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Many turbulent flows undergo drastic and abrupt configuration changes with huge impacts. As a
paradigmatic example we study the multistability of jet dynamics in a barotropic beta plane model
of atmosphere dynamics. It is considered as the Ising model for Jupiter troposphere dynamics. Using
the adaptive multilevel splitting, a rare event algorithm, we are able to get a very large statistics
of transition paths, the extremely rare transitions from one state of the system to another. This
new approach opens the way for addressing a set of questions that are out of reach through direct
numerical simulations. We demonstrate for the first time the concentration of transition paths close
to instantons, in a numerical simulation of genuine turbulent flows. We show that the transition
is a noise-activated nucleation of vorticity bands. We address for the first time the existence of
Arrhenius laws in turbulent flows. The methodology we developed shall prove useful to study many
other transitions related to drastic changes for the turbulent dynamics of climate, geophysical,
astrophysical and engineering applications. This opens a new range of studies impossible so far, and
bring turbulent phenomena in the realm of non-equilibrium statistical mechanics.

Many turbulent flows undergo drastic and abrupt con-
figuration changes with huge impacts [1–7]. The Earth
magnetic field reverses on geological time scales due to
turbulent motion of the Earth’s metal core [3], wall flows
transition from laminar to turbulent [7–9], experiments
in convection turbulence show bistability [4–6], global cli-
mate changes like the glacial-interglacial transitions or
the Dansgaard–Oeschger events are related to the tur-
bulent oceans and atmosphere coupled to ice and car-
bon dioxide dynamics [10]. Is the kinetics and phe-
nomenology of these turbulent transitions analogous to
phase transitions in condensed matter, and rare confor-
mational changes of molecules in chemistry and biochem-
istry? These key questions have not been addressed so
far because of the difficulty related to the numerical com-
plexity: We need both a proper turbulence representation
and run extremely long simulations to observe transi-
tions. In this letter we show that a new numerical ap-
proach based on rare event algorithms improves exponen-
tially our capabilities. With this tool, we make the first
numerical study of metastability and spontaneous tran-
sitions for a genuine turbulent dynamics. We study at-
mospheric turbulent jet transitions, relevant to describe
abrupt climate changes on Jupiter’s troposphere.

Jupiter pictures show fascinating zonal bands whose
color are correlated with the troposphere flow vorticity.
Those bands correspond to East-West (zonal) velocity
jets, which are stationary for centuries. During the pe-
riod 1939-1940 a fantastic phenomenon occurred: the
planet lost one of its jets [11], which was replaced by three
white anticyclones. Phil Marcus subsequently called this
event a Jupiter’s sudden climate change [12]. This rare
event is one example among thousands of sudden transi-
tions betwee attractors in the self-organization of billions

of vortices in turbulent flows. In this letter, we study the
barotropic beta-plane quasi-geostrophic equations: the
simplest model that describes the turbulent atmosphere
jet self-organization [13–18]. It is the Ising model of at-
mosphere dynamics: the simplest model to describe jet
formation, although too simple to be quantitatively real-
istic.

The dimensionless version of the model equations read

∂tω + v · ∇ω + βvy = −αω − νn (−∆)
n
ω +
√

2αη, (1)

where v = ez ×∇ψ is the non-divergent velocity, vy the
North-South velocity component, ω = ∆ψ and ψ are
the vorticity and the streamfunction, respectively, α is a
linear friction coefficient, see Supplemental Material for
the dimensional equations. The noise η forces the flow
dynamics and is precisely defined in the Supplemental
Material file. When β = 0, those equations are the two-
dimensional stochastic Navier–Stokes equations for which
a few rare transitions have been observed in the past be-
tween dipole and jet states [19], and for which impressive
explicit relation between the energy injection rate and
the Reynolds stresses have been recently derived [20–22].
Such relations have been further justified and extended
to the case β 6= 0 [23], see also [18]. For β 6= 0 and for
small enough α the vorticity dynamics self-organizes into
zonal bands like on Jupiter (Fig. 1). The dimensionless
parameter β is proportional to βd that measures the lo-
cal variations of the Coriolis parameter, and is related
to the Rhines scale, defined in the Supplementary Ma-
terials. The number of jets roughly scales like β1/2 [14].
Fig. 1 shows metastable turbulent states with either two
or three alternating jets, for two different values of β.

