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Abstract

The group of C1-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete
(possibly trivial). Thompson’s groups come out of this construction when we consider central ternary
Cantor subsets of an interval. Brin’s higher dimensional generalizations nV of Thompson’s group V arise
when we consider products of central ternary Cantor sets. We derive that the C

2-smooth mapping class
group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the
braided Thompson groups.
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1 Introduction

Differentiable structures on Cantor sets have first been considered by Sullivan in [50]. Our aim is to consider
groups of diffeomorphisms of Cantor sets, mapping class groups of Cantor punctured spheres and their
relations with Thompson-like groups. In particular, the usual Thompson groups (see [13]) can be retrieved
as diffeomorphisms groups of Cantor subsets of suitable spaces (a line, a circle or a 2-sphere).

Let M be a compact manifold and C ⊂ M be a Cantor set, namely a compact totally disconnected subset
without isolated points. Any two Cantor sets are homeomorphic as topological spaces. But ifM has dimension
m ≥ 3 there exist Cantor sets C1 and C2 embedded into M so that there is no ambient homeomorphism of
M carrying C1 into C2. One says that C1 and C2 are not topologically equivalent Cantor set embeddings.

A Cantor subset of Rm is tame if there is a homeomorphism of Rm which sends it within a coordinates axis.
All Cantor sets in Rm, for m ≤ 2 are tame, but there exist uncountably many wild (i.e. not tame) Cantor
sets in Rm, for every m ≥ 3 (see [5]).

One defines similarly smooth equivalence and smoothly tame Cantor sets. The analogous story for diffeo-
morphisms is already interesting for m = 1, as Cantor subsets of R might be differentiably non-equivalent.
Our main concern is the image of the group of diffeomorphisms of M which preserve a Cantor set C into
the automorphisms group of C. Under fairly general conditions we are able to prove that this is a countable
group, thereby providing an interesting class of discrete groups. For Cantor sets obtained from a topological
iterated function system the associated groups are non-trivial, while for many self-similar Cantor sets these
are versions of Thompson’s groups.
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A. General countability statements

1.1 Pure mapping class groups

Definition 1. Let M be a compact orientable manifold and C ⊂ M a Cantor subset. We denote by
Diffk(M,C) the group of diffeomorphisms of class Ck of M sending C to itself, by Diffk,+(M,C) the subgroup
of orientation preserving diffeomorphisms and by PDiffk,+(M,C) the subgroup of pure orientation preserving
diffeomorphisms, i.e. pointwise preserving C.

The Ck-mapping class group Mk,+(M,C) is the group π0(Diffk,+(M,C)) of Ck-isotopy classes of orientation
preserving diffeomorphisms rel C (i.e. which are identity on C) of class Ck. The pure Ck-mapping class
group PMk,+(M,C) is the group π0(PDiffk,+(M,C)) of Ck-isotopy classes of pure orientation preserving
Ck-diffeomorphisms rel C.

In a similar vein but a different context, the group of homeomorphisms Diff0(M,A) associated to a manifold
M and a countable dense set A ⊂M was studied recently in [20]. The authors proved there that Diff0(M,A)
is either isomorphic to a countably infinite product of copies of Q, when M is 1-dimensional, or the Erdös
subgroup of l2 elements, otherwise. In the present setting, when A is closed and the smoothness is at least
C1 the situation is fundamentally different.

If we write C = ∩∞
j=1Cj , where each Cj is a compact submanifold of M and Cj+1 ⊂ int(Cj) for all j, then

the sequence {Cj} is called a defining sequence for C. It is known that C is a tame Cantor set if and only if
we can choose Cj to be finite unions of disjoint disks.

Definition 2. The class of ϕ in PMk,+(M,C) is compactly supported if there exists some defining sequence
{Cj} of C and some n for which the restriction of ϕ to Cn is Ck-isotopic to identity rel C.

Note that the property of being compactly supported is independent of the choice of the defining sequence.

Our first result is the following:

Theorem 1. Let C be a Ck-tame Cantor set, namely a Cantor subset of a closed interval Ck-embedded in a
compact orientable manifold M of dimension at least 2. If k ≥ 2, then all classes in the group PMk,+(M,C)
are compactly supported. In particular, the group PMk,+(M,C) is countable.

In contrast, the topological mapping class group PM0,+(S2, C) is uncountable. We might expect PMk,+(M,C)
be countable for k ≥ 2 even when C is only a C0-tame Cantor subset of M .

The following precises the second statement in Theorem 1:

Corollary 1. Let C be a Ck-tame Cantor subset of a compact orientable surface M and {Cj} be a defining
sequence for C consisting of finite unions of disjoint disks. If k ≥ 2, then PMk,+(M,C) coincides with the
inductive limit limj→∞ PMk,+(M − int(Cj)) of pure mapping class groups of compact subsurfaces.

Note that, when N is a compact surface the isomorphism type of PMk,+(N) is independent of k.

1.2 C1-diffeomorphisms groups of Cantor sets

We now turn to the full mapping class groups. Several groups which arose recently in the literature could be
thought to play the role of the mapping class groups for some infinite type surfaces, for instance the group
B from [24] and its version BV , which was defined by Brin [9] and Dehornoy [16], independently. These
two groups are braidings of the Thompson group V (see [13]). Geometric constructions of the same sort
permitted the authors of [25] to derive two braidings T ∗ and T ♯ of the Thompson group T .

Our next goal is to show that these groups are indeed smooth mapping class groups in the usual sense and
that most (if not all) smooth mapping class groups of Cantor sets are related to some Thompson-like groups.

Let assume for the moment that C ⊂ M is smoothly tame. Set then diffkM (C) and diff
k,+
M (C) for the

groups of induced transformations of C arising as restrictions of elements of Diffk(M,C) and Diffk,+(M,C),
respectively. The Ck topology on Diffk(M,C) induces a topology on diffkM (C).

Notice now that we have the exact sequence:
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1 → PMk,+(M,C) → Mk,+(M,C) → diff
k,+
M (C) → 1. (1)

By Theorem 1 the group Mk,+(M,C) is discrete countable if and only if diffk,+M (C) does, when k ≥ 2 and
M is compact (or the interior of a compact manifold).

Classical Thompson groups can be realized as groups of dyadic piecewise linear homeomorphisms (or bijec-
tions) of an interval, circle or a Cantor set (see [13, 27]) or as groups of automorphisms at infinity of graphs
(respecting or not the planarity), as in [42]. Notice that the more involved construction from [27] provides
embeddings of Thompson groups into the group of diffeomorphisms of the circle, admitting invariant minimal
Cantor sets. In particular, Ghys and Sergiescu obtained embeddings as discrete subgroups of the group of
diffeomorphisms (see [27], Thm. 2.3).

In our setting we see that whenever it is discrete and countable the group Mk,+(M,C) is the braiding of

diff
k,+
M (C) according to Corollary 1, as in the cases studied in [9, 16, 24, 25]. This pops out the question

whether diff
k,+
M (C) is a Thompson-like group, in general. We were not able to solve this question in full

generality and actually when C is a generic Cantor set of the interval we expect the group diff
k,+
M (C) be

trivial. To this purpose we introduce the following property of Cantor sets.

Definition 3. The Cantor subset C of an interval is σ-sparse if, for any a, b ∈ C, there is a complementary
interval (α, β) ⊂ (a, b) ∩ R \ C such that

β − α > σ(b − a). (2)

Moreover C is sparse if it is σ-sparse for some σ > 0.

Set diffk(C) = diffk
R
(C), diffk,+(C) = diff

k,+
R

(C) for the sake of notational simplicity.

Theorem 2. If C is a sparse Cantor subset of R, then the group diff1(C) is countable. If C is a sparse
Cantor set in S1 = R/Z, then diff1S1(C) is countable.

Theorem 2 cannot be extended to all Cantor sets C, without additional assumptions, as we can see from the
examples given in section 5.

We have the following more general version of the previous result:

Theorem 3. If C is a sparse Cantor subset of an interval C1-embedded into a compact orientable manifold
M , then the group diff1M (C) is countable and discrete.

Although we only considered smoothly tame Cantor subsets above, there is a large supply of topologically
tame Cantor subsets in any dimensions for which we can prove the countability:

Theorem 4. Let Ci be sparse Cantor sets in R and C = C1 ×C2 × · · ·Cn ⊂ Rn. Then the group diff1
Rn(C)

is countable.

Observe that the Lebesgue measure of a sparse Cantor set is zero. In this direction, notice that Deroin, Klept-
syn and Navas recently proved that invariant Cantor sets of groups of real-analytic circle diffeomorphisms
have zero Lebesgue measure (see [19], Cor. 1.17). The result cannot be extended to C1-diffeomorphisms, due
to the Denjoy counter-examples, but it might hold more generally for all C2-diffeomorphisms of the circle
according to a conjecture of Hector (see the discussion in [19] and [17], Conj.1.11).

The key point is to show that the stabilizer of a point in this group is a finitely generated abelian group
(see Lemma 7, Proposition 1). The discreteness of the stabilizers seems to be the counterpart to the
following unpublished theorem of G. Hector (see [40]): If the subgroup G of the group Diffω(S1) of analytic
diffeomorphisms of the circle has an exceptional minimal set, then the stabilizer Ga of any point a of the
circle in G is either trivial or Z. As a corollary every subgroup of Diffω(S1) having a minimal Cantor set
is countable. This is, of course, not true for subgroups of Diff∞(S1). Nevertheless, the stabilizer Ga of
a subgroup G ⊂ Diff2(S1) with an exceptional minimal set cannot contain two germs whose logarithm of
their derivatives are rationally independent, according to a classical result of Sacksteder ([47], Thm. 2).
Sacksteder’s result cannot be extended to C1-diffeomorphisms. The proof of our key result is related to
Thurston’s generalization of Reeb’s stability theorem from [51] and uses in an essential way the fact that
the Cantor set is sparse while allowing only C1-smoothness of the diffeomorphisms.
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Remark 1. Note that mapping class groups M1(M,C) depend essentially on the ambient manifold M (see
[2]). On the contrary, if C ⊂ int(Dn) is fixed, then for any embedding of the disk Dn in the interior of some
orientable n-manifold Mn the groups diff1M (C) are isomorphic. Moreover, these groups stabilize with respect
to the standard embeddings Dn ⊂ Dn+k, for large enough k. One could however vary the groups diff1M (C)
by allowing C to intersect the boundary of M in different patterns (isolated points, Cantor subsets etc).

B. Specific families of Cantor sets

1.3 Iterated functions systems

Definition 4. A contractive iterated function system (abbreviated contractive IFS) is a finite family Φ =
(φ0, φ1, . . . , φn) of contractive maps φj : R

d → Rd. Recall that a map φ is contractive if its Lipschitz constant
is smaller to unit, namely:

sup
x,y∈Rd

d(φ(x), φ(y))

d(x, y)
< 1.

According to Hutchinson (see [33]) there exists a unique non-empty compact C = CΦ ⊂ Rd, called the
attractor of the IFS Φ, such that C = ∪n

j=0φj(C).

Example 1. The central Cantor set Cλ, with λ > 2, is the attractor of the IFS Φ = (φ0, φ1) on R given by

φ0(x) =
1

λ
x, φ1(x) =

1

λ
x+

λ− 1

λ
.

Although the IFS makes sense also when 1 < λ ≤ 2, in this case the attractor is not a Cantor set but the
whole interval [0, 1].

Consider now the following type of IFS of topological nature.

Definition 5. Let U be an orientable manifold (possibly non-compact) and φj : U → U be finitely many
orientation preserving homeomorphisms on their image. We say that Φ = (φ0, φ1, . . . , φn) has a strict
attractive basin M if M is a compact orientable submanifold M ⊂ U with the following properties:

1. φj(M) ⊂ int(M), for all j ∈ {0, 1, . . . , n};

2. φi(M) ∩ φj(M) = ∅, for any j 6= i ∈ {0, 1, . . . , n}.

We say that the pair (Φ,M) is an invertible IFS if M is a strict attractive basin for Φ. If moreover, φj are
Ck-diffeomorphisms on their image, then we say that the IFS is of class Ck.

The existence of an attractive basin is a topological version of uniform contractivity of φj . There exists then
a unique invariant non-empty compact CΦ ⊂M with the property that CΦ = ∪n

i=0φi(CΦ).

Theorem 5. Consider a C1 contractive invertible IFS (Φ,M), Φ = (φ0, φ1, . . . , φn), whose strict attractive
basin M is diffeomorphic to a d-dimensional ball. Then, the group diff1M (CΦ) contains the Thompson group
Fn+1, when M is of dimension d = 1 and the Thompson group Vn+1, when d ≥ 2, respectively.

In particular, the groups diff1M (CΦ) are (highly) nontrivial.

For a clear introduction to the classical Thompson groups F, T, V we refer to [13]. The generalized versions
Fn, Tn, Vn were considered by Higman ([31] and further extended and studied by Brown and Stein (see [49]),
Bieri and Strebel (see [4]) and Laget [36]. We will recall their definitions in section 2.

The result of the theorem does not hold when the attractive basin M is not a ball. For instance, when M
is a 3-dimensional solid torus, by taking nontrivial (linked) embeddings ∪n

i=0φi(M) ⊂ M we can provide
examples of wild Cantor sets, some of them being topologically rigid, in which case the group diff1M (C) is
trivial (see [48, 53]).
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1.4 Self-similar Cantor subsets of the line

The second part of this paper is devoted to concrete examples of groups arising by these constructions, for
particular choices of Cantor sets. We will be concerned in this section with self-similar Cantor sets, namely
attractors of IFS which consist only of similitudes. The typical example is the central ternary Cantor set
Cλ ⊂ [0, 1] of parameter λ > 2 from Example 1.

Let Φ = (φ0, φ1, . . . , φn) be an IFS of affine transformations of [0, 1], given by:

φj(x) = λjx+ aj ,

where
0 = a0 < λ0 < a1 < λ1 + a1 < a2 < · · · < λn−1 + an−1 < an < λn + an = 1.

The last condition means that the segments φj([0, 1]) are mutually disjoint, so that the attractor C = CΦ is
a sparse Cantor subset of [0, 1]. The positive reals gj = aj+1 − λj − aj are the initial gaps as they represent
the distance between consecutive intervals φj([0, 1]) and φj+1([0, 1]). The image of [0, 1] by the elements of
the monoid generated by Φ are called standard intervals.

We consider the groups FC and TC defined as follows. Let PL(R, C) and PL(S1, C) be the groups of
orientation preserving piecewise linear homeomorphisms of R and S1 = R/Z respectively, keeping invariant
C, i.e. of those homeomorphisms ϕ for which there exists a finite covering of C by standard disjoint intervals
{Ij}, kj ∈ Zn+1 and aj , bj ∈ C, such that

ϕ(x) = bj + Λkj
(x− aj), for any x ∈ Ij , (3)

where Λk =
∏n

i=0 λ
ki

i , for each multi-index k = (k0, k1, . . . , kn) ∈ Zn+1. Eventually FC and TC are the
images of PL(R, C) and PL(S1, C), respectively, in the group of homeomorphisms of C. Similarly we
have the group of piecewise affine exchanges PE(C) which are (not necessarily orientation preserving) left
continuous bijections of S1 preserving C, i.e. of those (not necessarily continuous) maps ϕ for which there
exists a finite covering of C by standard disjoint intervals {Ij}, kj ∈ Zn+1 and aj , bj ∈ C, such that

ϕ(x) = bj ± Λkj
(x− aj), for any x ∈ Ij , (4)

We denote by V ±
C its image into the group of homeomorphisms of C. We denote by VC ⊂ V ±

C the subgroup
obtained by requiring the restrictions of ϕ to each standard interval Ij be orientation-preserving, as in (3).

Definition 6. The self-similar Cantor set C ⊂ [0, 1] satisfies the genericity condition (C) if

1. either all homothety ratios λi are equal and all initial generation gaps gα are equal;

2. or the factors λi and the gaps gα are incommensurable, in the following sense:

(a) Λkgα = gβ implies that k = 0 and α = β;

(b) there exists no permutation σ different from identity and k,kα ∈ Zn+1
+ such that for all β we

have: gσ(β)

gβ
= Λ−kβ+

1
n

∑

n
α=1 kα

.

Theorem 6. Let C ⊂ [0, 1] be a self-similar Cantor set satisfying the genericity condition (C). Then for
every ϕ ∈ diff1,+(C) we can find a covering of C by a finite collection of disjoint standard intervals {Ij},
whose images are also standard intervals, integers kj ∈ Zn+1 and aj , bj ∈ C, such that the restriction of the
map ϕ has the form

ϕ(x) = bj + Λkj
(x− aj), for any x ∈ Ij ∩ C. (5)

In particular, diff1,+(C) is isomorphic to FC , diff
1,+
S1 (C) is isomorphic to TC and diff

1,+
S2 (C) is isomorphic to

V ±
C . Moreover, these are isomorphic to the Thompson groups Fn+1, Tn+1 and the signed Thompson group
V ±
n+1, respectively.

