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QUOTIENTS OF THE MAPPING CLASS GROUP BY

POWER SUBGROUPS

JAVIER ARAMAYONA AND LOUIS FUNAR

Abstract. We study the quotient of the mapping class group Modn
g

of a surface of genus g with n punctures, by the subgroup Modn
g [p]

generated by the p-th powers of Dehn twists.
Our first main result is that Mod1

g /Mod1
g[p] contains an infinite nor-

mal subgroup of infinite index, and in particular is not commensurable
to a higher-rank lattice, for all but finitely many explicit values of p.
Next, we prove that Mod0

g /Mod0
g[p] contains a Kähler subgroup of fi-

nite index, for every p ≥ 2 coprime with six. Finally, we observe that the
existence of finite-index subgroups of Mod0

g with infinite abelianization

is equivalent to the analogous problem for Mod0
g /Mod0

g[p].

Dedicated to the memory of Ştefan Papadima (1953-2018)

1. Introduction and statements

Throughout, Sng denotes the connected orientable surface of genus g ≥ 2,
with empty boundary and n ≥ 0 marked points. Associated to Sng is the
mapping class group Modng , namely the group of homeomorphisms of Sng up
to isotopy. In the case when n = 0, we will drop it from the above notation
and write Sg and Modg.

There is widespread interest in studying homomorphisms from mapping
class groups to compact Lie groups, notably through the so-called quantum
representations of mapping class groups. As it turns out, if G is a compact
Lie group and Modng → G is a homomorphism (with g ≥ 3) then the image
of every Dehn twist has finite order [2, Corollary 2.6]. With this motivation
in mind, it is natural to study the structure of the group

Modng
Modng [p]

,

where Modng [p] denotes the (normal) subgroup of Modng generated by p-
powers of Dehn twists. We remark that Modng /Modng [p] is known to be
infinite if g = 2 and p ≥ 4 [19], or if g ≥ 3 and p /∈ {1, 2, 3, 4, 6, 8, 12} [15].
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1.1. Non-lattice properties. In [17], Pitsch and the second author used
quantum topological techniques to prove that Modg /Modg[p] is not com-
mensurable to a higher-rank lattice whenever g ≥ 4 and p ≥ 2g−1. The first
purpose of this note is to give the following uniform version of this result,
in the case of once-punctured surfaces:

Theorem 1. Let g, p ≥ 2, where p ≥ 4 if g = 2, and p /∈ {2, 3, 4, 6, 8, 12} if
g ≥ 3. Then

Mod1g

Mod1g[p]

has a descending normal series Q1 D Q2 D . . . such that Qi+1 has infinite
index in Qi for all i ≥ 1.

The groups Qi in the statement of Theorem 1 are obtained through a cov-
ering construction, similar in spirit to that of the “non-geometric” injective
homomorphism between mapping class groups of [1].

In light of Margulis’ Normal Subgroup Theorem [24], Theorem 1 has the
following immediate consequence:

Corollary 2. Let g, p ≥ 2, where p ≥ 4 if g = 2, and p /∈ {2, 3, 4, 6, 8, 12}
if g ≥ 3. Then Mod1g /Mod1g[p] is not commensurable to a lattice in a
semisimple Lie group of real rank ≥ 2.

Next, we will give the following analogue of the Birman short exact se-
quence for the groups Mod1g /Mod1g[p]. Below, π1(Sg)[p] denotes the sub-
group of π1(Sg) generated by p-powers of simple loops, that is, loops without
transverse self-intersection.

Proposition 3. Let g, p ≥ 2. There is an exact sequence:

1 → A→
π1(Sg)

π1(Sg)[p]
→

Mod1g

Mod1g[p]
→

Modg
Modg[p]

→ 1

where A is central, namely A ⊆ Z
(

π1(Sg)
π1(Sg)[p]

)

.

Combining Proposition 3 with the construction of the groups Qi of The-
orem 1, we will immediately obtain:

Corollary 4. Let g, p ≥ 2, where p ≥ 4 if g = 2 and p /∈ {2, 3, 4, 6, 8, 12} if
g ≥ 3. Then

π1(Sg)

π1(Sg)[p]

is not commensurable to a lattice in a semisimple Lie group of real rank ≥ 2.
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1.2. Virtually Kähler quotients. Farb [12] has asked whether Modg (with
g ≥ 3) is a Kähler group, that is, the fundamental group of a compact
Kähler manifold. Our next result shows that a large class of quotient groups
Modg/Modg[p] have finite-index subgroups which are Kähler:

Theorem 5. Suppose p ≥ 2 and gcd(p, 6) = 1. For every g ≥ 0, the group
Modg/Modg[p] is virtually Kähler, that is, it has a Kähler subgroup of finite
index.

In order to prove Theorem 5, we adapt arguments of Pikaart-Jong [25]
to exhibit a compact Kähler manifold whose fundamental group is a finite
index subgroup of Modg/Modg[p].