When β is increased, one expects to see transitions
from attractors with 2 to 3 alternating jets (2→ 3 tran-



2

y
α t

 

 

50 100 150 200
0

2

4

6

−1

−0.5

0

0.5

1

y

α t
 

 

50 100 150 200
0

2

4

6

−1

0

1

0
2

4
6

−0.5 0

0.5

0
2

4
6

−1

−0.5 0

0.5

β = 5

β = 10

Figure 1. Right panels: typical snapshots of the vorticity
fields (the colors show the vorticity values, with red for pos-
itive ones, blue for negative ones and black for intermedi-
ate ones; the range of vorticity is [-1,1]). Middle panels:
Hovmöller diagrams of zonally averaged vorticity (the hori-
zontal axis is αt, the vertical one is y, and the color represents
the x−averaged vorticity, α = 1.20 10−3). Left panels: time
and zonally averaged vorticity (red) and velocity (green). The
top plots show a two jet state for β = 5, while the bottom
ones show a three jet one for β = 10.

sitions). As there is no related symmetry breaking, one
may expect these transitions to be first order ones with
discontinuous jumps of some order parameters. In sit-
uations with discontinuous transitions when an external
parameter β is changed, one expects for each bifurcation
a multistability range (β1, β2) in which two (or more) pos-
sible states exist for a single value of β. Such a bistabil-
ity has indeed been observed [16], by changing the model
initial conditions. Fig. 2 shows for the first time sponta-
neous transitions between the two bistable states. The
transitions are well characterized by the Fourier compo-
nents qn =

´
dxdy ω(x, y)einy/(2π)2 for n = 2 and n = 3:

Fig. 2 features five 2 → 3 transitions, and five 3 → 2
transitions in about 106 turnover times.

We would like to address the following basic questions:
What are the transition rates? What are the relative
probability of each attractors (equilibrium constants)?
Do the transition trajectories concentrate close to in-
stantons like in statistical physics [24]? Do the thou-
sands of small scale vortices act collectively as atoms in
a nucleation process? Unfortunately, such questions are
unaffordable using direct numerical simulations. Observ-
ing such rare spontaneous transitions in turbulent flows
is highly unusual as most turbulent simulations last a
few turnover times at most, because of the huge numeri-
cal cost. This limitation is a wall that drastically limits
the study of transitions in turbulent flows to extremely
simple models and a few transitions only. In order to
study rare transitions in turbulent flows, we consider a
completely new approach in turbulence studies: using
the adaptive multilevel splitting algorithm [25–27] (see
Fig. 3). This rare event algorithm belongs to the family
of splitting algorithms, where an ensemble of trajectories
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Figure 2. Rare transitions between turbulent attractors with
respectively 2 and 3 alternating jets. Upper panel: Hovmöller
diagram of the zonal mean vorticity. Lower panel: timeseries
of the modulus of q2 (red) and q3 (black), the zonal mean
vorticity Fourier components, for wavenumber 2 and 3 re-
spectively, versus the rescaled time αt (α = 1.2 · 10−3 and
β = 5.26).

are simulated and subjected to a succession of selections,
cloning or killing, and dynamical mutation steps. The
principle of the algorithm [25] is described in the legend
of Fig. 3. A full description of the algorithm and of the
method to compute transition rates is described in [27].
Its mathematical properties (convergence, fluctuations,
etc) have been studied recently [26, 28]. This algorithm
has first been tested in extremely simple dynamics with
few degrees of freedom [25]. It has been applied for the
first time to a partial differential equation, the Ginzburg–
Landau dynamics, in [27]. In [27], for the equilibrium
Ginzburg–Landau dynamics, a very precise comparison
of the AMS algorithm results with explicit analytic re-
sults of the Freidlin-Wentzell theory is performed, show-
ing that the algorithm can faithfully compute averaged
transition times of order of 1015 larger than the typical
duration of a direct numerical simulation. This letter
describes the first application of the adaptive multilevel
splitting algorithm to turbulent flows, and to complex
non equilibrium dynamics, where analytical results are
out of reach. This is also the first use of a rare event al-
gorithm to study transitions in turbulence that can not
be studied through direct numerical simulations. Using
this algorithm we have been able to compute thousands
of spontaneous transitions and their probability. Table I
shows the exponential reduction of computational time
in order to compute thousands of transitions.