The main points in the statement of the theorem are the finiteness of the covering and the fact that the
intervals are standard.
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Remark 2. If the self-similar Cantor set does not satisfy the genericity condition (C), then the same proof
provides for every ϕ ∈ diff1,+(C) a covering of C by a finite collection of disjoint intervals {Ij}, integers
kj ∈ Zn+1 and aj , bj ∈ C, such that the restriction of the map ϕ is given by the formula (39), a slight
generalization of (5) above. However, it is not clear that one could assume that the images of {Ij} are
standard intervals and, in particular, that diff1,+(C) is isomorphic to some Thompson group.

We derive easily now the following interpretation for the Thompson groups and their braided versions:

Corollary 2. 1. Let C be the image of the standard ternary Cantor subset into the equatorial circle of
the sphere S2 and k ≥ 2.

(a) The smooth mapping class group Mk,+(D2
+, C) is the Thompson group T , where D2

+ denotes the
upper hemisphere;

(b) The smooth mapping class group Mk,+(S2, C) is the group of half-twists B1/2 from [26].

2. Let C be the standard ternary Cantor subset of an interval contained in the interior of a 2-disk D2

and k ≥ 2. Then Mk,+(D2, C) is the group of half-twists of the punctured disk (see [2]).

Remark 3. The group of half twists B1/2 is an extension of the signed Thompson group V ± by the compactly
supported pure mapping class group of S2 − C. It is similar to the braided Thompson group B from [24]
(see section 2.5), which is an extension of V by the same pure mapping class group, in particular it is also
finitely presented (see [2]).

Remark 4. The central ternary Cantor sets Cλ are pairwise non-diffeomorphic, i.e. there is no C1 diffeo-
morphism of R sending Cλ into Cλ′ for λ 6= λ′. Indeed, if it were such a diffeomorphism then the Hausdorff
dimensions of the two Cantor sets would agree, while the Hausdorff dimension of Cλ is log 2

log λ (see [22], Thm.

1.14). Nevertheless, the groups diff1,+(Cλ) are all isomorphic, for λ > 2, according to Theorem 6.

We notice that a weaker version of our Theorem 6 concerning the form of C1-diffeomorphisms of the central
Cantor sets Cλ, was already obtained in ([3], Proposition 1).

A case which attracted considerable interest is that of bi-Lipschitz homeomorphisms of Cantor sets (see
[15, 23] and the recent [44, 54]). In particular, the results of Falconer and Marsh [23] imply that every bi-
Lipschitz homeomorphism of a Cantor set is given by a pair of possibly infinite coverings of the Cantor set by
disjoint intervals and affine homeomorphisms between the corresponding intervals. Notice that any countable
subgroup of Diff0(S1) (or Diff0([0, 1]) can be conjugated (by a homeomorphism) into the corresponding group
of bi-Lipschitz homeomorphisms (see [18], Thm. D).

1.5 Self-similar Cantor dusts

The next step is to go to higher dimensions. Examples of Blankenship (see [5]) show that there exist wild
Cantor sets in Rn, for every n ≥ 3. A Cantor set C is tame if and only if for every ε > 0 there exist
finitely many disjoint piecewise linear cells of diameter smaller than ε whose interiors cover C. In particular,
products of tame Cantor sets are tame. More generally, the product of a Cantor subset of Rn with any
compact 0 dimensional subset Z ⊂ Rm is a tame Cantor subset of Rm+n (see [38], Cor.2).

In order to emphasize the role of the embedding we will consider now the simplest Cantor subsets, which
although tame they are not smoothly tame. Let Cn

λ ⊂ Rn be the Cartesian product of n copies of Cλ, where
n ≥ 2 and λ > 2, which is itself a Cantor set.

Theorem 7. Let ϕ ∈ diff
1,+
Rn (Cn

λ ), where λ > 2. Then there is a covering of Cn
λ by a finite collection of

disjoint standard parallelepipeds {Ij}, integers kj,i ∈ Z and aj,i, bj,i ∈ Cλ, such that:

ϕ(x) = (bj,i + λkj (xi − aj,i))i=1,n ◦ Sj , for any x ∈ Ij ∩Cn
λ . (6)

where Sj is an orientation preserving symmetry of the cube. In particular, diff1,+
Rn (Cn

λ ) is isomorphic to the
n-dimensional Brin group nV sym decorated by the group Dn of positive symmetries of the cube (see section
2).

6



Notice that in a series of papers (see [8, 10, 6, 30]) by Brin, Bleak and Lanoue, Hennig and Matucci the authors
proved that the higher dimensional Thompson groups nV defined by Brin are pairwise non-isomorphic finitely
presented simple groups (see also [45, 46]).

Remark 5. Note that the group diff1[0,1]n(C
n
λ ) is a proper subgroup of diff1

Rn(Cn
λ ).

Acknowledgements. The authors are grateful to B. Deroin, L. Guillou, P. Haissinsky, S.Hurtado, I.
Liousse, V. Sergiescu and M.Triestino for useful discussions and to the referees for having thoroughly read
this paper, for their corrections and comments. The first author was supported by the ANR 2011 BS 01 020
01 ModGroup and the second author by the FWF grant P25142. Part of this work was done during authors’
visit at the Erwin Schrödinger Institute, whose hospitality and support are acknowledged.

2 Definition of Thompson-like groups

The standard reference for the classical Thompson groups is [13]. For the sake of completeness we provide here
the basic definitions from several different perspectives, which lead naturally the path to the generalizations
considered by Brown and Stein and further to the high dimensional Brin groups.

2.1 Groups of piecewise affine homeomorphisms/bijections

Thompson’s group F is the group of piecewise dyadic affine homeomorphisms of the interval [0, 1]. Namely, for
each f ∈ F , there exist two dyadic subdivisions of [0, 1], a0 = 0 < a1 < . . . < an = 1 and b0 = 0 < b1 . . . < bn,
with n ∈ N∗, i.e. such that ai+1 − ai and bi+1 − bi belong to { n

2k
, n, k ∈ N}, so that the restriction of f to

[ai, ai+1] is the unique increasing affine map onto [bi, bi+1].

Therefore, an element of F is completely determined by the data of two dyadic subdivisions of [0, 1] having
the same cardinality.

Let us identify the circle to the quotient space [0, 1]/0 ∼ 1. Thompson’s group T is the group of piecewise
dyadic affine orientation preserving homeomorphisms of the circle. In other words, for each g ∈ T , there
exist two dyadic subdivisions of [0, 1], a0 = 0 < a1 < . . . < an = 1 and b0 = 0 < b1 . . . < bn, with n ∈ N∗,
and i0 ∈ {1, . . . , n}, such that, for each i ∈ {0, . . . , n − 1}, the restriction of g to [ai, ai+1] is the unique
increasing map onto [bi+i0 , bi+i0+1]. The indices must be understood modulo n.

Therefore, an element of T is completely determined by the data of two dyadic subdivisions of [0, 1] having
the same cardinality, say n ∈ N∗, plus an integer i0 mod n.

Finally, Thompson’s group V is the group of bijections of [0, 1[, which are right-continuous at each point,
piecewise nondecreasing and dyadic affine. In other words, for each h ∈ V , there exist two dyadic subdivisions
of [0, 1], a0 = 0 < a1 < . . . < an = 1 and b0 = 0 < b1 . . . < bn, with n ∈ N∗, and a permutation σ ∈ Sn,
such that, for each i ∈ {1, . . . , n}, the restriction of h to [ai−1, ai[ is the unique nondecreasing affine map
onto [bσ(i)−1, bσ(i)[. It follows that an element h of V is completely determined by the data of two dyadic
subdivisions of [0, 1] having the same cardinality, say n ∈ N∗, plus a permutation σ ∈ Sn. Denoting
Ii = [ai−1, ai] and Ji = [bi−1, bi], these data can be summarized into a triple ((Ji)1≤i≤n, (Ii)1≤i≤n, σ ∈ Sn).

The signed Thompson group V ± is the group of right-continuous bijections of the unit circle that map the
set of dyadic rationals to itself, are differentiable except at finitely many points, and such that, on every
interval of differentiability, they are affine maps whose derivatives are (positive or negative) powers of 2.

We have obvious inclusions F ⊂ T ⊂ V ⊂ V ±. R.J. Thompson proved in 1965 that F, T and V are finitely
presented groups and that T and V are simple (cf. [13]). The group V ± is also finitely presented and simple
(see [2]). The group F is not perfect, as F/[F, F ] is isomorphic to Z2, but F ′ = [F, F ] is simple. However,
F ′ is not finitely generated (this is related to the fact that an element f of F lies in F ′ if and only if its
support is included in ]0, 1[).

2.2 Groups of diagrams of finite binary trees

A finite binary rooted planar tree is a finite planar tree having a unique 2-valent vertex, called the root, a
set of monovalent vertices called the leaves, and whose other vertices are 3-valent. The planarity of the tree
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provides a canonical labelling of its leaves, in the following way. Assuming that the plane is oriented, the
leaves are labelled from 1 to n, from left to right, the root being at the top and the leaves at the bottom.

There exists a bijection between the set of dyadic subdivisions of [0, 1] and the set of finite binary rooted
planar trees. Indeed, given such a tree, one may label its vertices by dyadic intervals in the following way.
First, the root is labelled by [0, 1]. Suppose that a vertex is labelled by I = [ k

2n ,
k+1
2n ], then its two descendant

vertices are labelled by the two halves I: [ k
2n ,

2k+1
2n+1 ] for the left one and [ 2k+1

2n+1 ,
k+1
2n ] for the right one. Finally,

the dyadic subdivision associated to the tree is the sequence of intervals which label its leaves.

Thus, an element h of V is represented by a triple (τ1, τ0, σ), where τ0 and τ1 have the same number of leaves
n ∈ N∗, and σ ∈ Sn. Such a triple will be called a symbol for h. It is convenient to interpret the permutation
σ as the bijection ϕσ which maps the i-th leaf of the source tree τ0 to the σ(i)-th leaf of the target tree τ1.
When h belongs to F , the permutation σ is identity and the symbol reduces to a pair of trees (τ1, τ0).

Now, two symbols are equivalent if they represent the same element of V and one denotes by [τ1, τ0, σ] the
equivalence class. The composition law of piecewise dyadic affine bijections is pushed out on the set of
equivalence classes of symbols in the following way. In order to define [τ ′1, τ

′
0, σ

′] · [τ1, τ0, σ], one may suppose,
at the price of refining both symbols, that the tree τ1 coincides with the tree τ ′0. Then the product of the
two symbols is

[τ ′1, τ1, σ
′] · [τ1, τ0, σ] = [τ ′1, τ0, σ

′ ◦ σ].
It follows that V is isomorphic to the group of equivalence classes of symbols endowed with this internal law.
Now, every element of V ± is encoded by an enhanced symbol (T, T ′, σ, ε), where T, T ′ are admissible trees,
σ : ∂T → ∂T ′ is a bijection and ε ∈ (Z/2Z)∂T

′

, up to equivalence.

2.3 Partial automorphisms of trees

The beginning of the article [29] formalizes a change of point of view, consisting in considering, not the finite
binary trees, but their complements in the infinite binary tree.

Let T2 be the infinite binary rooted planar tree (all its vertices other than the root are 3-valent). Each finite
binary rooted planar tree τ can be embedded in a unique way into T2, assuming that the embedding maps
the root of τ onto the root of T2, and respects the orientation. Therefore, τ may be identified with a subtree
of T2, whose root coincides with that of T2.

Definition 7 ( cf. [35]). A partial isomorphism of T2 consists of the data of two finite binary rooted subtrees
τ0 and τ1 of T2 having the same number of leaves n ∈ N∗, and an isomorphism q : T2 \ τ0 → T2 \ τ1.
The complements of τ0 and τ1 have n components, each one isomorphic to T2, which are enumerated from
1 to n according to the labeling of the leaves of the trees τ0 and τ1. Thus, T2 \ τ0 = T 1

0 ∪ . . . ∪ T n
0 and

T2 \ τ1 = T 1
1 ∪ . . . ∪ T n

1 where the T i
j ’s are the connected components. Equivalently, the partial isomorphism

of T2 is given by a permutation σ ∈ Sn and, for i = 1, . . . , n, an isomorphism qi : T
i
0 → T

σ(i)
1 .

Two partial automorphisms q and r can be composed if and only if the target of r coincides with the source
of r. One gets the partial automorphism q ◦ r. The composition provides a structure of inverse monoid on
the set of partial automorphisms.

Let ∂T2 be the boundary of T2 (also called the set of “ends” of T2) endowed with its usual topology, for which
it is a Cantor set. Although a partial automorphism does not act (globally) on the tree, it does act on its
boundary. One has therefore a morphism from the monoid of partial isomorphism into the homeomorphisms
of ∂T2, whose image N is the spheromorphisms group of Neretin (see [42]).

Thompson’s group V can be viewed as the subgroup of N which is the image of those partial automorphisms
which respect the local orientation of the edges.

2.4 Generalizations following Brown and Stein, Bieri and Strebel

Brown considered in [12] similar groups Fn,r ⊂ Tn,r ⊂ Vn,r, extending previous work of Higman, which were
defined as in the last two constructions above but using instead of binary trees forests of r copies of n-ary
trees so that F, T, V correspond to n = 2 and r = 1. The isomorphism type of Vn,r and Tn,r only depends
on r (mod n) while Fn,r depends only on n. We drop the subscript r when r = 1. These groups are finitely
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presented and of type FP∞ according to [11] for the case of F and T and then ([12], thm. 4.17) for its
extension to all other groups from this family. Moreover, Higman have proved (see [31]) that Vn,r has a
simple subgroup of index g.c.d(2, n− 1), and this was extended by Brown who showed that Fn have simple
commutator and Tn,r have simple double commutator groups (see [12] for more details and refinements).

One can obtain these groups also by considering n-adic piecewise affine homeomorphisms (or bijections) of
[0, r] (with identified endpoints for Tn,r) i.e. having singularities in Z

[

1
n

]

and derivatives in {na, a ∈ Z}.
This point of view was taken further by Bieri, Strebel and Stein in [4, 49]. Specifically, given a multiplicative
subgroup P ⊂ R, a Z[P ]-submodule A ⊂ R satisfying P ·A = A, and a positive r ∈ A, one can consider the
group FA,P,r of those PL homeomorphisms of [0, r] with finite singular set in A and all slopes in P . There
are similar families TA,P,r and VA,P,r. Brown and Stein proved that F

Z

[

1
n1n2···nk

]

,〈n1,n2,...,nk〉,r
is finitely

presented of FP∞ type. Furthermore FA,P,r and VA,P,r have simple commutator subgroups, while TA,P,r

have simple second commutator subgroup.

The signed version V ±
n,r of Vn,r is defined as above, by allowing both orientation preserving and orientation

reversing piecewise affine homeomorphisms.

2.5 Mapping class groups of infinite surfaces and braided Thompson groups

Let S0,∞ be the oriented surface of genus zero, which is the following inductive limit of compact oriented
genus zero surfaces with boundary Sn. Starting with a cylinder S1, one gets Sn+1 from Sn by gluing a
pair of pants (i.e. a three-holed sphere) along each boundary circle of Sn. This construction yields, for each
n ≥ 1, an embedding Sn →֒ Sn+1, with an orientation on Sn+1 compatible with that of Sn. The resulting
inductive limit (in the topological category) of the Sn’s is the surface S0,∞ = lim

→

n

Sn.

By the above construction, the surface S0,∞ is the union of a cylinder and of countably many pairs of pants.
This topological decomposition of S0,∞ will be called the canonical pair of pants decomposition.

The set of isotopy classes of orientation-preserving homeomorphisms of S0,∞ is an uncountable group. By
restricting to a certain type of homeomorphisms (called asymptotically rigid), we shall obtain countable
subgroups (see [24, 25]).

Any connected and compact subsurface of S0,∞ which is the union of the cylinder and finitely many pairs
of pants of the canonical decomposition will be called an admissible subsurface of S0,∞. The type of such a
subsurface S is the number of connected components in its boundary.

A rigid structure on S0,∞ is given by a pants decomposition together with a set of disjoint proper arcs
joining distinct ends such that each pair of pants intersects essentially only three arcs which join different
boundary circles. One component of complement of the union of arcs is called the visible side. We fix a rigid
structure on the surface underlying the canonical pants decomposition.

Definition 8 (following [35, 24]). A homeomorphism ϕ of S0,∞ is asymptotically rigid if there exist two
admissible subsurfaces S0 and S1 having the same type, such that ϕ(S0) = S1 and whose restriction S0,∞ \
S0 → S0,∞\S1 is rigid, meaning that it maps each pants (of the canonical pants decomposition) onto a pants
and the visible side onto the visible side. If we drop the last requirement we say that the homeomorphism ϕ
is asymptotically quasi-rigid.

The asymptotically rigid and quasi-rigid mapping class groups of S0,∞ are the groups of isotopy classes of
asymptotically rigid and quasi-rigid homeomorphisms, respectively.