As an immediate consequence, we obtain the following result; compare
with Theorem 1:

Corollary 6. Suppose p ≥ 2 and gcd(p, 6) = 1. For every g ≥ 0, the group
Modg /Modg[p] is not a lattice in SO(n, 1), or more generally in a group of
Hodge type.

Another consequence is the following:

Corollary 7. Let g ≥ 0. Given p ≥ 2 with gcd(p, 6) = 1, a finite in-
dex Kähler subgroup J ⊂ Modg /Modg[p], a lattice Λ ⊂ SO(n, 1) and any
homomorphism

Φ : Modg /Modg[p] → Λ ⊂ SO(n, 1), n > 2

then one of the following holds:

(1) Φ|J factors through Z;
(2) Φ|J factors through π1(Sh), for some h ≥ 2;
(3) Φ|J is trivial.

In the first two cases Φ|J surjects onto Z and π1(Sh), respectively.

Remark 1. The proof of Theorem 5 will provide explicit finite index Kähler
subgroups J . Thus, given any finite index subgroup G ⊂ Modg /Modg[p],
Corollary 7 applies to the subgroup J ∩G. As will become evident from our
arguments, the groups J fall frequently in case (3) above.

One provides linear representations of the fundamental group of a Kähler
manifold, like those obtained in Theorem 5, by considering variations of
Hodge structures, in particular those obtained from families of complex al-
gebraic varieties. We might wonder whether the restrictions of the quantum
representations, known to factorise through Modg /Modg[p], arise geomet-
rically as above.

Conjecture 1. Complexified quantum representations of Modg are locally
rigid.

If true, this conjecture would imply that the quantum representation at a
prime level is a complex direct factor of a Q-variation of Hodge structures,
according to ([30], Thm.5, p.56).
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1.3. Abelianization of finite-index subgroups. A celebrated result of
Powell [26] asserts that Modg has trivial abelianization whenever g ≥ 3. In
stark contrast, the situation for finite index subgroups remains mysterious:
a well-known question of Ivanov [20] asks whether every finite-index sub-
group of Modg has finite abelianization. Our final result states that this
question is equivalent to the analogous problem for the quotient subgroups
Modg /Modg[p]. More concretely, we have:

Theorem 8. Let K ⊂ Modg be a normal subgroup of finite index n. Then
dimH1(K;Q) > 0 if and only if the image K(n) of K into Modg /Modg[n]
is of finite index n and dimH1(K(n);Q) > 0.

Acknowledgements. The authors are grateful to M. Boggi, R. Coulon,
F. Dahmani, P. Eyssidieux, P. Häıssinsky, C. Leininger, M. Mj, W. Pitsch,
and J. Souto for conversations and to H. Wilton for pointing out the need
to include the group A in the statement of Proposition 3.

2. Preliminaries

In this section we introduce the basic definitions and notation needed for
the rest of this note. We refer the reader to the standard text [13] for a
comprehensive introduction to these topics.

As mentioned in the introduction, we denote by Sng a connected orientable
surface of genus g ≥ 0 with empty boundary and with n ≥ 0 marked points.
Let Modng be the mapping class group of Sng , namely the group of self-
homeomorphisms of Sng up to homotopy. From now on, if n = 0 we will
drop it from the notation and write Sg and Modg.

2.1. Power subgroups. We write Tc for the right Dehn twist about the
(isotopy class of a) simple closed curve c ⊂ Sng . Given a number p ∈ N,
consider the subgroup Modng [p] generated by all p-powers of Dehn twists.
Observe that Modng [p] is a normal subgroup, as

fTcf
−1 = Tf(c)

for every simple closed curve c ⊂ Sng and every f ∈ Modng .
The following result is due to Humphries [19] in the case g = 2, and to

the second author [15] in the case g ≥ 3:

Theorem 9. Let g ≥ 2 and p ≥ 0. If g = 2, assume p ≥ 4; if g ≥ 3, assume
that p /∈ {2, 3, 4, 6, 8, 12}. Then Modng [p] has infinite index in Modng .

Abusing notation, we will write

projpg : Modng →
Modng

Modng [p]

for the natural projection. By Theorem 9, the image of projpg is infinite
whenever g = 2 and p ≥ 4, or if g ≥ 3 and p /∈ {2, 3, 4, 6, 8, 12}.
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2.2. The Birman short exact sequence. There is an obvious surjective
homomorphism

Mod1g → Modg

given by forgetting the marked point of S1
g , call it x0. This homomorphism

is well-known to fit in the so-called Birman short exact sequence:

(1) 1 → π1(Sg, x0) → Mod1g → Modg → 1

The injective homomorphism p : π1(Sg, x0) → Mod1g of (1) is called the
point-pushing homomorphism. Abusing notation, we will simply write π1(Sg)
for π1(Sg, x0); in addition, we will often not distinguish between π1(Sg) and

its image in Mod1g under the point-pushing homomorphism.
We will also need a description on the image of simple loops under the

point-pushing homomorphism; we refer the reader to [13, Section 4.2] for
a proof. Before stating it, we need some definitions. First, we recall that
a multitwist in Modng is an element that may be written as a product of
powers of Dehn twists along a set of pairwise-disjoint simple closed curves
on Sng . Next, an element of π1(Sg) is simple if it can be realized on Sg as a
loop without transverse self-intersections; in particular, note that any power
of a simple loop is simple, according to the definition. Armed with these
definitions, we have:

Proposition 10. Let c ∈ π1(Sg) be a simple loop. Then p(c) is a multitwist

in Mod1g.

In fact, it is possible to give a more concrete description of p(c) in the
theorem above. Indeed, suppose that c = an, for some a ∈ π1(Sg) primitive.
Let a± be the boundary components of a regular neighbourhood of (a rep-
resentative of) a in S1

g . Then p(a) = T
a+
T−1
a−

, and therefore p(c) = T n
a+
T−n
a−

.

2.2.1. Algebraic version of the Birman exact sequence. Given a group G,
denote by Aut(G) its automorphism group, and by Out(G) its outer auto-
morphism group, namely the group of conjugacy classes of automorphisms
of G. The following is the celebrated Dehn-Nielsen-Baer Theorem (see, for
instance, [13]):

Theorem 11 (Dehn-Nielsen-Baer). For every g ≥ 1,

Modg ∼= Out(π1(Sg)).

In light of this theorem, the exact sequence (1) takes the following form:

(2) 1 → π1(Sg) → Aut(π1(Sg)) → Out(π1(Sg)) → 1
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3. Normal subgroups via covers

In this section we will prove Theorem 1. For an element h of a group
G denote by 〈〈h〉〉G the smallest normal subgroup of G containing h; we
will drop G from the notation when it is clear from the context. The main
ingredient will be the following lemma:

Lemma 12. Suppose there is an injective homomorphism

φ : Mod1g → Mod1g′

and an element h ∈ Mod1g such that:

(1) projpg(h) ∈ Mod1g /Mod1g[p] has infinite order.

(2) φ(h) is a multitwist in Mod1g′. In particular, φ(hp) ∈ ker(projpg′).

(3) The map

projpg′ ◦ φ : Mod1g → Mod1g′ /Mod1g′ [p]

has infinite image.

Then 〈〈projpg(h
p)〉〉 is an infinite normal subgroup of Mod1g /Mod1g[p] of in-

finite index.

Proof. Write N = 〈〈projpg(h
p)〉〉, which is obviously a normal subgroup of

Mod1g /Mod1g[p]. Observe that N is infinite, by (1). Next, φ(h) is a multi-

twist, by (2), so in particular φ(hp) = φ(h)p ∈ ker(projpg′). Consider

projpg′ ◦ φ : Mod1g → Mod1g′ /Mod1g′ [p],

which again by (2) factors through the quotient
(

Mod1g /Mod1g[p]
)

/N.

Finally, this quotient is infinite since projpg′ ◦ φ has infinite image, by (3). �

We can now prove Theorem 1:

Proof of Theorem 1. Let g ≥ 2. We first explain how to construct the group
Q1 from the statement.

First, there exists h1 ∈ π1(Sg) of infinite order in Mod1g /Mod1g[p]: this
is a consequence of work by Koberda-Santharoubane [21, Theorem 4.1] for
large p, and Funar-Lochak [16, Proof of Proposition 3.2] for all p as in the
hypotheses of Theorem 1.

We are going to produce an injective homomorphism Mod1g → Mod1g′ as

in Lemma 12, suited to this element h1. (We remark that our arguments
are heavily inspired by the construction of the non-geometric injective ho-
momorphism between mapping class groups of [1].)

First, a result of Scott [28] implies that there exists a finite-degree cover
Sg′′ → Sg to which h lifts simply; that is, there exists some n ∈ N such that
hn1 ∈ π1(Sg′′) and hn1 has no transverse self-intersections. Now, the inter-
section K of all subgroups of π1(Sg) of index [π1(Sg) : π1(Sg′′)] is a char-
acteristic subgroup of π1(Sg). Denote by Sg′ → Sg the cover corresponding
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to K = π1(Sg′), and observe that perhaps by raising hn1 to a higher power,
we can assume that hn1 ∈ π1(Sg′). We stress that, viewed as an element of
π1(Sg′), the element hn1 would still be simple.

Next, since π1(Sg′) is a characteristic subgroup of π1(Sg) we may define
a homomorphism

φ : Aut(π1(Sg)) → Aut(π1(Sg′))

by assigning, to every f ∈ Aut(π1(Sg)), its restriction to π1(Sg′). Note that
φ is injective since π1(Sg′) has finite index in π1(Sg) and surface groups have
unique roots.