Fig. 4 and the associated movie (Supplementary
Video) describe 2→ 3 transitions for α = 6.0 10−4. Both
the movie and the figure clearly illustrate that a new jet
formation proceeds through the nucleation of two new
ensembles of small positive and negative vortices lying
in an area of overall zero vorticity located at a westward
jet. Like in condensed matter, such a nucleation is highly
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Figure 3. (a) Sketch of the Adaptive Multilevel Splitting
(AMS) algorithm, one of the most versatile rare event al-
gorithms. The aim of the algorithm is to compute the very
small probability to go from a set A (for instance a two jet
state) to a set B (for instance a three jet state). N initial
trajectories are computed from the model (N is typically a
few thousands). A score function Q measures how far each
trajectory goes in the direction of B. The worst trajectory is
deleted (trajectory No. 1 on the sketch). It is replaced by a
new trajectory (purple trajectory) whose initial condition is
picked from one of the other previous trajectories (trajectory
2 on the sketch) at the time (red dot on the sketch) when it
was crossing the Q level with the maximum value of Q for
the deleted trajectory. This last step is called resampling or
cloning. As the new set of N trajectories has been obtained
by selecting N − 1 trajectories among N , and computing a
new trajectory which has the same probability as the N − 1
other ones, the new set has a probability 1−1/N . The resam-
pling step is iterated K times, leading to new trajectory set
with probability (1− 1/N)K . This very efficiently produces
extremely rare transitions from one attractor to another and
gives an unbiased estimate of their probability (see the Sup-
plementary Material file for more precise explanations).

improbable. Indeed a too small new vortex band is un-
stable. However when exceptionally, by chance, a critical
size is reached the new band becomes stable and will last
for an extremely long time. In combination with this
growth, the three jets move apart. It is striking to note
that all nucleations (2 → 3 transitions) have been ob-
served at the edge of westward jets, and all coalescences
(3→ 2 transitions) occurred at the edge of eastward jets.
This phenomenology is illustrated on an even clearer way
on Fig. 5 (a) that shows a typical zonal velocity evolu-
tion during the nucleation of new jet and Fig. 5 (b) that
shows jet coalescence.

The Arrhenius law, from thermodynamics and statisti-
cal physics, states that transitions rates are proportional
to λ ∝ exp(−∆V/α), where ∆V is either a free energy, an
entropy, or a potential difference, and α is related to ther-
mal or non-thermal noises. This classical law describes
transitions in many fields of physics, chemistry, biology,
statistical and quantum mechanics. Could it be relevant
to turbulence problems, extremely far from equilibrium?
This fascinating hypothesis has never been tested for tur-

Figure 4. Nucleation of a new jet. The panels display
the same quantities as Fig. 1. A set of vortices is able to
nucleate a new band of blue vorticity, a very unlikely process,
leading to the birth of a new jet seen on the green velocity
curve. As in nucleation processes in condensed matter, once
the nucleated structure is large enough the new jet will be
stable and persist for extremely long times, as seen on the
Hovmöller diagram (see also the Supplementary video).
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Figure 5. (a) Zonally averaged velocity during the nucleation
of a third jet in a 2→ 3 jet transition: The blue, red and black
curves show the velocity field at the start, at an intermedi-
ate stage, and at a more advanced stage of the nucleation,
respectively. (b) Zonally averaged velocity during the coales-
cence of two jets in a 3 → 2 transition: The blue, red and
black curves show the velocity field before, just before, and
after the merging, respectively. These 4 plots illustrate that
while transitions appear at random time, their dynamic is
predictable.
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Figure 6. Instantons: The reactive tubes corresponding to
the distribution of transition paths for the 2 → 3 (red) and
3→ 2 (blue) transitions. They illustrate the concentration of
transition paths typical of an instanton phenomenology (see
the main text) (β = 5.26 and α = 1.2 · 10−3).