The asymptotically rigid mapping class group B and the quasi-rigid mapping class group B1/2 of S0,∞ are
finitely presented groups (see [24, 2]) which fit into the exact sequences:

1 → PM(S0,∞) → B → V → 1,

1 → PM(S0,∞) → B1/2 → V ± → 1.

Some very similar versions of the same group (using a Cantor disk instead of a Cantor sphere or a more
combinatorial framework) were obtained independently by Brin ([9]) and Dehornoy ([16]). We will call any
version of them as braided Thompson groups.

9



2.6 Brin’s groups nV and their decorated versions

A rather different direction was taken in the seminal paper [8] of Brin, where the author constructed a family
of countable groups nV acting as homeomorphisms of the product of n-copies of the standard triadic Cantor,
generalizing the group V which occurs for n = 1.

Let In ⊂ Rn denote the unit cube. A numbered pattern is a finite dyadic partition of In into parallelepipeds
along with a numbering. A dyadic partition is obtained from the cube by dividing at each step of the
process one parallelepiped into two equal halves by a cutting hyperplane parallel to one of the coordinates
hyperplane.

One definition of nV is as the group of piecewise affine (not continuous!) transformations associated to
pairs of numbered patterns. Given the numbered patterns P = (L1, L2, . . . , Ln) and Q = (R1, R2, . . . , Rn),
we set ϕP,Q for the unique piecewise affine transformation of the cube sending affinely each Li into Ri and
preserving the coordinates hyperplanes. Thus nV is the group of piecewise affine transformations of the
form ϕP,Q, with P,Q running over the set of all possible dyadic partitions.

Another description is as a group of homeomorphisms of the product Cn of the standard triadic Cantor
set C. Parallelepipeds in a dyadic partition correspond to closed and open (clopen) subsets of Cn. Ev-
ery dyadic cutting hyperplane H subdividing some parallelepiped R into two halves determines a parallel
shadow (open) parallelepiped in R whose width is one third of the width of R in the direction orthogonal
to H . Notice then that the complement of the union of all shadow parallelepipeds is Cn. Every pattern
P = (R1, R2, . . . , Rn) determines a numbered collection of parallelepipedsXP = (X(R1), X(R2), . . . , X(Rn))
whose complementary is the set of shadows parallelepipeds of those cutting hyperplanes used to built P .
Then A(Ri) = X(Ri) ∩ Cn form a clopen partition of Cn. For a pair of patterns P,Q we define the home-
omorphism hP,Q of Cn as the unique homeomorphism which sends affinely A(Li) into A(Ri) and preserves
the orientation in each coordinate. This amounts to say that hP,Q is the restriction to Cn of the piecewise
affine transformation sending affinely X(Li) into X(Ri) and preserving the coordinates hyperplanes.

The groups nV are simple (see e.g. [8, 10]) and finitely presented (see [30]). The stabilizer at some a ∈ Cn

of the (germs of) homeomorphisms in nV is isomorphic to Zr(a), where r(a) is the number of rational
coordinates of a. This implies that the groups nV are pairwise non-isomorphic (see [6] for details).

We could of course extend this construction to arbitrary products of central Cantor sets Cλ in the spirit of
Brown and Stein, Bieri and Strebel as above.

As in the case of groups Vn,r there exists a decorated version nV sym of nV by allowing piecewise affine
transformations hP,Q to be arbitrary affine isomorphisms between A(Li) into A(Ri), not necessarily preserv-
ing each coordinate hyperplane. We will say that nV sym is the n-dimensional Brin group decorated by Dn,
where Dn denotes the group of orientation preserving symmetries of the cube. Its elements correspond to
numbered patterns P = (L1, L2, . . . , Ln) and Q = (R1, R2, . . . , Rn), along with a n-tuple Σ = (σ1, σ2, . . . , σn)
of orientation preserving symmetries of the n-cube. The map ϕP,Q,Σ consists of the unique piecewise affine
transformation sending σi(Li) into Ri. Recall that Dn is the group of orthogonal n×n matrices with integer
entries and unit determinant. One defines in the same way the n-dimensional Brin group nV ±sym decorated
by On, where On denotes the hyperoctahedral group of all symmetries of the cube, which is the higher
dimensional generalization of V ±.

3 Proof of general countability statements

3.1 Proof of Theorem 1

We parameterize the interval E containing the Cantor set C by the Ck-curve γ : [0, 1] → M and denote by
A ⊂ [0, 1] the preimage of C, which is still a Cantor set. We may assume that {0, 1} ⊂ A. For the sake of
simplicity we suppose that the interval E lies in the interior of M . The proof works in general, with only
minor modifications. Let ϕ ∈ Diffk,+(M,C) and denote by ξ(t) = ϕ ◦ γ(t). Consider a Ck-coordinates chart
U ⊂ M containing E, such that U is identified with an open disk, while γ is now linear and parameterized
by arc length, namely that ‖ γ̇ ‖= 1 and γ̈ = 0. The norm ‖ ‖ is associated to the standard scalar product
〈, 〉 on U induced from Rn.

The strategy of the proof is as follows. We define a subset Iε ⊂ [0, 1] consisting of finitely many intervals
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which contains A. At first one straightens out ξ in the complementary of Iε. To this purpose we modify
ϕ by composing with a convenient compactly supported diffeomorphism. Further we show that there is an
isotopy rel A which straightens out the remaining arcs of ξ. Eventually, one proves that a diffeomorphism
preserving the orientation of the surface which fixes the arc E is, up to isotopy, supported outside a disk
neighborhood of E. This will show that ϕ has a compactly supported class.

Assume for the moment that A is just an infinite set without isolated points. The set of those t for which
γ(t) = ξ(t) is a closed subset of [0, 1] containing A and hence its closure A. Let now t0 ∈ A. Then, since γ
and ξ are differentiable at t0 we have:

γ̇(t0) = lim
t∈A,t→t0

γ(t)− γ(t0)

t− t0
= lim

t∈A,t→t0

ξ(t) − ξ(t0)

t− t0
= ξ̇(t0). (7)

If ϕ is twice differentiable then the same argument shows that:

γ̈(t0) = ξ̈(t0). (8)

Since ϕ is of class C2, for every ε > 0, there exists δ(ε) > 0 such that whenever s1, s2 ∈ A, with |s1−s2| < δ(ε)
we have:

1− ε < 〈γ̇(t), ξ̇(t)〉 ≤ 1, for all t ∈ [s1, s2], (9)

|ξ̈(t)| < ε, for all t ∈ [s1, s2]. (10)

We assume now that A = ∩∞
j=1Aj is the infinite nested intersection of the closed finite unions of intervals

Aj ⊃ Aj+1 ⊃ · · · .
We denote Iε = ∪

s1,s2∈A;|s1−s2|≤
δ(ε)
2
[s1, s2] ⊂ [0, 1]. We choose ε > 0 small enough such that the image of

ξ|Iε is contained within the coordinates disk U .

Set further γs(t) = (1− s)γ(t) + s ξ(t), for t ∈ [s1, s2] ⊂ Iε and s ∈ [0, 1].

Lemma 1. Fix ε < 1 as above. Let s1, s2 ∈ A, such that |s1 − s2| ≤ δ(ε)/2. Then γs|[s1,s2] provides a

Ck-isotopy between the restrictions γ|[s1,s2] and ξ|[s1,s2] to the interval [s1, s2]. In particular, the image ξ(Iε)
is contained within the union of orthogonal strips (γ(Iε)× R) ∩ U .

Proof. We have to prove that for any s ∈ [0, 1] the curve γs|[s1,s2] is simple. This follow immediately from
the fact that whenever ε < 1 we have:

〈γ̇s(t), γ̇(t)〉 ≥ 1− s+ s〈ξ̇(t), γ̇(t)〉 ≥ 1− εs > 0 (11)

for any t ∈ [0, 1], s ∈ [0, 1]. Further, note that the curve γs(t), for s ∈ [0, 1] and fixed t ∈ Iε is a segment
joining ξ(t) with its orthogonal projection onto γ(Iε).

We set

η(t) =

{

ξ(t), if t ∈ Iε;
γ(t), if t 6∈ Iε.

(12)

Lemma 2. There exists a compactly supported diffeomorphism ψ ∈ PDiffk,+(M,C) such that ψ(ξ) and η
are isotopic rel A.

Proof. Lemma 1 shows that the image of η is a simple curve, as ξ(Iε) is contained within the union of
orthogonal strips (γ(Iε)× R) ∩ U , and thus it cannot intersect γ([0, 1] \ Iε).
Note that A ⊂ Iε, since A has no isolated points. The endpoints of a maximal complementary interval should

belong to A, by maximality. In particular, its length should be greater than δ(ε)
2 , and hence there are only

finitely many maximal complementary intervals say J1, J2, . . . , Jp. Then ξ(Ji) are pairwise disjoint smooth
arcs whose interiors are ξ(int(Ji)) ⊂ M − C, each such arc joining two distinct points of C. Moreover, as
ξ(t) = γ(t), for t ∈ ∪p

i=1∂Ji, we can straighten out the half-arcs of ξ around these points. Namely, there
exists a small neighborhood N(Iε) of Iε within [0, 1] such that after perturbing ξ by an isotopy supported
in N(Iε) ∩ (∪p

i=1Ji) we have ξ(t) = γ(t), for t ∈ N(Iε) ∩ (∪p
i=1Ji).
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Now the arcs ξ(Iε) are disjoint both from ξ(Ji \N(Iε)) and γ(Ji \N(Iε)). There exists then a small enough
open neighborhood V of ξ(Iε) within U which is disjoint from both ξ(Ji \N(Iε)) and γ(Ji\N(Iε)). Therefore
there exists an orientation preserving diffeomorphism ψ supported on M − V , thus compactly supported,
such that ψ(ξ(Ji \N(Iε))) = γ(Ji \N(Iε)), and hence ψ(ξ(Ji)) = η(Ji). Thus ψ(ξ) and η are isotopic rel A,
as claimed.

Lemma 3. The curves γ and η are isotopic rel A.

Proof. We will prove that the family

ηs(t) =

{

γs(t), if t ∈ Iε;
γ(t), if t 6∈ Iε

(13)

is the desired isotopy. From Lemma 1 it suffices to show that there are not intersections between the segments
of curves γs|[s1,s2] and γs|[s3,s4], when si ∈ A and [s1, s2], [s3, s4] ⊂ Iε are disjoint.

Let p = γs|[s1,s2](t0) be a point on the first curve segment. We want to estimate the angle β of the Euclidean
triangle with vertices p, γ(s1), γ(s2) at γs(s1). We can write then:

〈γs(t0)− γs(s1), γ̇(0)〉 =
∫ t0−s1

0

〈γ̇s(s1 + x), γ̇(0)〉 dx =

∫ t0−s1

0

1− s+ s〈ξ̇(s1 + x), γ̇(0)〉 dx. (14)

Then (9) implies:

‖ γs(t0)− γs(s1) ‖ cos(β) = 〈γs(t0)− γs(s1), γ̇(0)〉 ≥ (t0 − s1)(1 − sε). (15)

On the other hand from (10) we derive

‖ ξ̇(x) − ξ̇(s1) ‖≤ ε(x− s1), (16)

and then:

‖ γs(t0)− γs(s1) ‖≤
∫ t0−s1

0

‖ γ̇s(x) ‖ dx ≤
∫ t0−s1

0

(s ‖ ξ̇(x) ‖ +(1− s))dx ≤ t0 − s1 +
ε

2
(t0 − s1)

2. (17)

From (15) we obtain

cos(β) ≥ 1− sε

1 + ε
2 (t0 + s1)

≥ 1− ε

1 + ε
. (18)

If we choose ε ≤ 1
3 then β ∈ [−π

3 ,
π
3 ].

Assume now the contrary of our claim, namely that there exists some intersection point p between γs|[s1,s2]
and γs|[s3,s4]. Up to a symmetry of indices we can assume that the Euclidean triangle with vertices at p,
γs(s1) and γs(s2) has the angle β at γs(s1) within the interval [π2 , π). This contradicts our estimates (18)
for β.

The last ingredient of the proof of Theorem 1 is the following:

Lemma 4. Assume that there exists an isotopy of class Ck between γ and η = ψ(ϕ(γ)) rel A. Then ϕ is
Ck-isotopic to a compactly supported diffeomorphism from PDiffk,+(M,C).

Proof. We can assume that the disk D of diameter E is contained in U .

If the dimension of M is 2, the endpoints of E separate the circle ∂D into two arcs, say F+ and F−. The
circular order of the three arcs F+, E, F− around an endpoint of E is preserved by ψ ◦ ϕ ∈ Diffk,+(M,C).
Note that E is fixed by ψ ◦ ϕ. Thus there exists a Ck-isotopy which is identity on E, sends ψ(ϕ(F+)) to
F+ and ψ(ϕ(F−)) to F−. Therefore ψ ◦ ϕ is isotopic to a diffeomorphism supported on the complement
of D and hence its class is compactly supported. The claim follows now, because ψ is equally compactly
supported.

If the dimension of M is at least 3, there exists an isotopy of M sending ψ(ϕ(∂D)) to ∂D, which is identity
on E, because ψ ◦ ϕ ∈ PDiffk,+(M,C) and we conclude as above.
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3.2 Sparse sets and proofs of Theorems 2, 3 and 4

3.2.1 Preliminaries

Let Nε(a) denote the ε-neighborhood |x − a| < ε of a in R, N±
ε (a) the punctured right and left semi-

neighborhoods of a, i.e., a < x < a+ ε and a− ε < x < a, respectively.

We say that a ∈ C is a left point of C if there is a left semi-neighborhood N−(a) such that N−(a)∩C = ∅.
In the same way we define right points.

For a ∈ C denote by Diffk
a the stabilizer of a in Diffk(R, C), and by diffka the group of k-germs of elements

of the stabilizer of a in diffk(C). The superscript + in Diffk,+
a and diffk,+a means that we only consider those

diffeomorphisms that preserve the orientation of the interval, i.e. increasing.

Let ϕ be a diffeomorphism with ϕ(a) = a. We say that ϕ is N -flat at a if:

ϕ(x) − x = o
(

(x− a)N
)

, as x→ a. (19)

Lemma 5. Assume that C is a σ-sparse subset of R. Let ϕ ∈ Diff1
a be 1-flat at a ∈ C. Then ϕ

∣

∣

∣

C
is the

identity in a small neighborhood of a.

Proof. Observe first that ϕ ∈ Diff1,+
a , since ϕ′(a) = 1 and hence ϕ must be increasing. We can assume

without loss of generality that a is not a right point of C. Suppose that ϕ is nontrivial on N+
δ (a) ∩ C for

any δ > 0.

We first claim that fixed points of ϕ accumulate from the right to a. Otherwise, there exists some δ such that
ϕ(x)−x keeps constant sign for all x ∈ N+

δ (a). Assume that this sign is positive and choose b ∈ N+
δ (a)∩C.

Let (α, β) ⊂ (a, b) be a maximal complementary interval of length at least σ(b − a). By maximality α ∈ C.
Since ϕ(α) ∈ C and ϕ(α) > α we have ϕ(α) ≥ β, so that:

ϕ(α) − a

α− a
=
ϕ(α)− α

α− a
+ 1 ≥ β − α

α− a
+ 1 ≥ σ(b − a)

α− a
+ 1 ≥ 1 + σ. (20)

By the mean value theorem there exists ξ ∈ (a, α) such that:

ϕ′(ξ) =
ϕ(α) − a

α− a
≥ 1 + σ.

But this inequality contradicts the 1-flatness condition for small δ, as taking the limit when δ → 0 we would
obtain ϕ′(a) ≥ 1 + σ.

When the sign of ϕ(x) − x is negative we reach the same conclusion by considering ϕ(β) − β. This proves
the claim.

Therefore there is a decreasing sequence uk accumulating at a, such that ϕ(uk) = uk. As ϕ
∣

∣

∣

C∩N+
δ
(a)

is not

identity for any δ > 0 there exists a decreasing sequence vk ∈ C accumulating on a, such that all ϕ(vk)− vk
are of the same sign, say positive. Therefore, up to passing to a subsequence, we obtain a sequence of disjoint
intervals (αj , βj) such that βj+1 6 αj , ϕ(αj) = αj , ϕ(βj) = βj , and vj ∈ (αj , βj).

Since ϕ is monotone, it has to be monotone increasing, by above. Thus ϕk(vj) ∈ [αj , βj ], for any k ∈ Z,
where ϕk denotes the k-th iterate of ϕ. The bi-infinite sequence ϕk(vj) is increasing and so:

αj ≤ lim
k→−∞

ϕk(vj) < lim
k→∞

ϕk(vj) ≤ βj . (21)

Now limk→−∞ ϕk(vj) and limk→∞ ϕk(vj) are fixed points of ϕ and we can assume, without loss of generality
that our choice of intervals is such that αj = limk→−∞ ϕk(vj), limk→∞ ϕk(vj) = βj . In particular αj , βj ∈ C.