We now check that conditions (1)–(3) of Lemma 12 are satisfied for the
homomorphism φ and the element h = hn1 constructed above. First, (1)
holds since we chose h1 of infinite order in Mod1g /Mod1g[p]. Next, as hn1 is
a simple element of π1(Sg′), Theorem 10 implies that φ(hn1 ) is a multitwist,
yielding (2). Finally, in order to prove (3), observe that φ(π1(Sg′)) = π1(Sg′),
by construction. In particular, φ(π1(Sg)) contains π1(Sg′) as a subgroup of
finite index and we can again apply the result of Koberda-Santharoubane
[21, Theorem 4.1] used above to deduce that (3) holds. At this point, Lemma
12 tells us that the group

Q1 := 〈〈projpg(h
p)〉〉

is an infinite normal subgroup of infinite index of Mod1g /Mod1g[p].

In order to construct the rest of the groups in the desired descending
normal series, we apply the above argument inductively. More concretely,
since

projpg′ ◦ φ : Mod1g →
Mod1g′

Mod1g′ [p]

has infinite image, there exists h2 ∈ π1(Sg) whose image in

(Mod1g /Mod1g[p])/Q1

has infinite order. Now, since φ(h2) ∈ φ(π1(Sg)) and the latter contains
π1(Sg′) as a subgroup of finite index, up to taking a power of h2 we may
assume that φ(h2) ∈ π1(Sg′). We now apply the above arguments to φ(h2)
to construct an injective homomorphism

φ2 : Mod1g′ → Mod1g2

such that φ2(φ(h2)) is a multitwist; in particular, φ2(φ(h
p
2)) ∈ ker(projpg2).

Again by the arguments above, the map

projpg2 ◦ φ2 ◦ φ

has infinite image, and therefore 〈〈projpg(h
p
2)〉〉 is an infinite normal subgroup

of infinite index in (Mod1g /Mod1g[p])/Q1. We then set

Q2 := 〈〈projp(hp),projp(hp2)〉〉.
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Repeating this process we construct the desired descending normal series
Q1 D Q2 D . . .. �

4. A Birman exact sequence for quotient subgroups

Before proceeding with the proof of Proposition 3 we need the following
result providing sufficient conditions for the exactness of a Birman sequence
associated to quotient groups, whose proof will be postponed a few lines:

Lemma 13. Let Π ⊂ π1(Sg) be a characteristic subgroup, K1 ⊂ Mod1g be
a normal subgroup and K ⊂ Modg denote its image by the forgetful map.
Assume that:

(3) K1 ⊂ ker

(

Mod1g → Aut

(

π1(Sg)

Π

))

(4) Π ⊂ π1(Sg) ∩K
1

Then the following generalized Birman sequence is exact:

1 → A→
π1(Sg)

Π
→

Mod1g
K1

→
Modg
K

→ 1

for some central subgroup A, namely A ⊆ Z
(

π1(Sg)
Π

)

.

Recall that π1(Sg)[p] denotes the subgroup of π1(Sg) generated by p-
powers of simple elements of Sg; observe that π1(Sg)[p] is a characteristic
subgroup of π1(Sg). We also need the following lemma, whose proof is
postponed a few lines:

Lemma 14. The natural action of Mod1g[p] on
π1(Sg)
π1(Sg)[p]

is trivial.

Proof of Proposition 3. We want to apply the result of Lemma 13 to Π =
π1(Sg)[p] andK

1 = Mod1g[p]. Using the description of the image of the point-
pushing homomorphism for simple loops (see comment after Proposition 10),
we know that π1(Sg)[p] ⊂ π1(Sg) ∩ Mod1g[p], namely condition (4) holds.
Further Lemma 15 shows that condition (3) is also satisfied and hence the
claim follows. �

Proof of Lemma 15. We start with some well-known observations, which are
similar to [8, Theorem 6.17]. Let a be a simple loop on Sg, viewed as an
element of π1(Sg). If a separates Sg into two surfaces Sh,1 and Sg−h,1, then
π1(Sg) = π1(Sh,1) ∗Z π1(Sg−h,1), where Z is the cyclic group generated by a.
The orientation of the surface defines a right side, say Sh,1 and a left side for
a. Then the (right) Dehn twist Ta along a is the automorphism determined
by:

Ta(x) =

{

x, if x ∈ π1(Sh,1);
axa−1, if x ∈ π1(Sg−h,1);

Thus

T pa (x) =

{

x, if x ∈ π1(Sh,1);
apxa−p, if x ∈ π1(Sg−h,1);
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so that T pa (x) ∈ xπg[p], for any x.
If a is nonseparating, then we have a HNN splitting π1(Sg) = π1(Sg−1,2)∗Z,

where Z is generated by some element t corresponding to a primitive (hence
simple) loop intersecting a once. Further the Dehn twist Ta along a is the
automorphism determined by:

Ta(x) =

{

x, if x ∈ π1(Sg−1,2);
ta, if x = t;

Then

T pa (x) =

{

x, if x ∈ π1(Sg−1,2);
tap, if x = t;

and so T pa (x) ∈ xπg[p], for any x. This finishes the proof of the lemma. �

We are now ready to prove Lemma 13:

Proof of Lemma 13. By hypothesis, there exist well-defined homomorphisms:

(5) ψ :
Mod1g
K1

→ Aut

(

π1(Sg)

Π

)

and

(6) ψ :
Modg
K

→ Out

(

π1(Sg)

Π

)

,

which fit in a commutative diagram

(7)
Mod1g
K1

f
//

ψ

��

Modg
K

ψ
��

Aut
(

π1(Sg)
Π

)

q
// Out

(

π1(Sg)
Π

)

.

In the above diagram, the homomorphism f is the one induced by the forget-
ful homomorphism of Section 2.2, and the homomorphism q is the obvious
quotient map. We claim:

Claim. The image of
π1(Sg)

π1(Sg)∩K1 <
Mod1g
K1 under the homomorphism q ◦ ψ is

trivial.

Proof of claim. First, the exactness of the Birman sequence (1) implies that

f

(

π1(Sg)

π1(Sg) ∩K1

)

is trivial, and therefore

(ψ ◦ f)

(

π1(Sg)

π1(Sg) ∩K1

)
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is trivial too. Since the diagram (7) is commutative, we deduce that

(8) ψ

(

π1(Sg)

π1(Sg) ∩K1

)

< ker(q) =
π1(Sg)

Π

Z
(

π1(Sg)
Π

) ,

which in particular implies the desired result. �

From the claim above, we deduce that there is a diagram

1 → π1(Sg) → Mod1g → Modg → 1
↓ ↓ ↓

1 →
π1(Sg)

π1(Sg)∩K1 →
Mod1g
K1 →

Modg
K

→ 1

↓ ↓ ↓

1 →
π1(Sg)

Π

Z
(

π1(Sg)

Π

) → Aut
(

π1(Sg)
Π

)

→ Out
(

π1(Sg)
Π

)

→ 1

with exact rows. From condition (4) we have a surjective homomorphism

(9) α :
π1(Sg)

Π
→

π1(Sg)

π1(Sg) ∩K1

It follows that that upper leftmost vertical arrow in the diagram above,
which is the projection homomorphism

π1(Sg) →
π1(Sg)

π1(Sg) ∩K1
,

factors as

π1(Sg) →
π1(Sg)

Π

α
→

π1(Sg)

π1(Sg) ∩K1
.

Now, note that the composition of the two leftmost vertical arrows in the
diagram above is the natural projection

π1(Sg) →
π1(Sg)

Π

Z
(

π1(Sg)
Π

) ,

which then factors as the composition of homomorphisms:

π1(Sg) →
π1(Sg)

Π

α
→

π1(Sg)

π1(Sg) ∩K1

ψ
→

π1(Sg)
Π

Z
(

π1(Sg)
Π

)

Therefore the projection map

π1(Sg)

Π
→

π1(Sg)
Π

Z
(

π1(Sg)
Π

)

factors as
π1(Sg)

Π
α
→

π1(Sg)

π1(Sg) ∩K1

ψ
→

π1(Sg)
Π

Z
(

π1(Sg)
Π

) .
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Since α is surjective, there are induced homomorphisms α♯ and ψ♯ such that
the composition

π1(Sg)
Π

Z
(

π1(Sg)
Π

)

α♯

→

π1(Sg)
π1(Sg)∩K1

Z
(

π1(Sg)
π1(Sg)∩K1

)

ψ♯

→
π1(Sg)

Π

Z
(

π1(Sg)
Π

)

is the identity. Observe that α♯ is also surjective, which implies that both
maps α♯ and ψ♯ are isomorphisms. Therefore ker(α) is a subgroup of

Z
(

π1(Sg)
Π

)

. Then the claim follows. �

Recall that π1(Sg)[p] denotes the subgroup of π1(Sg) generated by p-
powers of simple elements of Sg; observe that π1(Sg)[p] is a characteristic
subgroup of π1(Sg). We also need the following lemma:

Lemma 15. The natural action of Mod1g[p] on
π1(Sg)
π1(Sg)[p]

is trivial.

We will denote by Sg,n the orientable surface of genus g with n boundary
components.