bulent flows because this requires a huge number of rare
transitions for different values of α, an impossible task
without a rare event algorithm. The validity of this hy-
pothesis is suggested by the nucleation phenomenology.
Moreover, we have recently conjectured [29, 30] that the
slow evolution of the zonally averaged part of the flow,
U(y, t) =

´
dxv(x, y, t), may be described by an effective

equation

∂U

∂τ
= F (U) +

√
ασ(U, τ), (2)

where τ = αt is a rescaled time, F (U), the average of
the divergence of the Reynolds stress (more precisely,
[29] derived Eq. (2) formally and proved that the hy-
pothesis for the asymptotic expansion leading to F (U)
are self-consistent, while [30] explained how to compute
σ(U, τ))). The classical Freidlin–Wentzell theory [31] de-
scribes large deviations and rare transitions for Eq. (2)
for weak noises (α� 1). From this theory, two main con-
sequences can be derived from Eq. (2): first an Arrhe-
nius law, and second a concentration of transition paths
close to a single path called instanton [24, 32, 33] (see
[3] for an experimental observation in a magneto hydro-
dynamics turbulent flow, and [33] for numerical results
for Burger’s equation). In the following of this letter we
will show that these two consequences are verified, giving
further support to Eq. (2).

Using the adaptive multilevel splitting algorithm, we
have been able to collect thousands of transition paths.
In Fig. 6, 80% of the direct 2 → 3 transitions are inside
the red tube, and 80% of the direct 3 → 2 trajectories
are inside the blue tube, in the reduced space of observ-
ables (|q2| , |q3| , |q4|) (see Fig. 2). This unambiguously
illustrates the concentration of transition paths close to
an instanton. This is the first demonstration of such a
phenomenology from numerical simulations in a turbu-
lent flow. We stress the strong asymmetry between the
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Figure 7. Arrhenius law. Logarithm of the mean first tran-
sition time T from the two-jet to the three-jet attractors ver-
sus 1/α (β = 5.5). This result suggests that mean transition

times might follow an Arrhenius law T ∝ e∆U/α. (b)

α AMS DNS

1.2 · 10−3 1.0d 15d

0.9 · 10−3 1.4d 210d

0.6 · 10−3 2.2d ∼51y

0.45 · 10−3 3.4d ∼2050y

Table I. CPU time (d: days, y: years) needed to obtain 1000
transition paths using 200 processors for the adaptive multi-
level splitting algorithm compared to direct numerical simu-
lation for different values of α.

2→ 3 and 3→ 2 transition, which is expected for an irre-
versible dynamics of a turbulent flow. We also study for
the first time in a turbulent flow an Arrhenius law, based
on thousands of extremely rare transitions (see Tab. I).
Following the approach described in [34] we compute the
averaged transition time E(T ) = 1/λ for the 2→ 3 tran-
sitions (see Fig. 7). Those data are clearly compatible
with an Arrhenius law logE(T ) ∝ ∆V/α. Viscosity ef-
fects are discussed in the Supplementary Material file.

The new use of the adaptive multilevel splitting algo-
rithm for studying rare transitions in a turbulent flow
demonstrates for the first time that thousands of vor-
tices can self-organize and nucleate new structures and
trigger transitions. Like in condensed matter, the tran-
sition paths concentrate close to instantons. Instantons
may be used as precursors stressing that the extremely
rare transition became more probable. A very impor-
tant future work will be the study of Jupiter’s abrupt
climate changes with models that are more realistic then
the barotropic β-plane model [35]. While it is unlikely
that the same nucleation phenomenology should hold for
all possible turbulent transitions, the methodology de-
veloped will prove useful to study many other transitions
related to drastic changes for climate, geophysical, as-
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trophysical and engineering applications. This opens a
new range of studies impossible so far, and bring tur-
bulent phenomena in the realm of non-equilibrium sta-
tistical mechanics. Examples include the Kuroshio cur-
rent bistability, weather regime changes in meteorology,
regime transitions in the Sun superficial dynamics, astro-
physical magnetic field transitions, bistability in turbu-
lent boundary layer detachments.
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The beta-plane model for barotropic flows. All the re-
sults in this letter are based on the barotropic quasi-
geostrophic equations, with a beta plane approximation
for the variation of the Coriolis parameter. The equations
in a doubly periodic domain D = [0, 2πLlx) × [0, 2πL)
read

