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Influence of Microstructure and Surface Roughness 
on Oxidation Kinetics at 500-600 °C ofTi-6Al-4V Alloy 
Fabricated by Additive Manufacturing 

Antoine Casadebaigt 1,2 • Jonathan Hugues 1 • Daniel Monceau2 

Abstract 

Ti-6Al-4V alloy (TA6V) is the most commonly used titanium-based alloy and is 

usually manufactured by casting, forging or rolling. Additive manufacturing is a 

new way of processing metal alloys; it is currently used for production purposes. 

This study focuses on the microstructure and oxidation kinetics of Ti-6Al-4V fab

ricated by laser beam melting. Sorne samples were HIP-treated (hot isostatic pres

sure). Ti-6Al-4V rolled and annealed was used as a reference material. Ti-6Al-4V 

fabricated by LBM exhibited prior p grains elongated in the building direction with 

fully acicular martensite, a'. Isothermal oxidations were performed at 500, 550 and 600 

°C for durations of 100, 200 and 500 h. The oxidation kinetics followed a parabolic 

law. The weight gain of as-built LBM samples was twice as high as that of ground 

LBM samples of Ti-6Al-4V, although both sets had the same oxide layer thickness 

and depth of oxygen diffusion in the alloy. Ground LBM samples presented an 

oxidation rate close to that of conventional rolled and annealed Ti-6Al-4V alloys. It 

was shown the higher weight gain of LBM-produced Ti-6Al-4V samples was mainly 

due to their higher specific area and to the oxidation of partially melted powder on 

their surface. 
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Introduction 

Titanium alloys are widely used in aeronautic applications due to their good density

specific mechanical properties and aqueous corrosion resistance. However, applica

tions for titanium alloys are often limited to temperatures below 550 °C, e.g. 400 °C 

for Ti-6Al-4V (wt%) [1]. This is due to the relatively fast rate of external oxide 

layer (OL) growth at high temperature and more importantly to the very high oxy

gen solubility in the metal. This high oxygen solubility leads to an oxygen diffusion 

zone (ODZ) beneath the external oxide scale provoking a loss of ductility [2, 3]. 

Ti-6Al-4V represents nearly 60% of titanium alloys produced [1] and is frequently 

used injet-engine components and aircraft structural components [4]. 

Laser beam melting (LBM) also named selective laser melting (SLM) is one of 

the additive manufacturing processes that emerged in the late 1980s and early 1990s 

[5]. The process bas been widely described in the literature [6-8]. This technique 

enables the manufacturing of nearly dense metal parts with complex geometries and 

is currently under development for mass production [9-12]. The layer-by-layer pro

cess of the LBM allows the manufacturing of complex geometry parts, which are 



impossible to build with more conventional manufacturing processes such as forging 

or casting [13]. Moreover, hot working and machining used in traditional processes 

result in a high buy-to-fly ratio-defined as the mass of raw material purchased to 

manufacture a part compared to the final part's mass in flight-e.g. the mid-fuselage 

bulkhead of the USF-22 [14]. LBM process reduces the amount of wasted matter 

compared to machining processes. 

Most reports involving titanium alloys fabricated by LBM concentrate on micro

structure and mechanical properties [9, 11, 12, 15-18]. Up to now, no study has 

focused on high-temperature oxidation behaviour of LBM-produced Ti-6Al-4V 

alloy. A single study discussing the high-temperature oxidation behaviour of a tita

nium alloy (Ti-5.5Al-3.4Sn-3.0Zr-0.7Mo--0.3Si-0.4Nb-0.35Ta wt%) fabricated by 

LBM could be found in the open literature [ 19]. The microstructure of this titanium 

alloy fabricated by LBM was an acicular martensitic a' phase with 0.5-µm-wide 

laths, and its oxidation resistance was higher than that of the as-casted alloy. But 

the mechanisms of oxidation and the kinetics data were poorly described. In the 

following paper, the effects of the specific microstructure and surface of as-built 

LBM samples and the high-temperature oxidation behaviour of the titanium alloy 

Ti-6Al-4V fabricated by LBM have been studied and compared to Ti-6Al-4V fab

ricated by conventional rolling. Moreover, influence of hot isostatic pressure, HIP, 

treatrnent on the microstructure and oxidation behaviour of Ti-6Al-4V fabricated 

by LBM has been investigated. 

