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Abstract: Given a code used to send a message to two receivers through a degraded discrete
memoryless broadcast channel (DM-BC), the sender wishes to alter the codewords to achieve the
following goals: (i) the original broadcast communication continues to take place, possibly at the
expense of a tolerable increase of the decoding error probability; and (i4) an additional covert
message can be transmitted to the stronger receiver such that the weaker receiver cannot detect
the existence of this message. The main results are: (a) feasibility of covert communications is
proven by using a random coding argument for general DM-BCs; and (b) necessary conditions for
establishing covert communications are described and an impossibility (converse) result is presented
for a particular class of DM-BCs. Together, these results characterize the asymptotic fundamental
limits of covert communications for this particular class of DM-BCs within an arbitrarily small

gap.
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Résumé : Etant donné un code utilisé pour transmettre un message a deux récepteurs a
travers un canal broadcast discret et sans mémoire, le transmetteur souhaite altérer les mots-
code dans les buts suivants: (i) continuer la transmission du message original, éventuellement au
prix d’une augmentation de la probabilité d’erreur de décodage; et (ii) transmettre un message
additionnel furtif au récepteur le plus fort de sorte que le récepteur le plus faible ne puisse pas
détecter l'existence de ce message. Les résultats principaux sont les suivants: (a) la faisabilité
de la communication furtive est prouvée en utilisant un argument de codages aléatoires; et (b)
les conditions nécessaires pour établir des communications furtives sont décrites et un résultat
d’impossibilité est présenté pour une classe de canaux broadcast discrets sans mémoire. Ensem-
ble, ces résultats caractérisent la limite asymptotique fondamentale des communications furtives
pour cette classe particuliére de canaux.

Mots-clés : Communications furtives, Sécurité de la couche physique, Canal Broadcast
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1 Introduction

Covert communications refer to scenarios in which legitimate parties aim at communicating while
keeping an adversary unaware of the existence of the communication. In point-to-point channels,
reliable covert communications are subject to a fundamental limit that states that only O(y/n)
bits can be transmitted in n channel uses [T} 2] B} [].

Two different covert communication problems have been studied within the context of broad-
cast channels [Bl [6l [7]. In [5], the sender tries to send two covert messages to two receivers.
In [6] and [7], the sender sends a common non-covert message to both receivers, and tries to
simultaneously send a covert message to one of the receivers. That is, the other receiver cannot
know whether or not a covert message is being sent.

The current work is related to [6] and [7]. The focus is on the problem of embedding a covert
message in a non-covert broadcast code. Some of the main differences between this problem and
the one in [0] and [7] are:

e In [6] and [7], the non-covert broadcast code and the covert code are designed together
by the transmitter. This potentially allows the transmitter to choose a non-covert code
on which it is easy to embed a covert code. Alternatively, the current work assumes that
the non-covert code is given and cannot be changed, making the achievability proof more

difficult [

e In [6] and [7] there is a separate covertness criterion conditional on every non-covert mes-
sage. In this work, only one covertness criterion on the overall distribution is adopted.
This difference considerably complicates the proof of the converse. In fact, a general proof
of the converse using the Kullback-Leibler divergence as the covertness criterion is still an
open problem. Alternatively, in this work, the total variation distance is used by adapting
some techniques from [8]. Interestingly, the proof of the converse is shown to be tight for
a class of channels satisfying certain symmetry properties.

In a nutshell, it is shown that in this scenario, it is possible to covertly transmit O(y/n) bits
in n channel uses by modifying an existing broadcast code. Moreover, the proposed transmission
rate is shown to be asymptotically optimal for a class of discrete memoryless broadcast channels
(DM-BCs).

The remaining of this report is organized as follows. Section [2] and Section |3| present re-
spectively the notation and the system model. Section [5| establishes preliminary results on the
probability of detecting covert communications. Section [6] presents an achievability scheme. Sec-
tion [d] exposes examples in which covert communications can not be achieved. Finally, Section [7]
establishes a converse result and Section [9] concludes this work.