∂tω+v ·∇ω+βdvy = −λfω− νn,d (−∆)
n
ω+
√
ση, (3)

where v = ez ×∇ψ is the non-divergent velocity, vy the
meridional velocity component, ω = ∆ψ and ψ are the
vorticity and the stream function, respectively. λf is a
linear friction coefficient, νn,d is a (hyper-)viscosity coef-
ficient, and βd is the mean gradient of potential vorticity.
η is a white in time Gaussian random noise, with spatial
correlations

E [η(r1, t1)η(r2, t2)] = C(r1 − r2)δ(t1 − t2)

that parameterizes the curl of the forces (physically due,
for example, to the effect of baroclinic instabilities or
convection). The correlation function C is assumed to
be normalized such that σ represents the average en-
ergy injection rate, so that the average energy injection
rate per unit of area (or equivalently per unit of mass
taking into account density and the layer thickness) is
ε = σ/4π2L2lx. These equations share the mathematical
properties of the 2D Navier–Stokes equations and reduce
to it when β = 0.

The dynamics of large scale jet formation on Jupiter
may be qualitatively well understood within the frame-
work of the barotropic quasi-geostrophic equations with
a β plane approximation, although more refined models
are needed to understand their quantitative features [35].
As the aim of this work is to make progress in the theo-
retical understanding of turbulent flows, we consider the
simple barotropic β plane model. Despite all its limita-
tions, for instance the lack of dynamical effects related
to baroclinic instabilities, this model reproduces the main
qualitative features of the velocity profile and of the jet
spacing. The aim of this study is to make a first study
of rare transitions for genuine turbulent flows which is
directly inspired by geophysical phenomena, rather than
studying precisely specific geophysical phenomena.

For atmospheric flows, viscosity is often negligible in
the global energy balance and this is the regime that
we will study in the following. Then the main energy
dissipation mechanism is linear friction. The evolution of
the average energy (averaged over the noise realizations)

E is given by

dE

dt
= −2λfE + σ.

In a stationary state we have E = Estat = σ/2λf , ex-
pressing the balance between forces and dissipation. This
relation gives the typical velocity associated with the co-
herent structure U ∼ √Estat/L ∼

√
ε/2λf . We expect

the non-zonal velocity perturbation to follow an inviscid
relaxation, on a typical time scale related to the inverse
of the shear rate U/L. Assuming that a typical vorticity
or shear is of order s = U/L corresponding to a time
τ = L/U , it is then natural to define a non-dimensional
parameter α as the ratio of the shear time scale over the
dissipative time scale 1/λf ,

α = λfτ = L

√
2λ3f
ε
.

When β is large enough, several zonal jets can develop in
the domain. An important scale is the so-called Rhines
scale LR which gives the typical size of the meridional jet
width:

LR = (U/βd)
1/2

=
(
ε/β2

dλf
)1/4

.