Experimental Procedures 

Ti-6Al-4V alloy samples were produced by LBM using an EOS M280 machine 

equipped with an Yb-fibre laser working at a wavelength between 1060 and 

1100 µm. The LBM was processed under argon atrnosphere to limit thermal oxida

tion. Process parameters were optimized to obtain fully dense parts. The powder 

used, supplied by AP&C, was plasma atomized Ti-6Al-4V with a particles size of 

15-45 µm and was recycled 21 times before the making of our samples. The chem

ical composition of the unused powder according to ASTM B348 is presented in

Table 1.

Tablel Chemical composition of Ti-6Al--4V alloys (Al, V and Fe measured by ICP-OES; C, N, 0, S 
and H measured by IGA) 

Al V C 0 N H Fe Other Ti 

Unused LBM powder (wt%) 6.5 3.9 0.02 0.12 0.02 0.0023 0.19 <0.4 Bal 
Unused LBM powder (at.%) 10.97 3.48 0.08 0.34 0.06 0.10 0.15 Bal 
LBM sample (wt%) 6.4 4.0 0.16 0.0048 0.21 <0.4 Bal 
LBM sample (at.%) 10.8 3.6 0.46 0.22 0.17 Bal 
Rolled sample (wt%) 6.41 3.93 0.004 0.18 0.008 0.0039 0.16 <0.4 Bal 
Rolled sample (at.%) 10.82 3.51 0.02 0.51 0.03 0.18 0.13 Bal 



Sorne of the samples were HIP-treated after LBM to reduce residual poros

ity thereby improving structural integrity. A rolled Ti-6Al-4V annealed above the 

a ➔ p phase transformation temperature, T
p

=980 °C, was used as the reference

material [20]. 

Spherical Ti-6Al-4V powder produced by AP&C with a particle size between 

15 and 45 µm and 0.10--0.12 wt% of oxygen content according to standard ASTM 

E1409 was used for oxidation study. 

Examination of the microstructure was done after samples were ground with SiC 

abrasive paper of P2400 grit size and polished with SiO2 solution. To reveal the 

microstructure, samples were etched in a solution of 100 ml of water, 2 ml of HF 

(75%) and 4 ml ofHNO3 (65%). Two cross sections were examined to study the ani

sotropy of the microstructure. One is the plane parallel to the building direction, and 

the other one is the plane perpendicular to the building direction. Micrographs were 

taken using Wild M420 binocular microscope and Nikon ECLIPSE MA200 optical 

microscope (OM). FEI Quanta 450 and LEO 435 VP scanning electron microscopes 

(SEM) were used at 15 kV for high-magnification micrographs. Chemical compo

sition was measured by inductively coupled plasma-optical emission spectrometry 

(ICP-OES), instrumental gas analysis (IGA) and inert gas fusion (IGF). Phases were 

identified by X-ray diffraction (XRD) at room temperature with a Bruker D8-2 using 

Cu-Ka radiation in the 20 range from 20° to 80° with a step size of 0.02° and a scan 

step time of 2 s. The relative density was measured using the Archimedes method. 

An average of three measurements was taken for each sample. 

Nine samples were fabricated by LBM in net shape with dimensions of 

15x10x2 mm3
• Three samples were kept in as-built LBM conditions, three sam

ples were ground to a P600-grit finish (LBM P600), and three samples were HIP

treated and ground to a P600-grit finish (HIP P600). Three additional samples rolled 

and annealed above T
p 

were added as references materials and were also ground to 

a P600-grit finish (Rolled P600). Grinding was carried out to assess the influence 

of metallurgical state on oxidation behaviour, independently of the effect of surface 

roughness of as-built LBM samples. 

Ti-6Al-4V samples were inserted in a pre-heated Carbolite furnace LHT 6/60 

with forced convection. An opening, which allowed atmosphere renewal, was pre

sent in the top wall of the furnace. Oxidations were performed at 500, 550 and 

600 °C, for 500 h and cooled at room temperature. Sample weights were measured 

before and after oxidation using a Sartorius® LA 75 3200D balance with an accu
racy of ± 20 µg. For each of the 12 samples, weight gain values were averaged on 

three measurements for every oxidation condition. The samples oxidized during 

500 h were prepared for microstructure characterization. Ti-6Al-4V powder was 

both oxidized in a SETARAM TAG24 s thermobalance at 600 °C for 100 h and in 
the pre-heated Carbolite furnace LHT 6/60 with forced convection at 600 °C for 

300 h to study the oxidation kinetics of the powder. A mass of 7 mg of powder was 

used. 