As C is σ-sparse there is a complementary interval (γj , δj) ⊂ (αj , βj) of length at least σ(βj − αj). The
interval (γj , δj) cannot contain any point ϕk(vj) and thus there exists some kj ∈ Z such that

ϕkj (vj) ≤ γj < δj ≤ ϕkj+1(vj). (22)
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Denote ϕkj (vj) = ηj . We have then

ϕ(ηj)− ϕ(αj)

ηj − αj
− 1 =

ϕ(ηj)− ηj
ηj − αj

≥ σ(βj − αj)

ηj − αj
≥ σ. (23)

By the mean value theorem there exists ξj ∈ (αj , ηj) such that

ϕ(ηj)− ϕ(αj)

ηj − αj
= ϕ′(ξj). (24)

and thus such that ϕ′(ξj) ≥ 1+σ. As ϕ′ is continuous at a, by letting j go to infinity we derive ϕ′(a) ≥ 1+σ
which contradicts the 1-flatness.

Lemma 6. If C is σ-sparse and ϕ ∈ Diff1
a is not 1-flat then

|ϕ′(a)− 1| ≥ σ. (25)

Proof. Let ϕ ∈ Diff1
a not 1-flat, so that ϕ′(a) 6= 1. Let us further suppose that ϕ′(a) > 1, the other situation

being similar. For any δ > 0 we can choose b ∈ N+
δ (a)∩C. There is then a maximal complementary interval

(α, β) ⊂ (a, b) of length at least σ(b − a). By maximality α ∈ C.

We claim that for small enough δ we have ϕ(α) > α. Assume the contrary. By the mean value theorem
there exists ξ ∈ (a, α) ⊂ (a, b) such that

ϕ′(ξ) = 1 +
ϕ(α) − α

α− a
≤ 1 (26)

and letting δ go to 0 we would obtain ϕ′(a) ≤ 1, contradicting our assumptions. Thus ϕ(α) > α, and hence
ϕ(α) ≥ β. As above, the mean value theorem provides us ξ ∈ (a, α) so that

ϕ′(ξ) = 1 +
ϕ(α)− α

α− a
≥ 1 + σ. (27)

Letting δ go to zero we obtain ϕ′(a) ≥ 1 + σ. When ϕ′(a) < 1 we can use similar methods or pass to ϕ−1

in order to obtain ϕ′(a) ≤ 1− σ.

Lemma 7. Let C sparse and a ∈ C. Then one of the following holds:

1. either for any ϕ ∈ Diff1,+
a , the restriction ϕ

∣

∣

∣

C
is identity in a small neighborhood of a, so that diff1,+a =

1;

2. or else, there is ψa ∈ Diff1,+
a such that for any ϕ ∈ Diff1,+

a the restriction of ϕ to a small neighborhood

Nδ(a)∩C coincides with the iterate ψk
a

∣

∣

∣

C
for some k ∈ Z \ {0}. Moreover, any such ψa is of the form:

ψa(x) = a+ p(x− a) + o(x − a), as x→ a, (28)

where |p− 1| ≥ σ. Thus diff1,+a = Z.

Proof. If the first alternative doesn’t hold, by Lemma 5 we can assume that there exists some ϕ ∈ Diff1,+
a

which is not 1-flat.

The map χ : Diff1
a → R∗ given by χ(ϕ) = ϕ′(a) is easily seen to be a group homomorphism. By Lemma 6

the subgroup χ(Diff1,+
a ) of R∗

+ is discrete and non-trivial and thus it is isomorphic to Z. Let ψa ∈ Diff1,+
a

be a germ whose image χ(ψa) is a generator of χ(Diff1,+
a ). Then ψa is not 1-flat and thus, by Lemma 6, it

satisfies the equation (28).

If ϕ ∈ Diff1,+
a , then we can write ϕ = ψk

aθ, for some k ∈ Z \ {0} and θ ∈ kerχ. But the kernel of χ consists
of those θ ∈ Diff1,+

a which are 1-flat. By Lemma 5 the restriction of θ to some neighborhood Nδ(a) ∩ C is
identity. This proves that ϕ = ψk

a in a neighborhood Nδ(a) ∩ C, as claimed.
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Remark 6. If C = Cλ is the ternary central Cantor set in R, then diff1,+a (Cλ) is not always Z. An element
a of Cλ is called λ-rational if it has an eventually periodic development

a =
∞
∑

i=1

aiλ
i,

where ai ∈ {0, λ− 1}. Therefore diff1,+a (Cλ) is Z if and only if a is λ-rational and trivial, otherwise.

Remark 7. Since the subgroup χ(Diff1
a) ⊂ R∗ is discrete there exists λ ≥ 1 such that χ(Diff1

a) is of the form
〈λ〉, 〈−λ〉 or 〈±λ〉. Here 〈x〉 denotes the subgroup of R∗ generated by x. In particular diff1a is isomorphic to
either 1, Z/2Z, Z, or else Z⊕ Z/2Z.

However, if a is a left (or right) point of C then there is no decreasing homeomorphism of (R, C) fixing a.
Thus Diff1

a = Diff1,+
a , and the result of Lemma 28 holds more generally for Diff1

a.

3.2.2 Proof of Theorem 2

We need to show that the identity is an isolated point of the group diff1(C), if C is σ-sparse. To this purpose
consider an element diff1(C) having a representative ψ ∈ Diff1(R, C) such that

1− σ < ψ′(x) < 1 + σ, for any x ∈ C. (29)

There is no loss of generality in assuming that ψ ∈ Diff1,+(R, C), i.e. that ψ is monotone increasing. The
minimal element minC of C should therefore be fixed by any element of Diff1,+(R, C), in particular by ψ.
By Lemma 6, ψ ∈ Diff1

minC(R, C) must be 1-flat at minC.

Consider the set
U = {x ∈ C;ψ(z) = z, for any z ∈ C ∩ (−∞, x]}. (30)

The set U is nonempty, as minC ∈ U . Let ξ = supU .

Assume first that ξ is not a right point of C. Since ψ is continuous, ξ ∈ U so that ψ ∈ Diff1
ξ . From Lemma 6

ψ′(ξ) = 1 and ψ is 1-flat at ξ. According to Lemma 5 there is some δ > 0 such that the restriction ψ
∣

∣

∣

C∩N+
δ
(ξ)

is identity, which contradicts the maximality of ξ.

If ξ is a right point of C, then there is some maximal complementary interval (ξ, η) ⊂ R\C. Since ψ
∣

∣

∣

C∩[minC,ξ]

is identity it follows that ψ(C ∩ [ξ,∞)) ⊂ C ∩ [ξ,∞). As η is the minimal element of C ∩ (ξ,∞) it should be

a fixed point of ψ
∣

∣

∣

[ξ,∞)
and so η ∈ U . This contradicts the maximality of ξ. Hence ψ is identity on C.

Remark 8. The same arguments show that if C ⊂ [0, 1] is a sparse Cantor set and diff
1,+
0 (C) = 1, then

diff1,+(C) = 1.

For the second claim of the theorem let Vδ be the set of those elements in diff1S1(C) having a representative
ψ ∈ Diff1(S1, C) such that

1− δ < ψ′(x) < 1 + δ, for any x ∈ C. (31)

Here elements of Diff1(S1) are identified with real periodic functions on R. We choose δ < min(σ, 0.3). It is
enough to prove that Vδ is finite.

Consider a complementary interval J ⊂ S1 − C of maximal possible length, say |J |. Consider its right end
η, with respect to the cyclic orientation. If ψ ∈ Vδ is such that ψ(η) = η, then the arguments from the proof
of Theorem 2 show that ψ(x) = x when x ∈ C.

We claim that the set of intervals of the form ψ(J), for ψ ∈ Vδ is finite. Each ψ(J) is a maximal complemen-
tary interval, because if it were contained in a larger interval J ′, then ψ−1(J) would be a complementary
interval strictly larger than J . This shows that any two such intervals ψ(J) and ϕ(J) are either disjoint or
they coincide, for otherwise their union would contradict their maximality. Further, each ψ(J) has length
at least (1 − δ)|J |. This shows that the set of intervals is a finite set {J1, J2, . . . , Jk}.
Assume that ψ(J) = ϕ(J) and both ψ and ϕ preserve the orientation of the circle. If the right end of J is
η, with respect to the cyclic orientation, then ϕ ◦ ψ−1 sends J to J and hence fixes η. Then the arguments
from the proof of Theorem 2 show that ϕ ◦ ψ−1(x) = x when x ∈ C. It follows that there are at most 2k
elements in Vδ, finishing the proof of the first part.
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3.2.3 Proof of Theorem 3

Let C be a Cantor set contained within a C1-embedded simple closed curve L on the orientable manifold
M . For the sake of simplicity we will suppose from now on that M is a surface, but the proof goes on
without essential modifications in higher dimensions. Let ϕ be a diffeomorphism of M sending C into C.
Fix a parameterization of a collar N such that (N,L) is identified with (L × [−1, 1], L × {0}). Denote by
π : N → L the projection on the first factor and by h : N → [−1, 1] the projection on the second factor.

There exists an open neighborhood U of C in L so that ϕ(U) ⊂ N . In particular, the closure U is a finite
union of closed intervals. The map ϕ : U → N = L× [−1, 1] has the property h ◦ ϕ(a) = 0, for each a ∈ C.
Therefore the differential Da (h ◦ ϕ) = 0, for each a ∈ C. Since ϕ is a diffeomorphism Da(π ◦ ϕ) 6= 0, for
every a ∈ C.

For each a ∈ C consider an open interval neighborhood Ua within L, so thatDx(π◦ϕ) 6= 0 and ‖ Dx (h◦ϕ) ‖<
1, for every x ∈ Ua. We obtain an open covering {Ua; a ∈ C} of C. As C is compact there exists a finite
subcovering by intervals {U1, U2, . . . , Un}. Without loss of generality one can suppose that Uj ⊂ U , for all
j. We consider such a covering having the minimal number of elements. This implies that Uj are disjoint
intervals.

For every j the map π
∣

∣

∣

ϕ(Uj)
: ϕ(Uj) → π(ϕ(Uj)) ⊂ L is a diffeomorphism on its image, since ϕ(Uj) is

connected and Dx(π ◦ ϕ) 6= 0, for any x ∈ Uj .

Consider a slightly smaller closed interval Ij ⊂ Uj such that Ij ∩C = Uj ∩C.
Let µ be a positive smooth function on ⊔n

j=1Uj such µ(t) equals 1 near the boundary points and vanishes

on ⊔n
j=1Ij . Define φs : ⊔n

j=1Uj → N by:

φs(x) = (π ◦ ϕ(x), (sµ(x) + 1− s) · h ◦ ϕ(x)). (32)

Then φ0(x) = ϕ(x) and for each s ∈ [0, 1] we have φs(x) = ϕ(x), for x near the boundary points of ⊔n
j=1Uj.

Furthermore φ1(x) = π ◦ ϕ(x) ∈ L, when x ∈ ⊔n
j=1Ij . One should also notice that φs(x) = ϕ(x), for each

x ∈ C and s ∈ [0, 1].

Let now denote Jj = π ◦ ϕ(Ij). It is clear that C = ϕ(C) ⊂ ∪n
j=1Jj . We claim that we can assume that Jj

are disjoint. Indeed, since ϕ is bijective we have ϕ(Ij ∩C)∩ϕ(Ik ∩C) = ∅, for any j 6= k. Since ϕ(Ij ∩C) are
closed subsets of L there exists ε > 0 so that d(ϕ(Ij ∩C), ϕ(Ik ∩C)) ≥ ε, for j 6= k, where d is a metric on L.
Since φ1(Ij ∩C) = ϕ(Ij ∩C), we have d(φ1(Ij ∩C), φ1(Ik ∩C)) ≥ ε, for j 6= k. Thus there exist some open
neighborhoods J ′

j of φ1(Ij ∩ C) within L so that d(J ′
j , J

′
k) ≥ 1

2ε, for all j 6= k. As φ1 is a diffeomorphism
there exist open neighborhoods I ′j of Ij ∩ C with the property that φ1(I

′
j) ⊂ J ′

j , for all j. Now I ′j and J ′
j

are finite unions of open intervals. We can replace them by closed intervals with the same intersection with
C. This produces two new families of disjoint closed intervals related by φ1, as the initial situation. This
proves the claim.

We obtained that there exist two coverings {I1, I2, . . . , In} and {J1, J2, . . . , Jn} of C by disjoint closed
intervals and a diffeomorphism φ1 : ⊔n

j=1Ij → ⊔n
j=1Jj such that φ1(x) = ϕ(x), for any x ∈ C.

Notice that the sign of Da(π ◦ ϕ) might not be the same for all intervals.

Every partition of C induced by a covering {I1, I2, . . . , In} as above is determined by the choice of com-
plementary intervals, namely the n− 1 connected components of L \ ∪n

j=1Ij . It follows that there are only

countably many finite partitions of C of the type considered here. Next, the set of those elements of diff1M (C)
which arise from partitions induced by the coverings {I1, I2, . . . , In} and {J1, J2, . . . , Jn} of C is acted upon
transitively by the stabilizer of one partition. The stabilizer of one partition embeds into the product of
diff1Ij (C ∩ Ij). Theorem 2 then implies that diff1M (C) is countable.

3.2.4 Proof of Theorem 4

Before to proceed we need some preparatory material. Let A ⊂ Rn be a set without isolated points. Let
TpR

n denote the tangent space at p on Rn and UTpR
n ⊂ TpR

n the sphere of unit vectors. For any p ∈ A
one defines the unit tangent spread UTpA ⊂ UTpR

n at p as the set of vectors v ∈ UTpR
n for which there
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exists a sequence of points ai ∈ A with limi→∞ ai = p and

lim
i→∞

ai − p

‖ ai − p ‖ = v.

Vectors in UTpA will also be called (unit) tangent vectors at p to A. We also set TpA = R+ · UTpA ⊂ TpR
n

for the tangent spread at p.

A differentiable map ϕ : (Rn, A) → (Rn, B) induces a tangent map Tpϕ : TpA → Tϕ(p)B. Specifically, let
Dpϕ : TpR

n → Tϕ(p)R
n be the differential of ϕ; then we have

Tpϕ = U(Dpϕ),

where for a linear map L : V → W between vector spaces we denoted by U(L) : U(V ) → U(W ) the map
induced on the unit spheres, namely

U(L)v =
L(v)

‖ L(v) ‖ .

As the unit tangent spread UTpA is a subset of the unit sphere, it inherits the spherical geometry and metric.
In particular, it makes sense to consider the convex hull Hull(UTpA) ⊂ UTpR

n in the sphere.

Although tangent spreads to product Cantor sets might depend on the particular factors, their convex hulls
have a simple description. Let C = C1 ×C2 × · · · ×Cn ⊂ Rn be a product of Cantor sets Ci ⊂ R. The usual
cubical complex underlying the n-dimensional cube [0, 1]n will be denoted by ✷

n. Let then denote by Lk(p)
the spherical link of p ∈ ✷

n. If p belongs to a k-dimensional cube but not to a k+1-dimensional cube of ✷n

then Lk(p) is isometric to the link Lk,n of the origin in Rk ×Rn−k
+ . Thus there are precisely n+ 1 different

isometry types of links of points.

Now a direct inspection shows that for each p ∈ C there exists some k so that the convex hull Hull(UTpA)
is isometric to Lk,n.

When the diffeomorphism ϕ : (Rn, C) → (Rn, C) is also conformal, then the tangent maps are isometries
between the unit tangent spreads, because the spherical distance is given by angles between the corresponding
vectors. However this is not true for general diffeomorphisms.

Nevertheless the spherical links Lk,n are quite particular. There exist n + k vectors along the coordinates
axes which are extremal points of UTpC, such that their convex hull is Hull(UTpC), so isometric to Lk,n.
These are vectors of the form ei,−ei, ej , where ei correspond to the coordinates axes in Rk and ej to those
in Rn−k. Now, any diffeomorphism ϕ : (Rn, C) → (Rn, C) should send an unit tangent spread of type Lk,n

into one of the same type, since Lk,n is not affinely equivalent to Lk′,n, for k 6= k′. Moreover, the extremal
vectors are sent into extremal vectors of the same type.

Let further ϕ ∈ Diff1(Rn, C) such that ‖Daϕ − 1‖ ≤ ε for all a ∈ C. Assume now that the unit tangent
spread UTaC is isometric to L0,n, namely it is of corner type. In this case U(Daϕ) should permute the n
coordinate vectors, which are the extremal vectors of L0,n. Therefore either U(Daϕ) = 1, or else

‖U(Daϕ)− 1‖ ≥
√
2,

which yields
‖Daϕ− 1‖ ≥

√
2.

In other words, taking ε <
√
2 any diffeomorphism ϕ as above should satisfy U(Daϕ) = 1. Now, if ϕ is of

class C1 then U(Daϕ) is continuous. Since the set of corner points is dense in C we derive U(Daϕ) = 1, for
any a ∈ C. This is the same as saying that for any a ∈ C the linear map Daϕ is represented by a diagonal
matrix, with respect to the standard coordinate system of Rn.