We write the non-dimensional barotropic equation us-
ing the box size L as a length unit and the inverse of a
typical shear τ = L/U as a time unit. We thus obtain
(with a slight abuse of notation, due to the fact that we
use the same symbols for the non-dimensional fields):

∂tω + v · ∇ω + βvy = −αω − νn (−∆)
n
ω +
√

2αη, (4)

where, in terms of the dimensional parameters, we have
νn = νn,dτ/L

2n, β = βdLτ . Observe that the above
equation is defined on a domain D = [0, 2πlx) × [0, 2π)
and the averaged stationary energy for νn � α is of order
one. Moreover the non dimensional number β is equal to
the square of the ratio of the domain size divided by the
Rhines scale. As a consequence, according to empirical
observations in numerical simulations, the number of jets
approximately scales like β1/2 when β is changed [14]. We
are interested in the strong jet regime, obtained for small
values of α, which is relevant for Jupiter. All the compu-
tations of this paper are performed with the parameters
ν = 1.5 10−8, and using a stochastic force with a uniform
spectrum in the wave number band |k| ∈ [14, 15]. We
change the values of α and β for different experiments,
as explained in the letter.
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The adaptive multilevel splitting algorithm and its val-
idation. The sketch and caption of Fig. 3 explain the
principle of the adaptive multilevel splitting algorithm.
The cloning step for the discretization of a continuous
time dynamics has to be more precisely defined. We de-
note 1 the deleted trajectory, 1′ the new trajectory, and
2 the trajectory used for branching. X1(t) and X2(t)
are the values of the model variables along the trajecto-
ries 1 and 2, respectively. The new trajectory 1′ is equal
to the trajectory 2 up to the first time step tc such that
Q(X2(tc)) > maxtQ(X1(t)) [26]. In the case of a discrete
time process, the branching level must therefore occurs
at a discrete time strictly larger than tc. Trajectory 1’ is
then computed as a numerical solution of (4), with a new
realization of the noise η(t) for times larger than tc (we
recall that η is a random Gaussian field with two-point
correlation function C; a new realization is a new sample
of this random field). Any other branching choice adds
a bias on the computed transition times. After K itera-
tions, the probability of the set of N selected trajectories
is (1− 1/N)K . If the user chooses to stop the algorithm
at the iteration K when N trajectories reach the set B,
he obtains a set of N reactive trajectories, which proba-
bility is p = (1 − 1/N)K . The averaged transition time

is estimated as E(T ) =
(

1
p − 1

)
Ea + Eb. The quantity

Ea is the averaged time to go from the boundary ∂A of
the set A to some hypersurface ∂C close to ∂A and going
back to A without going to B. This quantity is easily es-
timated by direct simulations since ∂C must be close to
∂A, The quantity Eb is the averaged time to go from A to
∂C and then to B without first going back to A. The con-
ditions under which this approximation is correct, and a
justification, are discussed in details in [34].

A necessary condition for the adaptive multilevel al-
gorithm to be efficient is to have a good choice of the
score function Q (see Fig. 3). The optimal choice for Q
is the probability to reach the attractor B before reach-
ing the attractor A (the committor function). This com-
mittor function is however unknown. The choice of Q
should then be made based on heuristic understanding
of the transition dynamics. A bad choice of Q can lead
to the failure of the algorithm to efficiently produce re-
active trajectories, which is immediately noticed by the
user. A more subtle possible difficulty may occur when
several sets of transitions paths exists (bistability for the
transition paths, in the path space). Then several differ-
ent score functions should be used in order to compute
independently different sets of transition paths.

The reduced phase space is spanned by the
moduli of the zonal Fourier coefficients qn =´

dxdy ω(x, y)einy/(2π)2 (see Fig 2), with n = 2, n = 3
and n = 4. We first approximate their probability den-
sity functions (PDFs) by monitoring |q2|, |q3| and |q4|
by direct numerical simulation. The sets A and B (see
Fig. 3) correspond to some low-dimensional projections

of the metastable states having two and three eastern
jets respectively, for some range of values of |q2|, |q3|
and |q4| . This procedure defines two sets with disjoint
compact support. The support of A is inside the region
|q2| ∈ [0.24, 0.25], |q3|, |q4| ∈ [0, 0.05]. The support of B is
inside a larger region |q2| ∈ [0.1, 0.15], |q3| ∈ [0.20, 0.30]
and |q4| ∈ [0.1, 0.2]. We denote M a given point in the
reduced phase space with coordinates |q2|, |q3|, |q4|, and
we define the reactive coordinate Q as Q(M) = dA/2dB
if dA < dB, Q(M) = 1 − dB/2dA if dA > dB, and
Q(M) = 1/2 if dA = dB; where dC = dist(M, C). The
function Q is thus equal to zero in the set A and one in
the set B. This choice for Q is a very rough approxima-
tion of the committor isosurfaces but gives rather good
results with the adaptive multilevel splitting algorithm
as demonstrated in this letter.