The thickness of the oxide layer of oxidized samples was assessed by optical 

microscopy measurement. For each sample, 20 images of cross sections were per

formed. For each image, 50 punctual measurements of oxide layer thickness were 

taken along the image. For each sample, oxide layer thickness corresponds to the 



mean value out of these 1000 punctual measures. Oxygen concentration profiles 

were measured by electron probe microanalyzer (EPMA) with a CAMECA SXFive 

microprobe operating at 15 kV and 20 nA. Two profiles were performed on each 

tested sample with a standard deviation of 6000 ppm on oxygen concentration meas

urement. Moreover, EPMA results were corrected by removing the oxygen concen

tration corresponding to the non-heat-treated zone and the oxygen contamination on 

the surface of the sample. Oxide layers were assayed using XRD-20 range from 

20° to 80°, step size of 0.04 °, scan step time of 6 s-and energy-dispersive analysis 

(EDS). 

Results and Discussion 

Microstructure Characterization 

Figure 1 shows the surface state of Ti-6Al-4V samples fabricated by LBM. Sorne 

powder grains have been partially melted and remain on the surface of the sample, 

thereby increasing its roughness and specific area. The relative density of samples 

measured using the Archimedes method is 99.5%. Sample density was determined 

relatively to the theoretical Ti-6Al-4V density value of 4.43 g cm-3 [21]. Two kinds

of pores are observed in the microstructure. Figure 2a, b presents large and non

spherical pores of 10--50 µm located at 100 µm under the surface, and small and 

spherical pores of 2-3 µm all over the bulk. 

LBM alloy microstructure was characterized before and after HIP treat

ment and compared to conventional alloy microstructure obtained after roll

ing and annealing treatment in the p field. Figure 2 shows the microstructure of 

Ti-6Al-4V produced by LBM. Figure la, c, respectively, presents a view perpen

dicular (XY plane) and parallel (XZ plane) to the building direction, defined as the 

Z axis. The XZ plane indicates that prior p grains (130 ± 20 µm in width) grew 

Fig. 1 Surface state ofTi-6Al--4V fabricated by LBM 
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Fig. 2 Optical and high-resolution metallographic views of Ti-6Al--4V alloys fabricated by LBM. a 
prior � grain perpendicular to the building direction, b macroscopic and microscopie porosities, c elon
gated prior � grain parallel to the building direction and d acicular a' martensite 

epitaxially during the process (up to 748 ± 244 µm in length) along the building 
direction due to the direction of the thermal gradient. In the XY plane, the laser 
scanning strategy is visible with a shift between subsequent layers. Prior p grains 
appeared as squares of 130 ± 30 µm in width. Figures 2b, d and 3a, respectively, 
show a higher magnification micrograph, a dark field optical micrograph and a 
bright field optical micrograph showing fully acicular a' martensitic microstruc
ture. This microstructure was found for alloy Ti-6Al-4V built by LBM [15] due 
to a high cooling rate, estimated around 105 K s-1 [22]. The average width of
laths obtained by the method ofintercepts is (640± 130) nm. 

The X-ray diffraction pattern in Fig. 4 indicates the presence of an hexagonal 
phase corresponding to the martensitic phase a', but does not indicate the pres
ence of P-phase. 

Fig. 3 Optical metallographic views of Ti-6Al--4V alloys fabricated by LBM before HIP treatment (a), 
fabricated by LBM after HIP treatment (b) and rolled and annealed ( c) 
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Fig. 4 X-ray diffraction pattern of Ti-6Al-4V fabricated by LBM before and after HIP treatment 

Figure 3b shows the microstructure of a sample fabricated by LBM- and HIP

treated. HIP treatment at 920 °C under 1000 bar for 2 h in argon atmosphere with 

a cooling rate of 4 K min- 1 induced the decomposition of acicular a' martensitic 

laths into a a+ fJ lamellar structure with a laths of 2 ± 0.5 µm wide surrounded by /J 

matrix. HIP treatment allowed closing the large and non-spherical pores. XRD anal

ysis in Fig. 4 confirmed the presence of /J-phase. Figure 3c shows the a+/J lamel

lar Widmanstatten-like microstructure of the reference material fabricated by rolling 

followed by an annealing treatrnent in the /J field and either an air cooling or a fur

nace cooling [ 4]. 