2 Notation

Throughout this report, random variables are denoted by uppercase letters, e.g. , X, and their
realizations are denoted by lowercase letters, e.g. , x. Sets are denoted by calligraphic letters,
e.g. , X. The probability distribution of the random variable X is denoted by Px unless
specified otherwise. The expected value and the variance evaluated with respect to the probability
distribution Px are respectively denoted by Ex [-] and Vx [-]. The complementary cumulative
distribution function of a standard Gaussian random variable evaluated at x € R is denoted by
Q(z). Given two distributions Px and Qx, Px < Qx denotes the fact that Py is absolutely

LA technical condition is that the given non-covert code must have a positive error exponent; see (82).

RR n°® 9249
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Transmitter
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.

Figure 1: Degraded brgadcast channel with covert messages at channel use t € {1,2,...,n},
where d; : YI' = W x W denotes the decoding function at Receiver 1 and dy : V3 — W denotes
the decoding function at Receiver 2.

continuous with respect to Q@ x. Assuming that the probability mass functions Px and Q) x have
countable support X, the function x; (Px,Qx), with k € IN, is

(Px(x) — Qx(x))k.

Xk (Px.Qx) =Y

zeX

Whenever a second random variable Y is considered, Pxy and Py |x denote respectively the
joint probability distribution of the pair (X,Y") and the conditional probability distribution of YV’
given X. Given a realization x € X, the expected value and the variance evaluated with respect
to the conditional probability distribution Py |x(-|z) (also denoted as Py |x—,) are respectively
denoted by Ey|x—, [] and Vy|x—, [-].

Given an integer n, an n-dimensional vector of random variables is denoted by a bold upper-
case letter, e.g. , X = (X1, Xo,..., X)) € X™ and its realization is denoted by a bold lowercase
letter, e.g. , * = (x1,%2,...,2,). The number of occurrences of the symbol z € X in the vec-
tor £ € X™ is denoted by N(z|z) = S}, 1{4=z,). Similarly, the number of joint occurrences
of the pair (z,2') € X? in the pair of vectors (z,x’) € X?" is denoted by N(z,2'|x,x') £

Z?:l ]l{xzac,,}]l{lzzmg} .

3 System Model

Consider a three-party communication system in which a transmitter simultaneously sends in-
formation to two receivers through a noisy communication medium. In this work, the noisy
communication medium is described by a product random transformation

(X" V1 X Vg, Py yax)s (2a)

where n € 1IN is the block-length; the alphabets X, )Y; and ), are finite; and
Y1 = (YLl,}/LQ, . ,Ylm) € y?, Y2 = (}/271,}/272, SR ,}/27n) € yél and X = ()(1,)(27 [N ,Xn) €
X™ are n-dimensional vectors of random variables. In particular, given an input
x = (x1,22,...,%y,), the output (yq,y,) with v, = (Yk1,Yk.2,---,Ykn) for all k& € {1,2} is
observed with probability:

Py vy, 1x(¥1, y2|$):HPY1|X(y1,t ) Py, v, (Y2,¢]y1.4)- (2b)

t=1

That is, the channel is degraded and memoryless.

Given the random transformation in , the Transmitter is given a broadcast code (Encoder 2
in Figure|l) to transmit a message intended to both receivers at a fixed rate. Often, this message
index is referred to as the common message. Section formally defines these codes.