For α = 1.2 · 10−3, the only α value for which transi-
tions can be observed using direct numerical simulations,
we have verified that the transition paths obtained using
the adaptive multilevel splitting algorithm are qualita-
tively similar to the ones observed in the direct numerical
simulations. As seen on Fig. 2, from the direct numer-
ical simulation, only five 2 → 3 and five 3 → 2 transi-
tions have been observed. The time spent in the two jet
and three jet state is about 2.7 106 and 2.1 106 respec-
tively over a total of 4.8 106. This gives an extremely
rough estimate of the average transition time of order
of 5.3 105 for the 2 → 3 transition and 4.3 105 for the
3 → 2 transitions, respectively. As only 5 transitions
have been observed, the uncertainty of this estimate is
huge, probably of about the same order of magnitude as
the estimate itself. Using the adaptive multilevel split-
ting algorithm for the same parameters, with N = 1000
clones for each realization of the algorithm, and three re-
alizations of the algorithm, we obtain an estimate of the
average transition time of T ' 5.8 · 105 for the 2 → 3.
This is clearly compatible with what is observed in the di-
rect numerical simulation. We thus conclude that there is
a good qualitative agreement between the direct numer-
ical simulations and the adaptive multilevel splitting. A
more quantitative agreement can not be checked directly
due to the prohibitive cost of direct numerical simula-
tions, but has been checked in models like the stochastic
Allen–Cahn equation [27], for which explicit mathemati-
cal formula were available as a benchmark.

A remark about the instanton shape and the 3 jet at-
tractor. On Fig. 6, the red tube is a level set of the
distribution of transition paths in the reduced space
(|q2|, |q3|, |q4|) for the 2 → 3 transition. It illustrates
the concentration of transition paths typical of an in-
stanton phenomenology. The blue tube is the same for
the 3 → 2 transitions (β = 5.26 and α = 1.2 · 10−3). In
the Freidlin-Wentzell theory, for an irreversible dynamics
like the Navier–Stokes equations and for a classical phe-
nomenology with two attractors separated by a saddle
point, one expects the transition paths to form a figure



3

eight. This is not observed on Fig. 6. One can also note
on Fig. 6, the large extension of the three jet attractor,
related to the fact that the observable q3 has strong fluc-
tuations for the three jet state, as can be seen on Fig. 2.
Those fluctuations are associated to the fact that for this
value of β, the three jet state is often asymmetric. For
instance on Fig. 2, for 550 < αt < 1150, one clearly sees
that two of the areas with negative values of the vorticity
(color blue), are smaller than the third. The extent of this
asymmetry changes in time, sometimes fast, sometimes
very slowly, suggesting a complex internal dynamics of
the three jet attractor. We believe that the absence of a
figure height for the transition paths and this apparently
complex dynamics in the neighborhood of the three jet
attractor are deeply connected. A more precise explana-
tion requires a new study of the three jet attractor which
will be the subject of future works.

Hyperviscosity and the Arrhenius law. Fig. 7 fea-
tures the logarithm of the transition time versus 1/α. We
note that for 1/α = 4 500, we have obtained a value of
the transition time lower than what should be expected
according to the Arrhenius law, by a factor of about two.
We have also noticed that for such small values of α,
hyperviscosity affects consequently the energy balance,
suggesting that hyperviscosity is too large for reaching
the zero hyperviscosity asymptotical regime. Lowering
the hyperviscosity would however require to use a better
resolution for the numerical simulation and represent a
very subsequent numerical effort that goes beyond the
scope of this letter. Given these elements, we conclude
that while our results are compatible with the validity of
an Arrhenius law, a definitive numerical evidence of the
validity of an Arrhenius law would require better resolved
numerical simulations.