Proposition 1. Let a ∈ C be a corner point. The map χ : diff1
Rn,a(C) → (R∗)n, which associates to the

germ ϕ the eigenvalues of Daϕ is an isomorphism onto a discrete subgroup of (R∗)
n
.

Proof. Let {x1, x2, . . . , xn} be the standard coordinates functions on Rn and πj : Rn → Rn−1 denote the
projection onto the hyperplane Hj = {xj = 0}. For the sake of simplicity we assume that a = (0, 0, . . . , 0),
and that the convex hull of the unit tangent spread is the union of the sets H+

j = Hj ∩{xi ≥ 0, i = 1, . . . , n}.
We will use induction on n. The claim was proved in Lemma 7 for n = 1. Assume it holds for all dimensions
at most n− 1.
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Let ϕ ∈ Diff1(Rn, C) such that ϕ(a) = a. Assume that ‖Dxϕ − 1‖ < 1
2σ <

1
2 for all x in a neighborhood

V of a in Rn. We will prove that ϕ
∣

∣

∣

C
is a trivial germ at a. This shows that the image of χ is a discrete

subgroup of (R∗)
n
and the kernel of χ is trivial.

Consider the maps ϕj : Hj → Hj given by ϕj(x) = πj ◦ϕ(x). The determinant of Daϕj is the product of all
eigenvalues of Daϕ but the j-th eigenvalue, and hence it is non-zero. Moreover, we have ‖Daϕj − 1‖ < 1

2σ.

We claim that

Lemma 8. The map ϕj : Hj ∩ V → Hj is injective.

Proof. Assume the contrary, namely that there exist two points p, q ∈ Hj ∩V such that πj(ϕ(p)) = πj(ϕ(q)).
Consider the first non-trivial case n = 2, when H+

j are half-lines issued from a. The mean value theorem

and the previous equality prove that there exists some ξ ∈ H+
j ∩ V between p and q so that (πj ◦ϕ)′(ξ) = 0.

This amounts to the fact that the image of Dξϕ is contained in the kernel of Dϕ(ξ)πj , namely that

〈Dξϕ(vj), vj〉 = 0,

where vj is a unit tangent vector to H+
j at ξ. We derive ‖Dξϕj − 1‖ ≥ 1, contradicting our assumptions.

In the general case n > 2 we will use a trick to reduce ourselves to n = 2, because we lack a multidimensional
mean value theorem. Let P a generic affine 2-dimensional half-plane whose boundary line passes through p
and q. We can find arbitrarily small C1-isotopy deformations ψ of ϕj so that ψ(Hj) is transversal to P and
‖Daψ − 1‖ < σ. It follows that ψ(Hj) ∩ P is a 1-dimensional manifold Z with boundary containing both
p and q. Now either there exist two distinct points of the boundary ∂Z joined by an arc within Z, or else
there is an arc of Z issued from p which returns to p, contradicting the transversality of the intersection
ψ(Hj) ∩ P . In any case the mean value argument above shows that it should exist a point ψ(ξ) of Z for
which the tangent vector v is orthogonal to Hj . We can write v = Dξψ(w), for some tangent vector w ∈ Hj

at ξ. It follows that
〈Dξψ(w), w〉 = 0,

which implies ‖Dξψ − 1‖ ≥ 1, contradicting our assumptions.

It follows that ϕj : Hj ∩ V → Hj is an injective map of maximal rank in a neighborhood V of a, and hence
a diffeomorphism on its image. The projection πj sends C into C ∩Hj , so that

ϕj(C ∩Hj ∩ V ) ⊂ C ∩ ϕ(Hj ∩ V ) ⊂ C ∩Hj .

Our aim is to use the induction hypothesis for ϕj . In order to do that we need to show that the class of ϕj

defines indeed an element of diff1
Rn−1,a(C), where we identified Hj with Rn−1.

We assume from now on that the neighborhood V is a parallelepiped, all whose vertices being corner points.
Its boundary ∂V will then consist of the union of the faces Vj = ∂V ∩ H+

j with their respective parallel

faces V ′
j . The parallelepiped V is surrounded by gaps, whose smaller width is some δ > 0. Let V δ be the

δ-neighborhood of V . If ϕ is Lipschitz with Lipschitz constant 1 + ε and

(1 + ε)li < δ + li

where li are the edges lengths of V then the image ϕ(V ) is contained in V δ, so that ϕj(Vj) ⊂ V δ ∩Hj .

Further ϕj(∂Vj) bounds ϕj(Vj) and thus there are no points of C ∩ Hj accumulating on ϕj(Vj), as their
unit tangent spread cannot be of the type Ln−1,n−1. Thus C − ϕj(Vj) is a closed subset of C and hence its
distance to ϕj(Vj) is strictly positive. There exists then an open set U ⊂ V δ which contains ϕj(Vj) such
that U ∩ (C −ϕj(Vj)) = ∅. It follows that there exists an extension of ϕj to a diffeomorphism Φj of (Hj , C)
which is identity outside U , and hence on (Vδ ∩Hj) ∪ (C − ϕ(Vj)).

It only remains to check that Φ−1
j (C) is also contained in C, as needed for Φj ∈ Diff1(Rn−1, C). This follows

from the following:

Lemma 9. The map ϕj has the property

ϕj(C ∩ Vj) = C ∩ ϕ(Vj).
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Proof. Assume that there exists some point p in ϕ(Vj)∩C which does not belong to Vj . Then the line issued
from p which is orthogonal to Vj intersects ϕ(Vj) only once, from Lemma 8. On the other hand there are
points of C on this line, as C is a product and p 6∈ Vj . By Jordan’s theorem there exist points of C which
belong to different components of Rn − ϕ(∂V ) which contradicts the fact that ϕ is surjective on C.

Thus ϕ(C ∩ Vj) ⊂ C ∩ Vj . The same argument for ϕ−1 yields the opposite inclusion and hence ϕ(C ∩ Vj) =
C ∩ Vj . Our claim follows.

Lemma 9 tells us that ϕj defines a germ in diff1Hj ,a(C ∩ Hj), namely both ϕj and ϕ−1
j sends C ∩ Hj into

itself. By the induction hypothesis ϕj

∣

∣

∣

C∩Hj

must be identity in a neighborhood of a within Hj .

Notice that this implies already that Daϕ = 1, and hence establishing the first claim of Proposition 1.

For the second claim we consider the distance d(C−V, V ) = µ > 0, as V is surrounded by gaps. We suppose
further that

‖Dxϕ− 1‖ < min

(

σ

2
,

µ

1 + σ

)

.

We know that ϕ(y, 0) = (y, u(y)), for y ∈ C ∩ V ∩Hn and some function u ≥ 0. The next step is to show

that u
∣

∣

∣

C∩V ∩Hn

= 0.

Assume that there exists some x ∈ C ∩ V ∩Hn so that u(x) > 0. Observe that u(x) ∈ Cn, since ϕ(C) ⊂ C.
Since points of Cn which are not endpoints are dense in Cn there should exist x ∈ C for which u(x) is not
an endpoint of Cn. Set z = (x, u(x)) ∈ C.

Then for each ν > 0 there exist points z+, z− ∈ C with πn(z+) = πn(z−) = x, so that the distances
d(z+, z), d(z−, z) < ν.

Observe that the segment z+z− intersects just once ϕ(H+
n ), namely at z. One might expect to use Jordan’s

theorem in order to derive that z+ ∈ C and z− ∈ C could not belong to the same connected component of
ϕ(∂V ). This is not exactly true, as the segment z+z− could possibly intersect other sheets like ϕ(H+

j ) which
are part of ϕ(∂V ).

Set r for the distance between x ∈ H+
n and the union of the other 2n − 1 faces of ∂V . By the induction

hypothesis we can assume that r > 0. Choose now ν so that ν < min((1− σ)r/2, µ(1 − σ)/2).

Suppose that there exist x+, x− ∈ C ∩ V such that ϕ(x+) = z+ and ϕ(x−) = z−. By Jordan’s theorem the
segment z+z− intersects at least once ϕ(∂V −H+

n ), say in a point z̃ = ϕ(x̃).

We have then d(x, x̃) ≥ r, while
d(ϕ(x), ϕ(x̃)) ≤ d(z+, z−) ≤ 2ν.

On the other hand the C1-diffeomorphism ϕ−1 is Lipschitz with Lipschitz constant bounded by supx∈V ‖Dxϕ
−1‖.

Now, by standard functional calculus we have:

‖Dxϕ
−1‖ ≤

∞
∑

k=0

‖1−Dxϕ‖k <
1

1− σ
.

Therefore the Lipschitz constant of ϕ−1 is bounded by above by 1
1−σ so that

d(x, x̃) ≤ 1

1− σ
d(ϕ(x), ϕ(x̃)) ≤ 2ν

1− σ
.

This contradicts our choice of ν.

Furthermore if one of x+, x−, say x+ belongs to C − V then we have d(x, x+) ≥ µ while

d(ϕ(x), ϕ(x+)) ≤ ν

and the argument above still leads to a contradiction.

This shows that ϕ cannot be surjective on C. On the other hand a diffeomorphism of Rn which preserves C
restricts to a bijection on C. If it were not surjective then its inverse would send points of C outside.
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In particular u(x)
∣

∣

∣

C∩H+
n

= 0 and so ϕ
∣

∣

∣

C∩H+
n

is identity. The same proof shows that ϕ
∣

∣

∣

C∩H+
j

is identity, for

all j.

By using the same argument when a runs over the points of V ∩C∩∪n
j=1H

+
j we derive that ϕ

∣

∣

∣

C∩V
is identity,

as claimed.

End of the proof of theorem 4. The proof is by induction on n. For n = 1 this was already proved above. Let V
denote now the smallest parallelepiped containing C, in order to match previous notations and constructions.
Suppose that ϕ ∈ Diff1(Rn, C) is such that ‖Dxϕ − 1‖ < ε, for all x ∈ V δ. Then ϕ(∂V ) surrounds C and
the proof of Lemma 9 gives us ϕ(C ∩ ∂V ) = C ∩ ∂V . Moreover, each ϕj preserves the associated face Vj .

By the induction hypothesis ϕj is the identity. It follows that ϕ
∣

∣

∣

C∩∂V
is the identity. We can therefore

use Proposition 1 to derive that around every corner point of C ∩ ∂V the map ϕ
∣

∣

∣

C
is identity. The same

argument works for all corner points of V .

Remark 9. If C = Cn
λ , then diff1,+a (Cλ) is isomorphic to Zr(a), where r(a) is the number of coordinates of

a which are λ-rational (compare with [6]).

4 Diffeomorphisms groups of specific Cantor sets

4.1 Proof of Theorem 5

Observe first that CΦ is a Cantor set. Indeed the contractivity assumption implies that an infinite intersection
limp→∞ φi1φi2 · · ·φip(M) cannot contain but a single point. Two such points which are distinct are separated
by some smoothly embedded sphere, which is the image of ∂M by an element of the semigroup generated
by Φ, so that the set CΦ is totally disconnected. The perfectness follows the same way.

We will draw a rooted (n + 2)-valent tree T with edges directed downwards. When M = [0, 1] there is an
extra structure on T , as all edges issued from a vertex are enumerated from left to the right.

There is a one-to-one correspondence between the points of the boundary at infinity of the tree and the
points of the Cantor set C = CΦ associated to the invertible IFS (Φ,M). To each point ξ ∈ C we can assign
an infinite sequence I = i1i2 . . . ip . . ., so that ξ = ξ(I) where we denoted:

ξ(I) =

∞
⋂

p=1

φi1φi2 · · ·φip(M).

The vertices of the tree are endowed with a compatible labeling by means of finite multi-indices I, where
the root has associated the empty index and the vertex vI is the one reached after traveling along the edges
labeled i1, i2, . . . , ip. We also put

φI(x) = φi1φi2 · · ·φip(x)
for finite I. This extends obviously to the case of infinite multi-indices I.

We further need to introduce a special class of germs, as follows:

Definition 9. The standard germ associated to the finite multi-indices I and J is the diffeomorphism
φI/J : φI(M) → φJ(M) given by

φI/J(φI(x)) = φJ (x). (33)

Standard germs preserve the Cantor set C as germs, namely φI/J (C ∩ φI(M)) ⊂ C ∩ φJ (M). In fact if S is
an infinite multi-index then

φI/J (ξ(IS)) = ξ(JS).

Graphically we can realize this map as a partial isomorphism of the tree T which maps the subtree hanging
at vI onto the subtree hanging at vJ .

Consider a pair (t1, t2) of finite labeled subtrees of the same degree of T both containing the root, and whose
leaves are enumerated vI1 , vI2 , . . . , vIp and vJ1 , vJ2 , . . . , vJp

.
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Lemma 10. Assume that φj are orientation preserving diffeomorphisms of M . Then the map

φ(x) = φIk/Jk
(x), if x ∈ φIk (C) (34)

defines an element φ(t1,t2) ∈ diff1,+(C).

Proof. We know that C = ∪n
i=0φi(C), since C is the attractor of Φ. By recurrence on the number of leaves

we show that
C = ∪n

i=0φIi (C)

for any finite subtree t of T containing the root and having leaves vIi , i = 0, n. Now φ is a smooth orientation
preserving map defined on ∪n

i=0φIi (M), and so its domain of definition contains C.

When the dimension d = 1, the complementary M \ ∪n
i=0φIi (M) is the union of finitely many intervals,

which we call gaps and there exists by orientability assumption an extension of φ to a diffeomorphism of
M = [0, 1] sending gaps into gaps.

When the dimension d > 1, the complementary gap M \ ∪n
i=0φIi(M) is now connected and diffeomorphic

to the standard disk with (n+ 1) holes. Moreover, the restriction of φ to every sphere ∂φIi(M) is isotopic
to identity since it is orientation preserving and it admits an extension to the ball. Taking a suitable

smoothing at the singular vertex of the conical extension of φ
∣

∣

∣

∪n
i=0φIi

(∂M)
we obtain an extension of φ to a

diffeomorphism of the ball M , possibly non-trivial on ∂M .

This extension preserves C invariant as gaps are disjoint from C and therefore defines an element φ(t1,t2) ∈
diff1,+(C).

End of the proof of Theorem 5. Let us stabilize the pair of trees (t1, t2) to a pair (t′1, t
′
2), where t

′
j is obtained

from tj by adding the first descendants at vertex vIs , for j = 1 and vJs
, when j = 2. The new vertices come

with a compatible labeling. Moreover, an orientation preserving diffeomorphism of C induces a monotone
map of the boundary of the tree, when d = 1.

By direct inspection using the explicit form of φ we find that:

φ(t1,t2) = φ(t′1,t′2).

Thus the map which associates to the pair (t1, t2) of labeled trees the element φ(t1,t2) factors through a map

Fn+1 → diff1,+(C), for d = 1, and Vn+1 → diff1,+(C), for d = 2, respectively. This is easily seen to be a

homomorphism. When I 6= J the map ϕI/J

∣

∣

∣

C
is not identity since ϕI(M) ∩ ϕJ(M) = ∅. This proves that

the homomorphism defined above is injective, thereby ending the proof of Theorem 5.

Remark 10. There is a more general setting in which we allow basins to have boundary fixed points. We say
that the compact submanifold M is an attractive basin for Φ = (φ0, φ1, . . . , φn) if, for all j ∈ {0, 1, . . . , n}
we have:

1. φj(int(M)) ⊂ int(M);

2. int(φ−1
j (φj(∂M) ∩ ∂M)) ⊃ int(φj(∂M) ∩ ∂M);

3. φi(M) ∩ φj(M) = ∅, for any i 6= j ∈ {0, 1, . . . , n};

4. int(φj(∂M) ∩ ∂M) ⊂ int(φ−1
j (φj(∂M) ∩ ∂M)).

Using similar arguments one can show that diff1(CΦ) contains Fn+1 whenever Φ has an attractive basin.

Remark 11. If the Cantor set C is invertible, namely there exists an orientation reversing diffeomorphism
φ of M preserving C, then we can replace the homeomorphisms φj which reverse the orientation by φ ◦ φj .
However, there exist non invertible Cantor subsets, for instance the union of two copies Cλ ∪ (1 + Cµ), for
λ 6= µ.
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4.2 Proof of Theorem 6 for C = Cλ

Our strategy is to give first a detailed proof of Theorem 6 in the case when C = Cλ and then to explain the
necessary changes needed to achieve the general case in the next section.

We first need the following:

Lemma 11. If a is a left (or right) point of Cλ, then χ(Diff1
a) is the subgroup 〈λ〉 ⊂ R∗.

Proof. Recall from Remark 7 that Diff1
a(Cλ) = Diff1,+

a (Cλ). The set L(Cλ) of left points of Cλ is affinely
locally homogeneous, namely for any two left points a and b there exists an affine germ sending a neighbor-
hood of a in Cλ into a neighborhood of b in Cλ. Therefore it suffices to analyze Diff1,+

0 (Cλ). Moreover, 0 is
the minimal element of Cλ and therefore it should be fixed by any element of Diff1,+(Cλ).