Oxidation Behaviour 

Figure 5 indicates weight gains of samples after exposure to air at 500, 550 and 

600 °C of Ti-6Al-4V alloys with different metallurgical and surface states. Each 

specimen's weight gain was divided by its specific surface area; values are expressed 

in mg/cm2 • The weight gain value of the Rolled P600 sample oxidized for 500 h at 

600 °C is not included in Fig. 5c, and the weight gain value of the LBM P600 sam

ple oxidized for 500 h at 600 °C was underestimated, both due to the spalling of the 

oxide layer. Figure 5a shows that weight gains of Ti-6Al-4V alloy at 500 °C are 

very low, and error bars show the difficulty of measuring weight gain before 500 h 

of oxidation due to very low weight gain values and to balance accuracy of ± 20 µg. 

After 500 h of oxidation at 500, 550 and 600 °C, LBM P600 and Rolled P600 

samples present a similar weight gain, as depicted in Fig. 5a--c. The metallurgical 

state of LBM samples exhibits oxidation kinetics similar to the rolled Ti-6Al-4V 

alloy used as reference material. However, HIP P600 samples present the low

est weight gain after 500 h of oxidation at every temperature. This could be due 

to the formation of a partially protective alumina diffusion barrier. However, this 
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assmnption could not be addressed in the present work. Moreover, after 500 h of 

oxidation at 500, 550 and 600 °C, as-built LBM samples present a weight gain 

two times higher than LBM P600 samples. As shown in Fig. 1, the surface state 

of as-built LBM samples displays large amounts of partially melted powder parti

cles which increase the specific area of the sample. In order to evaluate the effect 

of these powder particles on the surface of as-built samples, a Ti-6Al-4V powder 

with the same particle size as the powder on as-built LBM surfaces was oxidized. 

The amount of partially melted powder on as-built LBM samples was quantified by 

image analysis of scanning electron micrographs such as the one displayed in Fig. 1. 

As-built LBM samples present about 60,000 powder particles per cm2 of sample 

surface with a diameter of 15-45 µm. Figure 5c shows the oxidation of Ti-6Al-4V 

powder at 600 °C for 100 h. Weight gains were calculated in proportion to the 

amount of powder particles present on the surface of as-built LBM samples. After 

100 h at 600 °C, the weight gain of as-built LBM sample is close to the sum of the 

weight gain of the LBM P600 sample and of the Ti-6Al-4V powder. This proves 

that the higher weight gain of as-built LBM samples is mainly due to the presence 

of powder at the surface of the samples. These powder grains increase the surface 

area for oxidation, but they also oxidize faster than a fiat surface, with non-parabolic 

kinetics as shown in Fig. 5c. Weight gain measurements for the powder oxidized 

during 100 h at 600 °C in the TAG apparatus showed a linear-like oxidation kinet

ics. Sharp et al. [23] reviewed the oxidation kinetics models for powders. They con

cluded that oxidation kinetics of a spherical powder can be fitted by different models 

where the oxidation progress is limited by the diffusion in the reaction product layer 

at the surface of a spherical particle (D4) or limited by the reaction for a sphere (R3
). 

In both models, oxidation kinetics of the powder should be, respectively, sub-para

bolic or sub-linear because the area for oxidation decreases. Figure 5c presents the 

oxidation kinetics of Ti-6Al-4V powder in a parabolic plot. It shows that the initial 

kinetics (first 100 h) is not sub-parabolic, but the kinetics increases from a para

bolic rate to a linear rate. This phenomenon could be due to the cracking of powder 

grains, as observed in Fig. 6. After 500 h of oxidation at 600 °C, almost all oxi

dized powder grains are cracked. This was expected because of the anionic growth 

of TiO2 oxide layer and because of the high value of the Pilling and Bedworth ratio 

(PBR= 1.77 for Ti-a and PBR= 1.74 for Ti-/J in pure titanium; PBR= 1.81 for 

Fig. 6 Oxidized powder on as-built LBM samples oxidized 500 h at 600 °C 



Ti-a and PBR= 1.89 for Ti-Pin Ti-6Al--4V alloy) between titanium and rutile lat
tices. The Pilling and Bedworth ratio (PBR) was calculated by the authors from the
crystallographic data for rutile TiO2 and Ti-a and Ti-P phases measured by XRD
(a=2.95 À and c=4.68 À for Ti-a and a=3.30 À for Ti-Pin pure titanium and
a=2.92 À and c=4.67 À for Ti-a and a=3.21 À for Ti-Pin Ti-6Al--4V titanium
alloy). The PBR is equal to the volume of TiO2 formed for each atom of Ti divided
by the volume of a metallic site in the a or p titanium phase. And radial cracks in
the rutile layer give oxygen an easy access to the unreacted core of the particles and
maintain a fast reaction rate. 