Proof. We start with some well-known observations, which are similar to
[8, Theorem 6.17]. Let a be a simple loop on Sg, viewed as an element of
π1(Sg). If a separates Sg into two surfaces Sh,1 and Sg−h,1, then π1(Sg) =
π1(Sh,1) ∗Z π1(Sg−h,1), where Z is the cyclic group generated by a. The
orientation of the surface defines a right side, say Sh,1 and a left side for a.
Then the (right) Dehn twist Ta along a is the automorphism determined by:

Ta(x) =

{

x, if x ∈ π1(Sh,1);
axa−1, if x ∈ π1(Sg−h,1);

Thus

T pa (x) =

{

x, if x ∈ π1(Sh,1);
apxa−p, if x ∈ π1(Sg−h,1);

so that T pa (x) ∈ xπg[p], for any x.
If a is nonseparating, then we have a HNN splitting π1(Sg) = π1(Sg−1,2)∗Z,

where Z is generated by some element t corresponding to a primitive (hence
simple) loop intersecting a once. Further the Dehn twist Ta along a is the
automorphism determined by:

Ta(x) =

{

x, if x ∈ π1(Sg−1,2);
ta, if x = t;

Then

T pa (x) =

{

x, if x ∈ π1(Sg−1,2);
tap, if x = t;

and so T pa (x) ∈ xπg[p], for any x. This finishes the proof of the lemma. �

We are now in a position to prove Proposition 3 and Corollary 4.



12 JAVIER ARAMAYONA AND LOUIS FUNAR

Proof of Proposition 3. We want to apply the result of Lemma 13 to Π =
π1(Sg)[p] andK

1 = Mod1g[p]. Using the description of the image of the point-
pushing homomorphism for simple loops (see comment after Proposition 10),
we know that π1(Sg)[p] ⊂ π1(Sg) ∩ Mod1g[p], namely condition (4) holds.
Further Lemma 15 shows that condition (3) is also satisfied and hence the
claim follows. �

Proof of Corollary 4. In the proof of Theorem 1, all of the elements hi con-
structed belong to π1(Sg). Then the subgroups

Qi = Qi ∩
π1(Sg)

π1(Sg)[p]

are normal subgroups of
π1(Sg)
π1(Sg)[p]

thus forming a descending normal series.

Each Qi is infinite and of infinite index into Qi−1 by the proof above, based
on the Koberda-Santharoubane infiniteness statement [21, Theorem 1.1] .
We have:

〈〈projpg(h
p
1), . . . ,proj

p
g(h

p
j )〉〉 ⊂

π1(Sg)

π1(Sg)[p]
.

In fact, the groups

〈〈projpg(h
p
1), . . . ,proj

p
g(h

p
j )〉〉

are characteristic subgroups of
π1(Sg)
π1(Sg)[p]

, and in particular they are also nor-

mal subgroups in Mod g1

Mod1g[p]
. �

Remark 2. The subgroups

〈〈projpg(h
p
1), . . . ,proj

p
g(h

p
j )〉〉Mod1

g
∩ π1(Sg)

are normal subgroups in Mod1g, in particular they form a series of charac-
teristic subgroups of π1(Sg).

5. Virtually Kähler groups

In this section we prove Theorem 5. We refer the reader to [13, 18], as
well as to the references below, for standard facts about moduli space.

The analytic moduli space Man
g of smooth genus g algebraic curves is an

orbifold with orbifold fundamental group Modg. It is a classical result of
Serre [29] that Man

g has finite-degree unramified coverings which are topo-
logical manifolds, e.g. those obtained by quotienting Teichmüller space by
the stabilizer of an abelian level k ≥ 3 structure, namely

ker(Modg → Aut(H1(Sg,Z/kZ)).

There is a standard Kähler structure on Teichmüller space, namely the one
induced by the Weil-Petersson metric. In particular, each of the finite-degree
unramified covers of Man

g mentioned above also admits a Kähler structure.
However, it should be noted that this fact does not imply that Modg is
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virtually Kähler, as the action of the relevant group on the appropriate
cover of Man

g is not cocompact.

The Deligne-Mumford compactification M
an
g of Mg is the analytic space

underlying the moduli stack Mg of stable curves of genus g. Looijenga [23]

and later several other authors proved that M
an
g also admits finite Galois

covers which are topological manifolds.
Deligne and Mumford [9] introduced the moduli stack GMg of smooth

genus g algebraic curves with a Teichmüller structure of level G, where G is
any finite characteristic quotient G of π1(Sg), and considered its underlying
moduli space GM

an
g , which in turn parametrizes smooth curves with a G-

structure. They further defined the compactification GM
an
g of GM

an
g as the

normalization of Mg with respect to GM
an
g .