Elements of L(Cλ) can be described explicitly, as:

L(Cλ) =

∞
⋃

n=1

{x ∈ [0, 1];x =

n
∑

j=1

ajλ
−j , where aj ∈ {0, λ− 1}}. (35)

Therefore there exists δ such that the multiplication by λ ∈ R∗ sends Cλ∩Nδ(0) into Cλ. This easily implies
that χ(Diff1,+

a ) contains the subgroup 〈λ〉.
For the reverse inclusion we need a sharpening of Lemma 6. Note first that the set of lengths of gaps in Cλ

is {(λ− 2)λ−n, n ∈ Z+ \ {0}}. In particular, the quotients of the lengths of any two gaps belong to 〈λ〉.
Let α > 1 be a minimal element occurring in χ(Diff1,+

0 (Cλ)) ⊂ R∗
+. By Lemma 7 there exists k ∈ Z+ such

that λ−1 = αk. Let ϕ ∈ Diff1,+
0 be such that ϕ′(0) = λ−1/k.

For every gap I, the image J = ϕ(I) is another gap and the ratio |J |/|I| is an element in 〈λ〉, hence of the
form λi(I), for some integer i(I). Further, there is a point xI ∈ I for which ϕ′(xI) = λi(I). Letting In be a
sequence of gaps converging to the origin, we have that ϕ′(xIn ) converges to ϕ

′(0) = λ−1/k. The sequence
of integers i(In) hence converges to − 1

k , which forces k = 1.

We next observe that for each left point a of Cλ there exists a small neighborhood Ua of a such that the
affine map ψa = a+ λ(x− a) sends Ua ∩Cλ into Cλ, defining therefore a germ in diff1,+a . Then Lemmas 11
and 7 imply together that diff1,+a is generated by ψa = a+ λ(x− a).

Let a and b be two left points of Cλ. Denote byD(a, b) the set of germs at a of classes of local diffeomorphisms
ϕ of (R, Cλ) such that ϕ(a) = b. Then D(a, b) is acted upon transitively by diff1,+a . Using an argument
similar to the one from above concerning stabilizers, D(a, b) consists of germs of maps of the form ψa,b,k =
b+ λk(x− a), with k ∈ Z.

Let now ϕ ∈ Diff1,+(R, Cλ) such that ϕ(a) = b. From above there exists δ > 0 such that ϕ
∣

∣

∣

Cλ∩Nδ(a)
coincides

with ψa,b,k

∣

∣

∣

Cλ∩Nδ(a)
and hence ϕ′(a) ∈ 〈λ〉. Therefore, for any left point a ∈ Cλ we have ϕ′(a) ∈ 〈λ〉. Now,

left points of Cλ are dense in Cλ, ϕ
′ is continuous and 〈λ〉 has no other accumulation points in R∗. It follows

that ϕ′(a) ∈ 〈λ〉, for any a ∈ Cλ and any ϕ ∈ Diff1,+(R, Cλ).

For a given ϕ ∈ Diff1,+(R, Cλ) its derivative ϕ
′ is continuous on the whole interval [0, 1] and hence is bounded.

Moreover, the same argument for ϕ−1 shows that ϕ′ is also bounded from below away from 0, so that ϕ′
∣

∣

∣

Cλ

can only take finitely many values of the form λn, n ∈ Z.

The following is a key ingredient in the description of the group diff1,+(Cλ):

Lemma 12. Let ϕ ∈ diff1,+(Cλ). There is a covering of Cλ by a finite collection of disjoint closed intervals

Ik, such that ϕ
∣

∣

∣

Cλ∩Ik
is the restriction of an affine function to Ik ∩Cλ. Specifically,

ϕ(x) = ϕ(ck) + λjk(x− ck), for x ∈ Ik ∩ Cλ, (36)

where ck is a left point of Cλ ∩ Ik.
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Proof. For c ∈ Cλ there is some m ∈ Z such that ϕ′(c) = λm. We want to prove that there exists an open
neighborhood U of c such that:

ϕ(x) = ϕ(c) + λjk (x− c), for x ∈ U ∩ Cλ. (37)

Then such neighborhoods will cover Cλ and we can extract a finite subcovering by clopen (closed and open)
subsets with the same property.

This claim is true for any left (and by similar arguments for right) end points c of Cλ. It is then sufficient
to prove that whenever we have a sequence of left points an → a∞ contained in a closed interval U ⊂ [0, 1]
and a C1-diffeomorphism ϕ : U → ϕ(U) ⊂ [0, 1] with ϕ(C ∩U) ⊂ C, there exists a neighborhood Ua∞

of a∞
and an affine function ψ such that for large enough n the following holds:

ϕ(x) = ψ(x), forx ∈ Cλ ∩ Ua∞
.

Around each left point an there are affine maps ψan,kn
: Uan,kn

→ [0, 1] defining germs in D(an, cn), where
cn = ϕ(an), such that cn converge to c∞ = ϕ(a∞) and

ϕ(x) = ψan,kn
(x), forx ∈ Cλ ∩ Uan,kn

.

We can further assume that Uan,kn
∩Cλ are clopen sets and we can take Uan,kn

= [an, bn] where bn are right
points of Cλ, and the sequence an is monotone, say increasing.

There is no loss of generality to assume that ψ′
an,kn

∣

∣

∣

C∩Uan,kn

is independent on n, say it equals λm, namely

kn = m. Replacing ϕ by its inverse ϕ−1 we can also assume that m ≤ 0. Since Cλ is invariant by the
homothety of factor λ and center 0, we can further reduce the problem to the case where m = 0. We have
then ϕ′(a∞) = 1, by continuity.

Choose n large enough so that |ϕ′(x)− 1| < ε, for any x ∈ [an, a∞], where the exact value of ε will be chosen
later. Let now consider the maximal interval of the form [an, b] to which we can extend ψan,0 to an affine
function which coincides with ϕ on C ∩ [an, b].

If b = a∞, then the Lemma follows. Otherwise, it is no loss of generality in assuming that b = bn and thus
b is a right point of Cλ. Then bn is adjacent to some gap (bn, d). Since d is a left point of Cλ and ϕ′(d) = 1,
we can suppose that d = an+1.

Since ϕ preserves C ∩ U , it should send the gap (bn, an+1) into some gap contained into [ϕ(an), ϕ(bn+1)].
Recall from above that the ratios of lengths of gaps ofCλ is the discrete subset 〈λ〉 ⊂ R∗. When |ϕ′(x)−1| < ε,
we derive that the ratio of the lengths of the gaps ϕ(bn, an+1) and (bn, an+1) is bounded by 1+ ε. By taking
ε < 1− λ we see that the only possibility is that the lengths of these two gaps coincide, namely that

ϕ(an+1) = ϕ(bn) + an+1 − bn.

This implies that there is a smooth extension of ψan,0 to an affine function on [an, bn+1] which coincides
with ϕ on points of Cλ, contradicting the maximality of b = bn. This proves that b = a∞, proving the claim.

When a∞ is not a right point we also have an affine extension of ϕ to a right neighborhood of a∞, by the
same argument.

Consider the rooted binary tree T embedded in the plane so that its ends abut on the interval [0, 1]. We
label each edge e by l(e) ∈ {0, λ− 1}, such that the leftmost edge is always labeled 0. Let v be a vertex of
T and e1, e2, . . . , en the sequence of edges representing the geodesic which joins the root to v. To the vertex
v one associates then the number

r(v) =

n
∑

j=1

l(ej)λ
−j . (38)

Denote by D(v) the set of all descendants of the vertex v. If I is a closed interval in [0, 1] we claim that
L(Cλ) ∩ I coincides with the set r(D(vI )), for some unique vertex vI ∈ T . Furthermore, if I1, I2, . . . , Ik is
a set of disjoint standard intervals covering Cλ then vI1 , vI2 , . . . , vIk are the leaves of a finite binary subtree
T (I1, I2, . . . , Ik) of T containing the root. In particular, if J1, J2, . . . , Jk is another covering of Cλ by standard
intervals then we have two finite trees T (I1, I2, . . . , Ik) and T (J1, J2, . . . , Jk). Further, we also have affine
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bijections ϕj : Ij → Jj which are of the form ϕj(x) = bj + λkj (x − aj), where aj , bj ∈ L(Cλ). It is clear

that ϕj(Ij ∩ L(Cλ)) = Jj ∩ L(Cλ). The explicit form of ϕj

∣

∣

∣

Ij∩L(Cλ)
actually can be interpreted in terms of

r(vIj ), as follows. Let D(v) be the planar rooted subtree of T of vertices D(v) and root v. There is a natural
identification ιv,w of the planar binary rooted trees D(v) and D(w), for any v, w ∈ T . When we further
identify L(Cλ) ∩ Ij with the set r(D(vIj )) the induced action of ϕj on w ∈ D(vIj ) coincides with ιvIj ,vJj

.

Consider now the operation of replacing an interval Ij by two disjoint intervals I ′j and Ij” whose union is dis-
joint from the other intervals Ik. Correspondingly we replace Jj by the couple {J ′

j , Jj”} = {ϕj(I
′
j), ϕj(Ij”)}

and ϕj by its restrictions to these smaller intervals. This operation does not change the element in diff1(Cλ).
The immediate consequence of the description of ϕj is that the pairs of trees T (I1, . . . , I

′
j , Ij”, . . . , Ik) and

T (J1, . . . , J
′
j , Jj”, . . . , Jk) are both obtained from T (I1, I2, . . . , Ik) and T (J1, J2, . . . , Jk) by adding one caret

at the j-th leaf. This proves that this pair of trees is a well-defined element of the standard Thompson group
F . It is rather clear that the map defined this way diff1,+(Cλ) → F is an isomorphism.

In a similar way we define an isomorphism diff
1,+
S1 (Cλ) → T , when we work with the infinite unrooted binary

tree T embedded in the plane so that its ends abut to S1.

In the case of diff1S2(Cλ) we use the proof of Theorem 3 and the infinite unrooted binary tree T without any

planar structure. The only difference is that the restrictions ϕ
∣

∣

∣

Ij
are not having anymore a coherent orien-

tation. Some of them might be orientation preserving while the others not. This explains the isomorphism
between diff1S2(Cλ) and the signed Thompson group V ±. This ends the proof of Theorem 6 in the case of
C = Cλ.

4.3 Proof of the general case of Theorem 6

The only missing ingredient is the result generalizing Lemma 12 to the more general self-similar sets consid-
ered here, as follows:

Lemma 13. Let ϕ ∈ Diff1,+(R, C), where C = CΦ is a self-similar Cantor set satisfying the genericity

condition (C). Then there is a covering of C by a finite collection of disjoint intervals Ik, such that ϕ
∣

∣

∣

C∩Ik
is the restriction of an affine function to Ik ∩C.

The proof of this lemma for incommensurable parameters will occupy section 4.3.1. In the case when gaps
and homothety factors are respectively equal the proof given above extends word by word.

Now, any ϕ in the group diff1,+(C) corresponds to a pair of coverings of C by intervals (I1, I2, . . . , Ik) and
(J1, J2, . . . , Jk) so that ϕ sends affinely Ij into Jj , for all j. These intervals could be chosen to be of the
form [a, b], where a is a left point of C and b is a right point of C. We call them clopen intervals.

Particular examples of clopen intervals are the images of [0, 1] by the semigroup generated by Φ, which will
be called standard (clopen) intervals. Each standard clopen interval corresponds to a finite geodesic path
descending from the root in the (regular rooted) tree of valence n+2 associated to Φ. Thus standard intervals
are associated to vertices of the (n+ 2)-valent tree, and one says that they belong to the k-th generation of
standard intervals if the associated vertex is at distance k from the root. The complementary intervals to
the union of all k-th generation of standard intervals will be the k-th generation of gaps. Moreover, given
a standard interval I of the k-th generation, the gaps of the (k + 1)-th generation lying in I will also be
called the first generation of gaps in I. Notice that, conversely, every gap is a first generation gap for some
uniquely determined standard interval, to be called its antecedent standard interval.

Note that the intervals obtained in the previous lemma were not necessarily standard intervals. It then
remains to prove the following enhancement of Lemma 13:

Lemma 14. We assume that C = CΦ, where Φ verifies the genericity condition (C) from Definition 6.
Then any ϕ ∈ diff1,+(C) corresponds to a pair of coverings of C by standard intervals (I1, I2, . . . , Ik) and
(J1, J2, . . . , Jk) so that ϕ sends affinely Ij into Jj, for all j.

Proof. Every clopen interval is the disjoint union of finitely many standard intervals and open gaps. We can
therefore suppose that all Ij are standard intervals.
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Note that for any two standard intervals I, J ⊂ [0, 1] there exists an affine bijection (I, I ∩C) → (J, J ∩C),
because this holds when I = [0, 1].

We now claim that, conversely, if there exists an affine bijection ϕ : (I, I ∩C) → (J, J ∩C) and I is standard
then its image J is also a standard interval. This will prove Lemma 14.

Consider a maximal standard interval I ′ ⊂ J . Composing ϕ with the affine map in diff1,+(C) sending
bijectively (I ′, I ′ ∩ C) onto (I, I ∩ C) we can assume that I = I ′. In particular, the homothety factor µ of
the affine map ϕ : I → J is at least 1.

Assume first that all homothety ratios are equal to λ and all initial gaps have the same length g, as in
Definition 6.(1). Observe that all gaps will have sizes of the form λmg, for some m ∈ Z+. Moreover, if I is
a standard interval of the k-th generation, then the set of largest gaps in I consists of n equidistant gaps
of size λkg. Their image by the affine map ϕ is the set of largest gaps in J , so that the latter are also n
equidistant equal gaps in J , necessarily of size λn+kg, for some n ∈ Z−. In particular the homothety factor
is µ = λn.

We now consider the antecedent standard intervals associated to the largest gaps of J . If such a gap had size
λn+kg, its antecedent interval would have size λn+k. If two of the largest gaps in J have distinct antecedent
intervals, then they would be separated by another gap of size λn−1+kg, contradicting their maximality in
J . Therefore all but possibly the leftmost and rightmost intervals of the complement of these n gaps in J
are standard.

Now, the interval between two consecutive gaps in I is a standard interval of length λk+1, whose image by
the affine map ϕ has length λn+k+1. This shows that the leftmost and the rightmost intervals also should be
standard intervals, as they have the same size as the remaining (n−1) standard intervals between consecutive
image gaps. This proves that J is a standard interval.

Consider now the case when homothety factors and gaps lengths are incommensurable, as in Definition
6.(2). The set of gaps of the same generation is totally ordered from the leftmost gap towards the right.
The sequence of lengths of (k + 1)-th generation gaps within a standard interval of the k-th generation is
of the form (Λkg1,Λkg2, . . . ,Λkgn), for some k. Consider now a gap of the first generation, say Λkgα, of I.
Its image by an affine map should be a gap of J . It follows that there exists some σ(α) ∈ {1, 2, . . . , n} and
kα ∈ Zn+1

+ , so that:
µΛkgα = Λkα

gσ(α),

where µ is the homothety factor of the map ϕ. Conversely, any gap of I ⊂ J is the image by ϕ of some gap
of I, and hence there exists some τ(α) ∈ {1, 2, . . . , n} and lα ∈ Zn+1

+ , so that:

1

µ
Λkgα = Λlαgτ(α).

Getting rid of µ in the two equalities above we obtain the following identities, for all α, β:

Λkα+lβ−2k gσ(α)gτ(β) = gαgβ .

By taking β = σ(α) we derive:
Λkα+lσ(α)−2k gτ(σ(α)) = gα.

If gα and λj satisfy the genericity condition (C) the last equality implies τ(σ(α)) = α and kα + lσ(α) = 2k,
for every α. A symmetric argument yields σ(τ(α)) = α, so that σ and τ are bijections inverse to each other.
Furthermore we derive:

µn =

n
∏

α=1

Λkα−k

gσ(α)

gα
= Λ∑

n
α=1(kα−k),

so that
µ = Λ−k+ 1

n

∑

n
α=1 kα

.

Therefore, for each β we have:
gσ(β)
gβ

= Λ−kβ+
1
n

∑

n
α=1 kα

.

Then our assumptions of genericity imply that σ must be identity. It turns that all kα are equal to some k

and hence µ = Λk−k.
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Observe that there exists a standard interval J ′ and an affine bijection ψ : (I, I ∩ C) → (J ′, J ′ ∩ C) with
homothety factor Λk−k. Therefore ϕ ◦ ψ−1 : J ′ → J is a translation. Moreover, as σ was identity the

sequence of first generation gaps in J ′ is sent by ϕ ◦ ψ−1 into the sequence of first generation gaps of some
standard interval J ′′. By induction, the ordered sequence of the k-th generation of gaps in J ′ is sent by
ϕ ◦ψ−1 into the sequence of the k-th generation gaps of J ′′. Since J and J ′′ have the same length it follows
that J = J ′′ and hence J is a standard interval, as claimed.