Figure 5 shows that oxidation kinetics can be approximated with parabolic kinet
ics presented in Eq. 1 and the weight gain data can be fitted as: 

(1) 

where kp is the parabolic rate constant, D. W the weight gain and t the time. A is the
surface area of a sarnple calculated from its dimensions. For the powder, the weight
gain is given for the quantity of powder present on 1 cm2 of sarnple. Temperature
dependence of the parabolic rate constant can be observed, Fig. 5, as weight gain
increases with temperature. Figure 7 shows that kp follows an Arrhenius law Eq. 2: 

kp = ki · exp ( - :; ) (2) 

where Ea is the activation energy, R the gas constant and T the reaction temperature.
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Fig. 7 Arrhenius plot of parabolic rate constant� for oxidation of Ti-6Al-4V alloys [3, 25-29] 



Figure 7 indicates parabolic rate constant values (k
p
) extracted from the litera

ture and the present study. k
P 

values from the present study were obtained through 
the linear regression of�; = f(t112 ) curves. All k

P 
values from the literature were 

recalculated from initial weight gain values by fitting \w = f (t112 ) and forcing the 
fitting curve to pass through zero. In order to compare only parabolic oxidation 
rates, weight gain values from Guleryuz [3] above 36 h at 700 °C and the last 
value at 750 °C were excluded from oxidation kinetics calculations. Experimental 
results from this study seem to be in good agreement with the literature for oxida
tions at 600 °C. However, activation energies (Ea) calculated from the experimen
tal results of this study are much higher than the activation energy obtained from 
literature values obtained at higher temperatures. kp values at 500 °C present large 
uncertainties, which increases the error of the calculated Ea. The literature survey 
produces only few data that could allow us to compare our experimental data on 
Ti-6Al-4V for temperatures lower than 550 °C. Activation energies calculated 
from our experimental data at low temperatures are much higher than activation 
energies of oxygen diffusion in rutile (� 250 kJ mo1-1 [24]) and of oxygen diffu
sion in titanium (�200-250 kJ mo1- 1 [24]). They cannot correspond to the sum 
of the two phenomena-i.e. external scale formation and oxygen dissolution
which should have an activation energy value between 200 and 250 kJ mo1-1

. 

Therefore, the fact that low-temperature mass gains were found lower than what 
was expected from the extrapolation of high-temperature values may be the sign 
that the composition of the external scale differs depending on temperature. We 
can assume for example that, at low temperatures, it could be enriched in alumina 
and a diffusion barrier for the diffusion of oxygen in the metal could be present. 
The very thin scales formed at the lowest temperatures are currently under study. 

X-ray diffraction was carried out on as-built LBM sample oxidized for 500 h
at 600 °C; results are summarized in Fig. 8a. Peaks of Ti-a phase are visible 
due to the thin thickness of the oxide layer. The oxide layer of LBM-produced 
Ti-6Al-4V after 500 h of oxidation at 600 °C is mainly composed of rutile (TiO2) 
phase. However, some peaks can be identified as a-alumina phase (Al2O3). The 
EDS cartography, Fig. 8b, confirmed the presence of alumina in the outer oxide 
layer at the interface between the oxide and the environment [20, 30]. 
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Fig. 8 X-ray diffraction pattern (a) and EDS cartography (b) of as-built LBM Ti-6Al--4V oxidized 500 h
at 600 °C



Figure 9 shows Rolled P600 and HIP P600 samples oxidized for 500 h at 550 °C. 
A non-planar oxide layer was found on both samples at the metal/oxide and oxide/ 
air interfaces. The scanning electron microscopy of the HIP P600 sample oxidized 
500 h at 550 °C, Fig. 9c, shows a preferential oxidation appearing between the 
a-laths, which seem to be in the /3-phase. There is still no explanation for this phe
nomenon which was only observed after 500 h at 550 °C.

