0,Ω||u1||0,Ω
Using Korn’s inequality relatively to the case of homogeneous Dirichlet

condition on one hand, and Poincaré inequality on the other hand, yield
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µ

2
||∇u1||20,Ω ≤ ||f1||0,Ω

d(Ω)

2
||∇u1||0,Ω,

using (iv) of lemma (6), we obtain

µ||∇u1||0,Ω ≤ d(Ω)||fp||0,Ω + d(Ω)
δ0

m
. (53)

Fix i, 1 ≤ i ≤ m. Let u2,i be such as defined in lemma (7), it is easy to
check that u2,i satisfies

2µ

∫
Ω
ε(u2,i)ε(v) dx +λ

∫
Ω

div u2,i div v dx =

∫
Ω
L(u2,i)v dx +

∫
Γ−Γ0

giv dσ

for all v ∈ V . Choose v = u2,i and use Cauchy-Schwarz to obtain

2µ||ε(u2,i)||20,Ω + λ||div u2,i||20,Ω ≤ ||L(u2,i)||0,Ω||u2,i||0,Ω + ||gi||0,Γi ||u2,i||0,Γi ,

using estimate (49)

2µ||ε(u2,i)||20,Ω ≤ ||L(u2,i)||0,Ωd(Ω)||∇u2,i||0,Ω + ||gi||0,Γi ||u2,i||0,Γi .

On the other hand, there exists constants ck, cp and ct such that

||∇u2,i||0,Ω ≤ cp||L(u2,i)||0,Ω + ctct||gi||0,Γi
thus

2µ||ε(u2,i)||20,Ω
≤ d(Ω)||L(u2,i)||0,Ωck(cp||L(u2,i)||0,Ω + ct||gi||0,Γi) + ||gi||0,Γi ||u2,i||0,Γi ;

(54)

since, following (27) and (45), ||gi||0,Ω are uniformly bounded with re-
spect to ε then, using (46)

2µ||ε(u2,i)||20,Ω ≤ d(Ω)τck(cpτ + ct||gi||0,Γi) + ||gi||0,Γi ||u2,i||0,Γi

≤ d(Ω)τck(cpτ + ct(||g||0,Γ−Γ0 + δ6 +
δ1

m
)) + ||gi||0,Γi ||u2,i||0,Γi ;

(55)

pose

δ2
7 := d(Ω)τck(cpτ + ct(||g||0,Γ−Γ0 + δ6 +

δ1

m
)),

it can be made, thanks to estimate (46), as small as desired. Applying (50),
(27) and (45), estimate (55) becomes
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2µ||ε(u2,i)||20,Ω ≤ δ2
7 + 16|Γi| ||gi||20,Γi + δ9||gi||0,Γi

≤ δ2
7 + 16|Γi| ||gi||20,Γi + δ9(

δ1

m
+ δ6 + ||g||0,Γi)

≤ δ2
10

m2
+ 16|Γi| ||gi||20,Γi ,

where
δ2
10
m2 := δ2

7 + δ9( δ1m + δ6 + ||g||0,Γi), then by simplifying,√
2µ||ε(u2,i)||0,Ω ≤

δ10

m
+ 4|Γi|

1
2 ||gi||0,Γi . (56)

One should notice that, by definition of the constants δ6, δ7 and δ9, the
constant δ10 can be made as small as possible.

Step 2: Since the deformation ε(u2,i) is a linear application with respect
to the first derivatives of u2,i then, with the same notations as in (47) and
by using (48), we have

||ε(ũ2,i)||0,R2+ = ||ε(ũ2,i)||0,Ω = ||ε(u2,i)||0,Ωi .

Applying the estimate stated in (corollary 1.2.2, [6]) to ũ2,i gives

1

2
× ||∇u2,i||0,Ω =

1

2
× ||∇ũ2,i||0,R2+ ≤ ||ε(ũ2,i)||0,R2+ ,

thus, (56) becomes

√
µ
√

2
||∇u2,i||0,Ω ≤

δ10

m
+ 4|Γi|

1
2 ||gi||0,Γi ,

Young inequality yields

√
µ
√

2
||∇u2,i||0,Ω ≤

δ10

m
+ 2(|Γi|+ ||gi||20,Γi).

Using approximation result (27), we have

√
µ
√

2
||∇u2,i||0,Ω ≤

δ10

m
+ 4(|Γi|+ ||gεp||20,Γi +

δ2
1

m2
).