Now, it is immediate that 〈λ0〉 ⊂ χ(Diff1,+
0 ), and by Lemma 7 there exists some N ∈ Z+ so that χ(Diff1,+

0 ) =

〈λ1/N1 〉. Since L(C) is affinely locally homogeneous this holds for any left point a of C.

Then, the general form of an affine germ locally preserving C around a left point ck ∈ C ∩ Ik is:

ϕ(x) = ϕ(ck) + Λjk,N (x− ck), for x ∈ Ik ∩ C, (39)

where, for each multi-index k = (k0, k1, . . . , kn) we put:

Λk,N = λ
k0/N
0

n
∏

i=1

λki

i . (40)

Furthermore, we can modify any germ in Diff1,+
0 by using homotheties of ratios λk0 , k ∈ Z in order to obtain

a diffeomorphism ϕ : [0, 1] → [0, r] sending C into C. By Lemma 13 we can assume that ϕ is an affine map,
and by Lemma 14 [0, r] must be a standard interval. It follows that the homothety factor of ϕ is a power of
λ0. This implies that N = 1.

Pairs of coverings by standard clopen intervals of C correspond to pairs of finite rooted subtrees. Subdividing
the covering by standard subintervals is then equivalent to stabilizing the trees. This provides isomorphisms
with the Thompson groups Fn+1, Tn+1 and the signed Thompson group V ±

n+1, respectively, ending the proof
of Theorem 6.

4.3.1 Proof of Lemma 13 for incommensurable parameters

We will use a much weaker restriction than the total incommensurability, see the conditions used below.

Recall from section 4.1 that the rooted (n+ 2)-valent tree associated to the IFS has the edges issued from
a vertex labeled by integers from 0 to n (from left to right). Then left points of C correspond to sequences
which eventually end in 0, namely of the form

L(i1 . . . ip) = i1i2 . . . ip000000 . . . ,

while right points correspond to sequences which eventually end in n:

R(i1 . . . ip) = i1 . . . ipnnnnnn . . . .

Consider two finite multi-indices I = i1 . . . ip and J = j1 . . . jq and set a = L(i1 . . . ip), b = R(i1 . . . ip),
α = L(j1 . . . jq), β = R(j1 . . . jq). Following Definition 9 the standard germ ψI,J is the affine map ψI,J :
[a, b] → [α, β] given by the formula:

ψI,J(x) = a+

(

∏q
m=1 λjm

∏p
k=1 λ

−1
ik

)

(x− a).

Each multi-index I determines a vertex vI of the tree, which is the endpoint of the geodesic issued from
the root which travels along the edges labeled i1, i2, . . . , ip. Then, at the level of trees a standard germ
corresponds to a combinatorial map sending the subtree hanging at the vertex vI onto the subtree issued
from the vertex vJ , as in the figure below:
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An extension of the standard germ ψ : [a, b] → [α, β] is a standard germ defined on [c, d] ⊃ [a, b] whose
restriction to [a, b] coincides with ψ such that [c, d] corresponds to a vertex vI′ of the tree whose multi-index
I ′ is a prefix of I, namely I ′ = i1i2 . . . ir with r ≤ p. Note that a non-trivial extension of ψ exists only if
ip = jq.

A multi-germ is a finite collection of standard germs ψj : [aj , bj] → [αj , βj] such that:

a1 < b1 < a2 < b2 < c · · · < ak < bk, α1 < β1 < α2 < β2 < · · · < αk < βk

and [bj , aj+1] and [βj , αj+1] are gaps of C, for all j.

Eventually an extension of a multi-germ {ψj}j=1,k is a multi-germ {θj}j=1,m such that every standard germ
ψj is extended by some θi. Notice that several elements of the multi-germ {ψj}j=1,k might have the same
extension θi.

Lemma 15. Let {ψj}j=1,m be a multi-germ with the property that there exist constants µ, ν > 0 satisfying

µ

ν
>

1

max(λ1, λ2, . . . , λn)
,

such that:
µ ≤ ψ′

j(x) ≤ ν, for every x. (41)

If one standard germ ψi, for some i ∈ {1, 2, . . . ,m}, admits an extension χ, then there exists an extension
of the multi-germ {ψj}j=1,m containing the standard germ χ.

Moreover, if a diffeomorphism ϕ ∈ Diff1(R, C) whose derivative ϕ′ verifies the condition for derivative (41)
coincides with the multi-germ {ψj}j=1,m on [a1, bm], then it coincides with χ on its domain of definition.

Proof. The standard germ ψj is of the form ψj = ψI,J , with ip = jq = k. We want to construct an increasing
function extending the standard germ ψI,J which satisfies the condition (41) for the derivative. Such a
function will be called a continuation of ψj . Moving one step upward on the tree (i.e. the ancestor vertices)
we arrive at the vertices vI′ and vJ′ , where I = I ′k, J = J ′k.

Consider first k < n and seek for a continuation on the right side of the interval on which ψI,J is defined.
Therefore the continuation must have form drawn below, where points marked by squares correspond to
each other:
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Since the ratio of the derivatives is uniformly bounded, the vertices corresponding to squares should be on
the same level, namely at equal distance from the vertices vI′ and vJ′ , respectively. Consider the highest
possible level of such squares for which the extended map is compatible with the standard germ ψj+1. We
claim that this continuation has the following form, namely that squares sit on the vertices vI′k+1 and vJ′k+1:
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Assume the contrary holds, namely that the squares sit on lower levels, as in the figure below:
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Consider further continuation to the right of this increasing function. We label points on the next branch
issued from the ancestor of squares vertices by triangles and further by hexagons etc. Consider further the
highest levels for which continuation is compatible. Then the picture
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is impossible, since then the ancestor of the square vertex also should have been labeled by a square.
Therefore we must continue along an infinite path down to a boundary point of the tree, as in the figure:
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The boundary point corresponds to an infinite multi-index I. Then ξ = ξ(I) ∈ [0, 1] cannot be a right point
of the Cantor set, since this would give a continuation to a whole subtree issued from vI′ , contradicting the
form of our path.

Now our continuation coincides with the multi-germ {ψj}j=1,m for values x ∈ [aj , ξ]. Since ξ is not a right
point, they coincide in a right semi-neighborhood of ξ and this contradicts the choice of our infinite path.

We summarize the discussion above as follows. Let kr < n; then the only possible right continuation
(which satisfies the condition (41)) of ψIk1...kr ,Jk1...kr

is by the germ ψIk1...kr−1kr+1,Jk1...kr−1kr+1. A similar
argument shows that whenever kr > 0 the only possible left continuation (which satisfies the condition (41))
of ψIk1...kr ,Jk1...kr

is by the germ ψIk1...kr−1kr−1,Jk1...kr−1kr−1.

Repeating the same argument, we get the desired statement.

Lemma 16. There exists ε > 0 with the following property. Consider a standard germ ψI,J with ip 6= jq
and jq 6= n 6= ip.

Then any continuation of ψI,J to a standard germ θ sending L(i1i2 . . . ip−1ip + 1) to L(j1j2 . . . jq−1jq + 1)
which is defined in a right semi-neighborhood of L(i1i2 . . . ip−1ip + 1) is either an extension of the standard
germ ψI,J , or else it verifies:

∣

∣

∣

∣

ψ′
I,J

θ′
− 1

∣

∣

∣

∣

> ε.
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Notice that θ is locally affine and hence we don’t need to specify the point (of the corresponding domain of
definition) in which we consider the derivative.

Proof. The ratio of the derivatives of the standard germs ψI,J and θ = ψi1i2...ip−1ip+1, j1j2...jq−1jq+1 is given
by:

ψ′

θ′
=

λ−1
ip
λiq

λ−1
ip+1λiq+1

λm1 ,

where m ∈ Z. This is a discrete subset of R∗ and hence the claim.

We can apply the same arguments when ip 6= 0 6= jq. Specifically, we have:

Lemma 17. Let n > 2. Then there exists ε > 0 such that any multi-germ {ψj}j=1,m with the property:

∣

∣

∣

∣

∣

ψ′
i

ψ′
j

− 1

∣

∣

∣

∣

∣

< ε

admits an extension containing with at most two elements.

Proof. It remains to examine the standard germs ψI,J in following two cases:

(I, J) ∈ {(i1 . . . ip−10, J = j1 . . . jq−1n), (i1 . . . ip−1n, j1 . . . jq−10)}.

The corresponding picture depends on the number s of occurrences of n in the tail of j1 . . . jq−1n and the
positions of the the square vertices (having r and m respectively ancestors labeled 0) as below:

1
n

n

k
k+1

0

0

0

0

0

0

The ratio of derivatives is
λsnλkλ

−1
k+1λ

−r
0

λ0λ
−1
1 λ−m

0

=
λkλ1
λk+1

· λsn
λr−m+1
0

Letting s and µ = r−m+1 be large enough we can insure that λsn/λ
µ
0 is arbitrarily close to λk+1/λkλ1. In

this case µ > 0, so that we can automatically extend the new standard germ obtained this way and get the
figure below, where the position of the squared vertex is the highest possible:

0

n

n

k
k+1

0

1

Now, as n ≥ 2 we cannot find a non-trivial extension of the two standard germs corresponding to the
labeled vertices. This means that there is an extension with at most two elements, thereby proving our
statement.
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Lemma 18. Let n = 1. Then there exists ε > 0 such that any multi-germ {ψj}j=1,m verifying the condition:

∣

∣

∣

∣

∣

ψ′
i

ψ′
j

− 1

∣

∣

∣

∣

∣

< 1 + ε

admits an extension containing at most 4 elements.

Proof. The only possible situation is that pictured below:

10

0

0

0

0

0

1

1

1

Consider a right continuation as follows:

1

0

0

0

0

1

1

1

1
0

0

0

0

0

0

In the left hand side picture we have r + 1 ancestors of the fat dotted vertex which are labeled 1 and s
ancestors of the square vertex labeled 0, while in the right picture there are v ancestors of the square vertex
labeled 0. Then the ratio of derivatives of the two standard germs is:

λ−r−1
1 λ1λ

s
0

λ1λv0
=
λs−v
0

λr+1
1

We can approximate arbitrarily close 1 by λs−v
0 /λr+1

1 , but then s−v must be large, and in particular positive.
This implies that we can automatically extend this to a standard germ as follows:

1

0

0

0

1

1

1

1
0

0

0

0

or, after removing nonessential information:

1

0

0

1

1

0

0

1

And we now see that a right continuation is impossible. Thus we get our claim.
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4.3.2 Cantor sets with commensurable parameters

The genericity condition (C) could be extended to include also the case when all homothety factors λi are
commensurable. We skip the details and present instead an example of an asymmetric Cantor set AC which
is the attractor of the IFS:

φ0(x) =
1

4
x, φ1(x) =

1

2
x+

1

2
.

For each finite multi-index I = i1i2 . . . ik, with ij ∈ {0, 1} we set l∅ = 0 and define by induction:

l0I =
1

4
lI , l1I =

1

2
lI +

1

2
.

Then L(AC) = {lI ; I finite and admissible}, where I = i1i2 . . . ik is admissible if it is either empty or else
ik = 1. If we set lI = limk→∞ li1i2...ik for infinite I, then AC is the union of L(AC) and the set of lI , with
infinite I. Further, L(AC) is identified with the set of those lI for which I is infinite and eventually 0. It
follows as in the case of Cλ that χ(Diff1

0(AC)) = 〈4〉. Further, for a, b ∈ L(AC), we obtain:

D(a, b) =

{

ψa,b,k = b+
1

2n(a,b)
4−k(x − a), k ∈ Z

}

, (42)

where n(a, b) ∈ {0, 1} is the parity of the length of the geodesic joining a to b in the reduced binary tree
associated to the IFS.

The previous arguments show that any element ϕ of diff1,+(AC) determines a finite covering of AC by
intervals Ij on which ϕ|Ij is of the form ψaj ,bj ,kj

, for some aj ∈ L(AC). Moreover diff1,+(AC) is isomorphic
to the Thompson group F .

4.4 Proof of Theorem 7

Let Diff1
a(R

n, C) denote the stabilizer of a ∈ C in the group Diff1(Rn, C). We verify immediately that the
map χ : Diff1

a(R
n, C) → GL(n,R), given by χ(ϕ) = Daϕ is a homomorphism. In the case when C is a

product we can describe explicitly χ(Diff1
a(R

n, C)). For the sake of simplicity we restrict ourselves to the
case n = 2. Consider C = Cλ1 × Cλ2 . We say that a = (a1, a2) ∈ C is an end point of C if both ai are
endpoints of Cλi

.

Lemma 19. Suppose that λi > 2 and a is an end point of C.

1. If λ1 6= λ2 then
χ(Diff1

a(R
2, C)) = 〈λ1〉 ⊕ 〈λ2〉. (43)

2. If λ1 = λ2 = λ then
χ(Diff1,+

a (R2, C)) = 〈λ〉 ⊕ 〈λ〉. (44)

Proof. From the first part of the proof of Theorem 4 we infer that whenever C is a product and a ∈ C
is fixed by ϕ its differential Daϕ must send both horizontal and vertical vectors into horizontal or vertical
vectors.

Moreover, when λi are distinct the horizontality/verticality of the segment should be preserved. Otherwise
ϕ would induce a germ of C1-diffeomorphism φ : (R, Cλ1 ) → (R, Cλ2 ). By Remark 4 we need λ1 = λ2.

Therefore ϕ restricts to germs of diffeomorphisms φi ∈ Diff1
ai
(R, Cλi

). By Lemma 11 and Remark 7 χ(φi) =
〈λi〉. This proves the first item.

On the other hand when λ1 = λ2 we can locally identify (Cλ1 , a1) and (Cλ2 , a2) by an affine germ. The linear

map Ra =

(

0 1
1 0

)

which exchanges the two orthogonal axes meeting at a ∈ C belongs to Diff1
a(R

2, C). We

can compose ϕ with Ra, if needed, in order to have Daϕ diagonal. Thus χ(Diff1
a(R

2, C)) = 〈〈λ〉 ⊕ 〈λ〉, Ra〉.
Taking into account that det(Ra) = −1, so Ra is orientation reversing, we obtain the claim.

Observe that diff1a,R2(C) is either isomorphic to Z2, when λi are distinct, or an extension of Z2 by Z/2Z,
otherwise.
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Consider now that λ1 = λ2. Let now a and b be two end points of C. Denote by D(a, b) the set of germs at
a of classes in diff1

R2(C) having representatives ϕ ∈ Diff1(R2, C) such that ϕ(a) = b. This set is acted upon
transitively by diff

1,+
a,R2(C), so that D(a, b) consists of maps of the form:

ψa,b,k,n(x) = (bj,i + λkj (xi − aj,i))i=1,2 ◦ Snb
a , for any x ∈ Ij ∩ C. (45)

where Snb
a is an element of the group D2 of orientation preserving symmetries of the square, namely Sa is a

rotation of order 4 fixing a and nb ∈ {0, 1, 2, 3}.
Now the set of endpoints of C is kept invariant by any ϕ ∈ Diff1(R2, C). Therefore, for any endpoint a ∈ C
there exists some ki, n depending on a such that Daϕ = (λk1 ⊕ λk2) ◦ Sn

a . The set of possible values of Daϕ
is then a discrete subset of GL(2,R). Since endpoints of C are dense in C and Dϕ is continuous we have
Daϕ is of the form (λk1 ⊕ λk2) ◦ Sn

a , for any a ∈ C and any ϕ ∈ Diff1,+(R, C).

For a given ϕ both the norm ‖ Dϕ ‖ and the determinant det(Dϕ) of its differential are continuous on
[0, 1]× [0, 1] and hence they are bounded. Moreover, the same argument for ϕ−1 shows that these quantities

are also bounded from below away from 0, so that Dϕ
∣

∣

∣

C
can only take finitely many values. The next point

is the analogue of Lemma 12 to this situation:

Lemma 20. There is a covering of C by a finite collection of disjoint standard rectangles Ik whose images

are standard rectangles such that ϕ
∣

∣

∣

C∩Ik
is the restriction of an affine function and more precisely we have:

ϕ(x) = (λjk,1 ⊕ λjk,2) ◦ Smk

bk
(x− (α1, α2)) + ϕ(α1, α2), for x ∈ Ik ∩ C, (46)

where αi are left points of Ci.

Proof. We can choose both Ik and their images to be standard rectangles, as in the case of central Cantor
sets Cλ.

Let c ∈ C. Then Dcϕ = (λjk,1 ⊕ λjk,2) ◦ Smk

bk
, which we denote by A for simplicity in the proof. We have to

prove that there exists a neighborhood U of c such that:

ϕ(x) = A(x− (α1, α2)) + ϕ(α1, α2), for x ∈ U ∩ C. (47)

Such neighborhoods will cover C and we can extract a finite subcovering by clopen sets to get the statement.

This claim is true for endpoints a = (α1, α2) of C. It is then sufficient to prove that whenever we have
a sequence of endpoints an → a∞ contained in a closed rectangle U ⊂ [0, 1] and a C1-diffeomorphism
ϕ : U → ϕ(U) ⊂ [0, 1] with ϕ(C ∩ U) ⊂ C, there exists a neighborhood Ua∞

of a∞ and an affine function ψ
such that for large enough n the following holds:

ϕ(x) = ψ(x), forx ∈ Cλ ∩ Ua∞
.