Table 2 summarizes weight gains, parabolic rate constants kp, oxide layer and 
dissolved oxygen layer thicknesses, oxide layer parabolic rate constant kP

(oxide)
' cal

culated weight gain due to the oxide layer and weight gain proportion due to dis
solved oxygen (% a; ( diss)) in the metal calculated from Eq. 3 and EPMA meas
urements. Weight proportion due to dissolved oxygen was already calculated using 
oxide thickness on Ti-6Al-4V alloy (27%) [27] and with EPMA measurements on
Ti6242S alloys (40-46%) [31]. Chaze and Coddet [32] calculated the ratio between
the oxygen dissolved in the metallic substrate and the oxygen fixed in the aggregate 
(between 7 and 49% depending on titanium alloy composition) by means of micro
hardness measurements. However, a strong assumption of proportionality between 
microhardness and oxygen concentration, based on metal-oxide interface oxygen 
composition, was used. 

%
�W =[l- T (oxide) l·lOO=(l-

A (diss) LlW 

A (total) 

(3) 

where aw is the weight gain due to the oxide layer (mg cm-2), aw is the
A (oxide) A (diss) 

weight gain due to dissolved oxygen in the metal (mg cm-2), aw is the weight 
A (total) 

gain due to the oxide layer and the dissolved oxygen in the metal (mg cm-2), e
0x 

is
the oxide thickness (cm), M

(O) 
is the oxygen molar mass (g mol-1), M(TiOz) is the

oxide molar mass and P(Tio2) is the oxide density (g cm-3).

The oxide layer at 500 °C was too thin to be measured by optical microscopy. 
The parabolic rate constant of the Rolled P600 sample oxidized at 600 °C was 

MMPl·N 

Fig. 9 Optical microscopy of rolled ground P600 (a), HIP ground P600 (b) and scanning electron 
microscopy of HIP ground P600 ( c) oxidized 500 h at 550 °C 



Table 2 Weight gains, parabolic rate constants kp, oxide thicknesses, dissolved oxygen thicknesses, oxide layer parabolic rate constants kp (oxide), weight gains due to 

oxide layer and weight gains proportion due to dissolved oxygen in the metal (*calculated with Eq. 3, **calculated with EPMA) of Ti-6Al-4V alloy oxidized for 500 h at 

different temperatures 

Oxidation 

temperature 

(OC) 

As-built LBM 500 

LBMP600 

HIPP600 

Rolled P600 

As-built LBM 550 

LBMP600 

HIPP600 

Rolled P600 

As-built LBM 600 

LBMP600 

HIPP600 

Rolled P600 

Weight gain (mg/ kp (mg2 cm-4 s-1) Oxide thickness
cm2) (µm) 

0.072±0.02 (2.7 ± 1.3) E-09 X 

0.027±0.01 (3.4±4.2) E-10 X 

0.012±0.01 (6.9 ± 12) E--11 X 

0.06±0.02 (1.7 ± 1.2) E-09 X 

0.548±0.06 (1.2±0.1) E-07 1.3 ±0.5 

0.302±0.04 (4.1 ±0.6) E-08 1.3 ±0.2 

0.175±0.03 (1.8 ±0.3) E-08 0.9±0.2 

0.262±0.04 (3,4±0.5) E-08 1.4±0.4 

3.312±0.03 (5.7 ±0.7) E-06 8.9±0.9 

::s 1.482 (small (1.1 ±0.3) E-06 7.4±0.8 

peeled off) 

1.338±0.02 (1.1 ±02) E-06 6.4±0.7 

X (half peeled (1.1 ±0.2) E-06 7.8±0.6 
off) 

Dissolved oxygen k
p (oxide) Weight gain due 

layer (ODZ) (X 10-7 µm2 s-1) to the oxide layer

thickness (µm) at 500 h (mg/cm2) 

X X X 

X X X 

X X X 

X X X 

::s5µm 9.4± 1.4 X 

::s5µm 9.4±0.3 0.22±0.04 

::s5µm 4.5±0.3 0.15 ±0.04 

X 10±0.8 0.23±0.07 

::sl9µm 440±0 X 

::s19µm 300±0 ::s 1.3 ±0.0 

X 230±0 1.1±0.0 

X 340±0 X 

Weight gain 

proportion due to 

dissolved oxygen in 

the metal (%) 