For suitable choices of the finite group G, the analytic space GM
an
g is a

compact smooth complex manifold (see [4, 5, 23, 25]). Moreover, the map

forgetting the level structure GM
an
g → M

an
g is a Galois covering ramified

along the divisor at infinity. In order to prove Theorem 5 we will com-
pute π1(GM

an
g ) in such cases. For the sake of conciseness, most arguments

borrowed from [4, 5, 23, 25] are only sketched below.
We consider, after Pikaart-Jong [25], the family of characteristic sub-

groups
πg(k, p) = γk+1(π1(Sg)) · π1(Sg)

p,

where π1(Sg)
p denotes the subgroup of π1(Sg) generated by all p-th powers,

and γk denotes the k-th term of the lower central series of a group G, namely
the one defined as γ1(G) = G and γk+1(G) = [γk(G), G], for k ≥ 1. We stress
that the groups πg(k, p) are finite index subgroups of π1(Sg), as nilpotent
groups with generators of finite order are finite. We set:

Modg(k, p) = ker(Modg → Out(π1(Sg)/πg(p, k))

Now, the following result is due to Pikaart-Jong [25]:

Theorem 16 ([25]). The analytic space πg(p,k)M
an
g is smooth if k ≥ 4, p ≥ 3

and gcd(p, 6) = 1, if k = 1 and g = 2, if k = 2 and p is odd, if k = 3 and p
is either odd or divisible by 4.

Note that π1(πg(k,p)M
an
g ) = Modg(k, p). In order to compute the funda-

mental group π1(πg(k,p)M
an
g ) of the compactification it suffices to know the

monodromy along the boundary on the relative fundamental group of the
universal curve over Man

g . In fact the orbifold homotopy class of a loop in
Man

g coincides with the class of the monodromy of the universal curve along
that loop, when the orbifold fundamental group of Man

g is identified with
Modg.

Let C be a complex stable genus g curve with singular points p1, . . . , pm.
The stable curve C is the singular fiber of a local universal deformation
family of stable curves over the polydisk in C3g−3. Choose local coordinates
zi such that zj = 0 describes stable curves for which pj is a singular point.
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Then, the universal family has smooth fibers outside the discriminant locus
given by the equation:

z1z2 · · · zm = 0

Vanishing cycles in the universal family correspond to a set c1, c2, . . . , cm
of simple closed curves on the generic smooth fiber, which are shrunk to
the singular points p1, p2, . . . , pm of the singular fiber. If U denotes the
complement of the discriminant, then π1(U) is the abelian group generated
by classes [γj ] of loops γj encircling the complex hyperplane zj = 0 exactly
once, and in the positive direction. Moreover, the monodromy ρ of the
universal curve is given by

ρ([γi]) = Tci

where Tci denotes the right Dehn twist along the curve ci. In other words,
the orbifold homotopy classes of the loops [γi] in Man

g are the classes Tci .

Let D ⊂ M
an
g be the divisor at infinity. Recall ([9], Thm.5.2) that D

is a normal crossing divisor in the orbifold sense, see ([3] chap. XII) for a
detailed description both from orbifold and stack point of view. Note that
U is homeomorphic to the intersection of M

an
g −D with a neighbourhood of

the point [C] within M
an
g . A similar description exists for neighbourhoods

of points of πg(k,p)M
an
g lying above [C].

We will use then the following lemma (see [14, Section 7]):

Lemma 17. Let Y be a connected barycentrically-subdivided locally-finite
complex, and let K be a subcomplex such that, for each vertex v of K, the
intersection S(v) of Y − K with the open star of v in Y is nonempty and
connected. Then the homomorphism π1(Y − K) → π1(Y ) induced by the
natural inclusion is surjective. Moreover, its kernel is the normal closure of
those elements in π1(Y −K) that can be represented by loops in ∪vS(v).

With the above lemma to hand, we now choose a triangulation of M
an
g

for which D is a subcomplex, which in turn induces a triangulation of

πg(k,p)M
an
g . We want to use Lemma 17, by taking for Y the triangulation

πg(k,p)M
an
g , and for K the triangulation of the divisor at infinity.

Note that the S(v) are pairwise disjoint in the statement of Lemma 17. As
such, each S(v) is homeomorphic to U . It remains to identify the classes of

the lifted loops γj in π1(πg(k,p)M
an
g ). Equivalently, we need to find the kernel

of the local monodromy representation for πg(k,p)M
an
g over a neighbourhood

of [C] in M
an
g . This has been already done in [25, Thm. 3.1.3]:

Theorem 18 ([25]). If k ≥ 4 and gcd(p, 6) = 1, then the kernel of the
monodromy is generated by the classes of the form T pci.

Before proving our result, we will need the following lemma:
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Lemma 19. Let K < Modg be a normal subgroup, with the property that
T nc ∈ K, for every simple closed curve c. Set 〈〈T nc 〉〉K for the normal sub-
group of K generated by the n-th powers of all Dehn twists. Then 〈〈T nc 〉〉K =
K ∩Modg[n].