Around each left point an there are affine maps ψan
: Uan,kn

→ [0, 1] defining germs in D(an, cn), where
cn = ϕ(an), such that cn converge to c∞ = ϕ(a∞) and

ϕ(x) = ψan
(x), forx ∈ Cλ ∩ Uan,kn

.

We can further assume that Uan
∩ Cλ are clopen sets and we can take Uan

to be standard rectangles
[αn,1, βn,1]× [αn,2, βn,2] where βn,i are right points of Ci.

There is no loss of generality to assume that Dψan

∣

∣

∣

C∩Uan

is independent on n, say it equals (λm1 ⊕λm2)Sj .

Replacing ϕ by its inverse ϕ−1 we can also assume that m1 ≤ 0. Since C1 is invariant by the homothety of
factor λ and center 0, we can further reduce the problem to the case where m1 = 0. We can further assume
that m2 ≤ 0 by the same trick and finally get rid of the second diagonal component of the differential. Then,
by continuity, we have Da∞

ϕ = Sj .

Choose n large enough so that ‖ Dxϕ(x) − 1 ‖< ε, for any x in a square centered at a∞ and containing all
Uan

, with n large enough. where the exact value of ε will be chosen later.

Let now consider the maximal standard rectangle of the form U ′ = [αn,1, β1] × [αn,2, β2] to which we can
extend ψan

to an affine function which coincides with ϕ on C ∩ U ′.
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The endpoint (β1, β2) belongs to the closure of three maximal rectangular gaps: the rectangle Q which is
opposite to U ′ is a product of two gaps, while the other two Qv and Qh are products of gaps with one
(vertical or horizontal) side of U ′. Since Dxϕ is close to identity the image of the rectangular gaps are closed
to rectangular gaps of approximatively the same sizes. Now, the images by ϕ of the vertices of Q are points
of C forming a rectangle, which is itself the product of two gaps. Thus the sizes of this rectangle belong
to the set {(λ − 2)λ−n;n ∈ Z+} × {(λ − 2)λ−n;n ∈ Z+}. Since the ratios of two different lengths form a
discrete set and Dxϕ is close to identity, the four points in the image form a rectangle congruent to Q. A
similar argument holds now for the rectangles Qv and Qh. This implies that ψan

can be extended to an
affine function on a strictly larger rectangle, contradicting our assumptions. This proves the claim.

This description shows that diff
1,+
R2 (C) is isomorphic to 2V sym, namely the Brin’s group decorated by D2

(see [8] for the non-decorated case). Here D2 is the group of the orientation preserving symmetries of the
cube, namely the group of orthogonal matrices with integral entries and unit determinant.

Remark 12. We can obtain smaller decoration by choosing self-similar Cantor sets with less symmetries.
For instance, diff1,+

Rn (C) is isomorphic to Brin’s group decorated by the positive isometry group of a rectangular
parallelepiped with edges of different sizes, if C = Cλ1 × Cλ2 × · · ·Cλn

, where λi are pairwise distinct but
commensurable, namely there exists α ∈ R∗

+ and ki ∈ Z such that λi = αki , for all i. We expect a similar
result when λi are incommensurable. Moreover, by replacing each Cλi

by some non-invertible self-similar
Cantor set, the corresponding group diff

1,+
Rn (C) is isomorphic to Brin’s group nV .

Remark 13. Following the arguments in the proof of Theorem 3 one shows that diff
1,+
Rn+k(C), for k ≥ 1,

is Brin’s group nV ±sym decorated by the hyperoctahedral group On, namely the group of symmetries of the
cube (possibly reversing the orientation).

5 Examples and counterexamples

5.1 Nonsparse Cantor sets with uncountable diffeomorphism group

Let h : R+ → R be a C∞-function satisfying the following conditions:

h(x) = 0, for 0 ≤ x ≤ 1, x ≥ 2,

h(x) > 0, for 1 < x < 2,

h′(x) > −1.

Since the maps gj : [0, 1] → [0, 1] given by:

gj(x) = x+ 2−2jh(2jx), j ∈ Z∗
+, (48)

are strictly increasing, they are smooth diffeomorphisms of the interval. The support of gj is [2−j , 2−j+1]
and hence the diffeomorphisms gj pairwise commute. Their derivatives are of the form:

g′j(x) = 1 + 2j−2jh′(2jx),

and respectively

g
(k)
j (x) = 2kj−2jh(k)(2jx), for k ≥ 2.

Consider the group R consisting of bounded infinite sequences m = m1,m2, . . . of integers, endowed with
the term-wise addition.

There is a map Θ : R→ Diff0([0, 1]) given by:

Θ(m) = lim
n→∞

gm1
1 ◦ gm2

2 ◦ · · · ◦ gmn
n , (49)

where gmj is the m-fold composition of gj. The order in the previous definition does not matter, as the
maps commute. The limit map Θ(m) is immediately seen to be a homeomorphism of [0, 1] which is a
diffeomorphism outside 0.
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Let first consider only those m where mj ∈ {0, 1}. Then we can compute first:

lim
x→0

Θ(m)′(x) = 1,

and then
lim
x→0

Θ(m)(k)(x) = 1, for k ≥ 2.

Therefore Θ(m) is a C∞ diffeomorphism of [0, 1].

Moreover any element of R can be represented as a product of Θ(m), with m of having only 0 or 1 entries.
This implies that Θ(R) ⊂ Diff∞([0, 1]). Furthermore it is clear that Θ is injective, by looking at the factor
corresponding to the first place where two sequences disagree. This implies that Θ provides a faithful C∞

action of R by C∞ diffeomorphisms on [0, 1].

The dynamics of each gj on its support [2−j, 2−j+1] is of type north-south with repelling and attracting
fixed points on the boundary. Pick up some aj ∈ (2−j, 2−j+1), so that bj = gj(aj) > aj . Then the intervals
gnj ((aj , bj)) are all pairwise disjoint. If C

0
j ⊂ [aj , bj] is some Cantor set, then the closure of its orbit, namely

Cj = ∪∞
k=−∞g

k
j (C

0
j ) ∪ {2−j, 2−j+1} is a gj-invariant Cantor subset of [2

−j, 2−j+1]. Moreover, for any n 6= 0

the restriction gnj

∣

∣

∣

Cj

cannot be identity, since gnj is strictly increasing.

Then their union C = ∪∞
j=1Cj is a Cantor subset of [0, 1] and for m not identically 0 we also have Θ(m)

∣

∣

∣

C
is not identity. This shows that the diffeomorphism group diff∞(C) contains R. In particular, diff∞(C) is
uncountable.

This technique of construction is close to that involved in other classical constructions in the field, as in
[52, 41, 34]. In particular, such a group arises as the group of fragmentations of elements of the Grigorchuk-
Maki group of intermediate growth acting by C1-diffeomorphisms of the interval from [41].

5.2 Nonsparse Cantor set with trivial diffeomorphism group

Let X be obtained by removing a sequence of intervals, as follows. At the first step we remove from [0, 1]
the central interval of length 1

4 . At the m-th step we have 2m intervals which we label, starting from the

leftmost to the rightmost as I
(m)
1 , I

(m)
2 , . . . , I

(m)
2m . We remove then from I

(m)
j the central interval of length

2−22
m−1

−1+j

. The result of this procedure is a Cantor set X which is not sparse.

Let ϕ ∈ Diff1(R, X). Suppose first that there exists a sequence In of gaps approaching 0 from the right
side with the property that for every n we have Jn = ϕ(In) 6= In. Then there exists points xIn ∈ In such
that ϕ′(xIn) = |Jn|/|In|. The sequence xIn converges to 0. Now lengths of gaps belong to the discrete set
{2−2n , n ∈ Z+} and there are not two gaps of the same length. Therefore any infinite sequence of lengths
|Jn|/|In| 6= 1 has a subsequence which either converges to 0 or is unbounded. This implies that ϕ′(0) is
either 0 or infinite, which contradicts the fact that ϕ was a diffeomorphism.

It follows that for any sequence In as above and large enough n we have ϕ(In) = In. In particular ϕ(0) = 0.
This holds for any left point of X and hence diff1(X) = 1.

Let now I, J ⊂ [0, 1] be closed intervals intersecting X intersecting along Cantor sets. The arguments above
also show that there exists a diffeomorphism ϕ : (I,X ∩ I) → (J,X ∩ J) if and only I = J and ϕ|X∩I is the
identity. From the proof of Theorem 3 (see section 3.2.3) we deduce that diff1M (X) = 1 for any manifold M
containing the C1-interval [0, 1].

5.3 Sparse Cantor set with trivial diffeomorphism group

Start from the interval I(0) = [0, 1] by removing a central gap J
(1)
1 of size (1− ε). By recurrence at the n-th

step we have 2n intervals I
(n)
j , j = 1, . . . , 2n, numbered from the left to the right. To go further we remove

a central gap J
(n+1)
j from I

(n)
j of length |J (n+1)

j | = (1− εn)|I(n)j |. The set so obtained is obviously a sparse
Cantor set C0.

Let a ∈ C0. Let bn be the right endpoint of the interval I
(n)
jn

to which a belongs. Then set (xn, yn) for the gap

J
(n+1)
jn

⊂ I
(n)
jn

. There is no loss of generality of assuming that a < xn < yn < bn. Given ϕ ∈ Diff1
a(R, C0),
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with ϕ′(a) 6= 1, there are infinitely many n for which the gap J
(n)
jn

is not fixed by ϕ. It follows that either
ϕ(yn) < xn, or ϕ(xn) > yn, for infinitely many n. By symmetry we can assume that the second alternative
holds. Then

ϕ(xn)− xn
xn − a

≥ |yn − xn|
|xn − a| ≥ (1− εn)|bn − a|

|xn − a| ≥ (1− εn)|bn − a|
εn|bn − a| =

1− εn

εn
. (50)

Letting n→ ∞ we obtain that ϕ′(a) = ∞, contradiction. This proves that diff1,+a (C0) = 1.

From Remark 8 we have diff1,+(C0) = 1. Moreover, the proof of Theorem 3 implies that diff1,+M (C0) = 1 for
any manifold M containing the C1-interval [0, 1].

Another potential example. In order to convert the nonsparse example above X into a sparse Cantor set
with the same properties, we have to mix ordinary gaps and very small gaps. Start as above from the interval
I(0) = [0, 1] by removing a central gap LG(1) of size 1

3 and two very small gaps each one centered within an

interval component of I(0) −LG(1), namely SG
(1)
1 and SG

(1)
2 of lengths 2−2α and 2−2α+1

, respectively. Here
α is chosen so that

1

3
− 2−2α >

1

6
.

We obtain at the next stage four intervals I
(1)
1 , I

(1)
2 , I

(1)
3 , I

(1)
4 , labeled from the left to the right.

By recurrence at the n-th step we have 4n intervals I
(n)
j , j = 1, . . . , 4n. To go further we remove first a

central gap LG
(n+1)
j from I

(n)
j of length |LG(n+1)

j | = 1
3 |I

(n)
j |. Further we remove two very small gaps each

one centered within an interval component of I
(n)
j −LG(n)

j , namely SG
(n)
2j+1 and SG

(n)
2j+2 of lengths 2−2α+j+4n

and 2−2α+j+1+4n

. Letting n go to ∞ we obtain a 1
3 -sparse Cantor setMC. We believe that diff1,+(MC) = 1.

5.4 Split Cantor sets

Two Cantor sets Ci ⊂ Rn are locally smoothly nonequivalent if for any pi ⊂ Ci there is no C1-diffeomorphism
germ (Rn, C1, p1) → (Rn, C2, p2).

A Cantor set in C ⊂ Rn is said to be smoothly split if we can write C = C1 ∪ C2 as a union of two Cantor
sets with C1 and C2 locally smoothly nonequivalent and contained in disjoint intervals.

We have the following easy:

Proposition 2. Let n ≥ 1 and C ⊂ Rn be a Cantor set which is smoothly split as C1∪C2. Then diff1,+(C) =
diff1,+(C1)× diff1,+(C2).

Proof. In this situation Ci are contained into disjoint intervals Ui. Then diffeomorphisms preserving C
should also send each Ci into itself. Furthermore all elements from diff1,+(C1)× diff1,+(C2) can be realized
as classes of pairs of commuting diffeomorphisms supported in Ui.

According to Remark 4 the central Cantor sets Cλ are pairwise locally smoothly nonequivalent. In particular
the union Cλ ∪ 2 + Cµ of two distinct Cantor sets, one of which is translated by 2 is a split Cantor set. It
follows that

diff1,+(Cλ ∪ 2 + Cµ) = diff1,+(Cλ)× diff1,+(Cµ) ∼= F × F,

for distinct λ and µ. It is not clear what would be diff1,+(Cλ ∪Cµ) or diff
1,+(Cλ+Cµ) (for those parameters

for which the sum is still a Cantor set).

5.5 Questions

The countability of diff1M (C) relies on the description of the group of germs of the stabilizer Ga of a point
a ∈ C for a finitely generated group G ⊂ Diff1(M,C): it is cyclic when dimM = 1 and C is sparse and (a
finite extension of) a subgroup of Zn if dimM = n and C is a product of n sparse Cantor subsets of the
line. We think that a similar result holds for any sparse enough Cantor subset of M in higher dimensions,
not necessarily a product. One should note that if the action of a group G ⊂ Diff2(S1) admits a Markov
partition (see [17, 19]) and an exceptional minimal set C then C must indeed be sparse.
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It seems presently unknown whether for any C1-locally discrete group G of Diff2(S1) with an exceptional
minimal set every point stabilizer should have a cyclic group of germs. Recall that a group G ⊂ Diff2(S1)
is C1-locally discrete if the restriction of the identity to any interval intersecting its minimal set is isolated
in the C1-topology among the restrictions of elements of G. In particular groups G ⊂ Diffω(S1) with an
exceptional minimal set are C1-locally discrete, as well as Fuchsian groups. One believes that the action of
every C1-locally discrete subgroup of Diffω(S1) has a Markov partition (see [1], Main Conjecture).

A well-known conjecture of Dippolito (see [21], 448–449) states that for a finitely generated group G ⊂
Diff2(S1) with a minimal exceptional C such that the groups of germs of stabilizers are cyclic the Radon-
Nikodym derivative of every element of G (with respect to an invariant measure) should be locally constant.
This suggests that our results describing the elements of diff1M (C) for Cantor sets associated to generic
affine IFS might be extended to more general Cantor sets. For instance, when C = ΛΓ ⊂ S1 is the limit
set of a second kind Fuchsian group Γ then diff

1,+
M (C) should also be isomorphic to one of the Greenberg

generalizations TΓ or V ±
Γ of the Thompson groups associated to Γ (see [28]). More generally, if Γ ⊂ Diff1(M)

is a finitely generated group having an exceptional minimal set C, the group diff1M (C) is closely related to
the group of piecewise-Γ homeomorphisms of (M,C). Note that an exceptional minimal set of a Denjoy
C1-diffeomorphism (i.e. without periodic points and whose derivative has bounded variation) of the circle is
not generic in our sense, as the spectrum of ratios of lengths of gaps contains 1 in its closure (see [37, 43]). On
the other hand Triestino conjectured that any finitely generated C1-locally discrete subgroup of Diff2(S1)
is C1-semi-conjugate to a subgroup of a generalized subgroup TΓ, where now Γ ⊂ Diffω(S1) is Gromov-
hyperbolic and C1-locally discrete. Similar questions arise for C1-locally discrete subgroups of Diff2(M,C)
in relation with the generalized groups V ±

Γ , associated to Γ ⊂ Diffω(M,C).

Every couple of Cantor sets which are attractors of IFS arising from C1-diffeomorphisms of the line have
arbitrarily small perturbations in the C1-topology which makes them disjoint and generically their arithmetic
difference is still a Cantor set, according to a remarkable result of Moreira ([39]). We don’t know how the
group diff1M (C) varies under a C1-perturbation of the IFS and in particular whether it might be larger than
the Thompson-type group associated to the IFS.

The validity of some version of the Tits alternative for diffeomorphism groups has its counterpart both
for diff1M (C) and the smooth mapping class groups: does any finitely generated subgroup contains a free
subgroup on two generators or else it has a finite orbit on the Cantor set C? This was recently settled in
the affirmative by Hurtado and Militon (see [32]) for M1(M,Cλ) where Cλ is the standard ternary Cantor
set. Whether a strong Tits alternative could hold for the groups associated to some Cantor sets comprises
the question on finding the solvable subgroups of diff1M (C), which started to be investigated in [7]. Recall
that the Thompson group F does not contain any free non-abelian group though is not virtually solvable.
Notice that, by slightly extending [14], every finitely-generated torsion-free nilpotent group can be made act
on the interval with an invariant Cantor set, but we don’t know whether there exists a non-virtually-abelian,
nilpotent group of C1-diffeomorphisms of a generic Cantor set.
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