X 

X 

X 

X 

X 

27* 

13* 

12* 

35 ±0** 

::s 15-20* 

35±2** 

17* 

X 



calculated from weight gain values obtained at 100 and 200 h because the sample 

was peeled off after 500 h of oxidation. Table 2 shows that weight gains, k
p
, oxide 

layer and dissolved oxygen layer thicknesses, kP(oxide)' and weight gains due to 

the oxide layer all increase with temperature. kP(oxide) and weight gains due to the 

oxide layer were overestimated for LBM P600 and were not calculated for Rolled 

P600 due to the porosity of the oxide layer and to oxide scale spalling which 

appeared during cooling at ambient air. After 500 h of oxidation at 550 °C, HIP 

P600 and Rolled P600 samples present a smaller proportion of weight gain due to 

dissolved oxygen (from Eq. 3) as compared to the LBM P600 sample. The pres

ence of larger a-laths and /J-phase at laths interfaces may explain these results. 

Moreover, LBM P600 exhibits a higher amount of a-phase, which can dissolve a 

higher amount of oxygen than the /J-phase. After oxidation at 550 and 600 °C for 

500 h, the oxide layer thickness of as-built LBM and LBM P600 samples were 

similar. As displayed in Fig. 1, the presence of powder grains at the surface of as

built LBM samples explains weight gain discrepancies. Finding the same oxide 

layer thickness on as-built and P600 samples is consistent with this result. Moreo

ver, EPMA analysis, Fig. 10, confirmed that the presence of partially melted pow

der particles on the surface of as-built samples does not affect the thickness of 

the ODZ. As-built LBM and LBM P600 samples have the same ODZ thickness 

of about 20 µrn for 500 h of oxidation at 600 °C. Near the metal/oxide interface, 

the oxygen concentration measured ranged from 25 to 27 at. % at 1-2 µrn from 

the interface. These values are below the oxygen solubility of 33.3 at. % in Ti-a

phase reviewed by Murray and Wriedt [33]. But, because of the oxygen concen

tration gradient, the extrapolations of these EPMA profiles at the interface (x = 0) 

are not that far from the equilibrium concentration value. Note that the amount 

of /J-phase is too low to affect significantly the interfacial oxygen concentration. 

The presence of alloying elements at the metal/oxide interface may also explain a 

lower oxygen solubility as compared to that of pure titanium. Microhardness was 

not used on these samples because ODZ thickness was too low. 

30 
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20 
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15 

C: 

10 

5 
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ODZ 

10 20 30 

Depth (µm) 
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--+--LBM P600 

40 50 

Fig. 10 EPMA profiles for oxygen in Ti--6Al--4 V oxidized at 600 °C for 500 h in air 

60 



Conclusions 

This study focused on the isothermal oxidation of Ti-6Al-4V alloy fabricated by 

laser beam melting allows the following conclusions to be drawn: 

1. The microstructure ofTi-6Al-4V fabricated by LBM is composed of columnar

prior /3 grains elongated in the building direction and fine martensite a' laths due

to high cooling rate [22]. The decomposition of a' into a lamellar microstructure

within the /3 matrix occurs during HIP treatment.

2. Thermal oxidation of as-built LBM Ti-6Al-4V alloy at 600 °C for 500 h exhibits

the formation of an oxide film made of a rutile phase (TiO2) and an a-alumina

phase ( cx-Al2O3) located at the outer scale.

3. Ti-6Al-4V fabricated by LBM and ground P600 presents oxidation kinetics at

500, 550 and 600 °C close to that of Ti-6Al-4V rolled and annealed in the /3 field

ground P600.

4. After oxidation at 500, 550 and 600 °C, the oxidation rate of HIP P600 samples

is lower than that of LBM P600 and Rolled P600 samples.

5. Rolled P600 and HIP P600 samples oxidized 500 h at 550 °C show a preferential

oxidation between the a-laths where the /J-phase is mainly present and a weight

gain proportion due to dissolved oxygen lower than that of LBM P600 sample.

6. The surface state of samples fabricated by LBM is wavy, with partially melted

powder grains increasing its specific area. For oxidations performed at 500, 550

and 600 °C, as-built LBM samples present a higher weight gain than ground

samples. The difference in weight gain is predominantly due to the oxidation

of powder grains located at the surface of as-built LBM samples. Both samples

present sirnilar oxide layer thickness and dissolved oxygen layer thickness. Hence,

the surface state of as-built samples increases weight gain but does not increase

local oxidation kinetics.
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