Summing over i = 1,m we obtain using triangular inequality

√
µ
√

2
||∇u′2||0,Ω ≤

√
µ
√

2

∑
i

||∇u2,i||0,Ω ≤ δ10 + 4|Γ|+ 4||gεp||20,Γ + 4δ2
1 . (57)

Finally, combining (53) and (57) we get
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√
µ||∇(u1 + u′2)||0,Ω

≤ δ0

m
d(Ω) +

√
2δ10 + 4δ2

1 + d(Ω)||fp||0,Ω + 8(|Γ|+ ||gεp||20,Γ),

considering (28) and posing δ11 := δ0
md(Ω) +

√
2δ10 + 4δ2

1 ,

√
µ||∇upε ||0,Ω ≤ δ11 +

√
µδ2 + d(Ω)||fp||0,Ω + 8(|Γ|+ ||gεp||20,Γ). (58)

Use (45), estimate (58) becomes

||∇upε ||0,Ω ≤
1
√
µ

[8δ2
6 + δ11 +

√
µδ2 + d(Ω)||fp||0,Ω + 8(|Γ|+ ||g||20,Γ)], (59)

using (23) and (i) of (24), estimate (59) becomes

||∇uε||0,Ω ≤
1
√
µ

[
1

2
+ 8δ2

6 +
√
µδ2 + δ11 + d(Ω)||f ||0,Ω + 8(|Γ|+ ||g||20,Γ)].

By adequately choosing the positive numbers δ′js, we immediately get

||∇uε||0,Ω ≤
1
√
µ

[1 + d(Ω)||f ||0,Ω + 8(|Γ|+ ||g||20,Γ)]. (60)

We conclude the theorem for u by applying (a) of lemma (4) on one
hand, and (iii) of remark (5) on the other hand.

Finally; in order to get the explicit H1 estimate of uε, and so that of u,
we use the poincaré inequality (49) to bound ||u||0,Ω at one hand and the
estimate (7) at the other hand.

Conclusion

In the point of view of numerical analysis, estimate of theorem (1) is inter-
esting. Indeed, error estimates in finite element method of the type

||u− uh||0,Ω ≤ Ch||∇u||0,Ω
involve the quantity ||∇u||0,Ω. Assuming that the constant C can be explic-
itly computed, then it is possible to explicitly bound ||∇u||0,Ω which implies
a better estimate of ||u||0,Ω.

Another interesting feature of the estimate (7) that makes it effective is
that it does not depend on the characteristic parameters of the polygonal do-
main Ω, namely, the edges’s length, their number as well as the measures of
the angles. The estimate is therefore indifferently applicable to all polygons.
All this allows the possibility to generalize this result, by approximation, to
a C1 class domain.
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A Clarification

Regarding the application of the main result established in [10], we note the
following facts. The part of theorem 2.1 in [10] used in the proof of lemma
(7) is the equivalence between the following two assertions.

1) Xi is approximated by smooth functions with support away from Γ− Γi

2) limr→0
1

|B(x, r)|

∫
B(x,r)∩Ω

|Xi(y)| dy = 0

To effectively apply this result, we need to show that the fact Xi = 0 on
Γ− Γi implies 2). Indeed, let x ∈ Γ− Γi. We assume for convenience, that
x coincide with the origin (0, 0) of R2. Since ∂Ω is a polygon then, there
exists c > 0 independent of r such that

|B(0, r) ∩ Ω| = c|B(0, r)|.

On the other hand, the functionXi solution of problem (P1) is continuous
on Ω. One can see this using the following argument: according to the
definition of upε , Xi ∈ C∞(∂Ω). Applying the Whitney extension theorem
(see [11]), one can find Xi ∈ C∞(Ω) that coincide with Xi on Γ. Thus,
Xi −Xi ∈ H1(Ω) solves the following problem

{
L(Xi −Xi) = −L(Xi) a.e in Ω,

Xi −Xi = 0 on ∪i Γi.

Since Ωis convex, Xi −Xi ∈ H2(Ω). Consequently

Xi = (Xi −Xi) +Xi ∈ H2(Ω)

as well. Furthermore, by an adequate Sobolev embedding, Xi ∈ C0(Ω). The
Lebesgue differentiation theorem yields:

lim
r→0

1

|B(x, r)|

∫
B(x,r)∩Ω

|Xi(y) dy | = lim
r→0

1

|B(0, r)|

∫
B(0,r)∩Ω

|Xi(y) dy |

≤ lim
r→0

1

|B(0, r) ∩ Ω|

∫
B(0,r)∩Ω

|Xi(y) dy |

= |Xi(0)| = 0,

we infer that assertion 2) holds for all x ∈ Γ − Γi and thus, C1,2−almost
everywhere. Where C1,2 refers to the 2− capacity of the set Γ− Γi.
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