Proof of Lemma 19. We have 〈〈T nc 〉〉K ⊂ K ∩ Modg[n]. For the reverse

inclusion consider x ∈ K ∩ Modg[n]. Thus x =
∏

giT
εin
ci

g−1
i , where gi ∈

Modg, εi ∈ {−1, 1}. But giT
εin
ci

g−1
i = T εin

gi(ci)
. Recall that T nc ∈ K, for every

simple closed curve c. Therefore x is the product of the n-th powers of Dehn
twists T εin

gi(ci)
, each element being in K. This means that x ∈ 〈〈T nc 〉〉K . �

We are finally in a position for proving the main result of this section:

Proof of Theorem 5. By Lemma 17 the group π1(πg(k,p)M
an
g ) is isomorphic

to the quotient
Modg(k, p)/〈〈T

p
γ 〉〉Modg(k,p)

Using Lemma 19 we have

〈〈T pγ 〉〉Modg(k,p) = Modg(k, p) ∩Modg[p]

so that

π1(πg(k,p)M
an
g ) =

Modg(k, p)

Modg(k, p) ∩Modg[p]

is a subgroup of finite index in
Modg

Modg [p]
. This proves the claim. �

Proof of Corollary 6. Since
Modg

Modg[p]
is virtually Kähler, the results are con-

sequences of corresponding statements of Carlson-Toledo [7] for lattices in
SO(n, 1), and of Simpson [30] for groups of Hodge type. �

Before proceeding with the proof we will need the following result due to
Carlson-Toledo (see [7], Thm. 7.1 and Cor. 3.7):

Theorem 20 ([7]). Let F : X → Hn+1
R /Λ be a harmonic map from a

compact Kähler manifold X to a hyperbolic space form Hn+1
R /Λ, where Λ ⊂

SO(1, n), for some n > 2, is a lattice. Then the harmonic map F factors
either through a circle or else through a compact Riemann surface.

Proof of Corollary 7. Let J be a finite index Kähler subgroup of
Modg

Modg[p]
; for

instance, after the proof of Theorem 5, we may set

J =
Modg(k, p)

Modg(k, p) ∩Modg[p]

Let X be a compact Kähler manifold with fundamental group J , and

f :
Modg

Modg[p]
→ Λ

a homomorphism into a lattice Λ ⊂ SO(1, n), for some n > 2. Note that
f is induced by a map F : X → Hn+1

R /Λ into a hyperbolic space form.
Eells-Sampson [11] proved that then the map F could be assumed to be
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a harmonic map. Further, by Theorem 20 the harmonic map F factors
through a circle or a compact Riemann surface. Thus f factors through Z

or through π1(Σh). In the first case f(J) is either trivial, or isomorphic to
Z. In the second case, the subgroup f(J) ⊂ π1(Σh) is finitely generated and
hence also a surface group, by a result of Scott [28].

Now, if J were rationally perfect, then f(J) would be finite, by a result
of Scott [28], since surface groups with finite abelianization are trivial. A
recent result of Ershov-He ([10], Thm. 1.9) shows that H1(J ;Q) = 0 for
any finite index subgroup J ⊂ Modg with the property that J ⊂ γkIg and
4g ≥ 8k − 4, where Ig denotes the Torelli group. In particular, this is so if
J contains the k-th Johnson subgroup

ker

(

Modg → Out

(

π1(Sg)

γk+1(π1(Sg))

))

Note that Modg(k, p) contains the k-th Johnson subgroup, by definition. �

Remark 3. All examples worked out in [5, Section 3] provide finite ramified

coverings with finite or trivial π1(GM
an
g ).

Remark 4. The same method yields (many) other virtually Kähler quotients
of Modg. For instance we could take for odd p the normal subgroup generated
by p-th powers of separating bounded simple closed curves of genus 1 and the
3p-th powers of other Dehn twists, see ([5], Prop. 2.8, k = 7) and also ([4],
Prop. 3.12) for other possibilities.

6. Abelianization of finite index subgroups

Finally, we prove Theorem 8:

Proof of Theorem 8. As before, let Tc denote the Dehn twist along the sim-
ple closed curve c. By hypothesis T nc ∈ K. Let p : K → H1(K,Q) be
the abelianization map. According to Bridson [6] and Putman [27] we have
p(T nc ) = 0, which implies that p factors through K/〈〈T nc 〉〉K . Observe now
that the inclusion K → Modg induces an injective homomorphism

K(n) =
K

〈〈T nc 〉〉K
=

K

K ∩Modg[n]
→֒

Modg
Modg[n]

Moreover, we also have that
[

Modg
Modg[n]

: K(n)

]

= [Modg : K] = n,

and we are done. �

Finally, we remark that the normality assumption for K in Proposition 8
is not essential. In fact, we have:

Proposition 21. Suppose there exists K ⊂ Modg of finite index with
dimH1(K;Q) > 0, then there exists a normal subgroup H ⊂ Modg, also
of finite index, with dimH1(H;Q) > 0.
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Proof. It is known that if H ⊂ K is a subgroup of finite index then the map
H1(H,Q) → H1(K,Q) is surjective. This follows from the existence of the
tranfer map in homology (see [27], Lemma 2.1). It suffices now to consider
H a normal subgroup of Modg contained in K. �
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