RR n°® 9249
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Each codeword of a broadcast code can be altered to generate a set of new codewords. Hence, by
redefining the decoding sets at one receiver (Receiver 1 in Figure|l)), it is possible to build a new
code (Encoder 1 in Figure[l)) to transmit two messages: (a) the common message at the same
rate as the original broadcast code, possibly at the expense of a higher probability of error; and
(b) a message exclusively intended to Receiver 1. Often, this message index is referred to as the
private message and the new code is referred to as an induced code. These codes are formally
defined in Section
An induced code might satisfy some additional constraints on the transmission of the private
message, e.g., a covertness constraint. A covertness constraint consists in rendering the non-
intended receiver of the private message (Receiver 2) unable to determine whether or not a
private message is being transmitted. That is, Receiver 2 is unable to determine whether the
codeword being transmitted belongs to either the broadcast code or the induced code. An
induced code that satisfies a covertness constraint is referred to as a covert code and is formally
defined in Section [3.3l

The objective of this work is to determine the maximum information rate at which private
messages can be transmitted by using a covert code induced from a given broadcast code.

3.1 Broadcast Codes

The common message index to be sent from the Transmitter to both receivers is a realization of
a random variable W that is uniformly distributed in the set

W={1,2,... M}, (3)

with M € IN. To send a common message index within n channel uses, the Transmitter uses an
(n, M)-broadcast code.

Definition 1 ((n, M)-broadcast code). Given M € W and a block-length n € N, an (n, M)-
broadcast code for the random transformation in s a system

{(uu),m(l),m(l)), (42, 212, 22(). ... (w(d), D1 (31), Do) ) } @

where for all (i,7,k) € W? x {1,2}, with i # j:

w(i) = (u1(i),u2(i), . .., un(i)) € ™, (5a)
Dk(Z) N Dy, (]) =0, and (5b)
M
Uk c . (5¢)
=1

The vectors u(1), u(2), ..., w(M) and the sets Dy (1), Di(2), ..., Di(M) in are respectively
the codewords and the decoding sets at receiver k.

Given a broadcast code represented by the system in 7 the Transmitter uses the codeword
u(4) to transmit the message index ¢ € W. At channel use ¢, with ¢ € {1,2,...,n}, the Trans-
mitter inputs the symbol u; () to the channel. For all k& € {1,2}, Receiver k observes the output
Y = (Yk1,Yk,2, - - - » Yk.n) after n channel uses and determines that the symbol ¢ was transmitted
if it satisfies the decoding rule:

RR n°® 9249
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The average decoding error probability associated to the given broadcast code at receiver k,
denoted by A\, € [0,1], is

M
A = % D Pr(Yy € Di(i)| X = u(i)], (7)

i=1

where the probability operator applies with respect to the marginal Py, |x of the joint distribu-
tion in (2b); and Dg (i) in (7)) represents the complement of Dy (i) with respect to V.

Definition 2 ((n, M, €)-broadcast code). Let € € [0,1] be fized and consider an (n, M)-broadcast
code C described by (). The broadcast code C is said to be an (n, M, €)-broadcast code if

max()\l, )\2) < €. (8)

3.2 Induced Codes

Let the private message index be represented by a random variable W, independent of W and
uniformly distributed over R R
w={1,2,...,M}, (9)

with M € IN. Assume that a broadcast code denoted by C is given and is represented by the
system in . The transmitter uses an (n,C, M)-induced code to transmit both the common
and private message indices.

Definition 3 ((n,C, M)-induced code). Given M € N and an (n, M)-broadcast code C described
by , an (n,C, M)-induced code is a system

{ (00,1, D1(1,1), D2(1)) , (0(1,2), D1(1,2), Do(1)) ..., (w(M, V), Dy (M, M), Dy(M)) },(10)

where for all (i, k,j,1) € W? x W2, with (i,7) # (k,1), the following holds:

v(i, ) = (v1(3,5),v2(, 4), - - - on(i, J)) € X", (11a)
Di1(i,7) N Dy(k, 1) = 0, (11b)
M M
U U Di(p,q) € V1" (1Lc)
p=1gqg=1
The wvectors v(1,1), v(1,2), ..., v(M, M) are the codewords; the sets Di(1,1), D1(1,2), ...,
Dy(M, M) are the decoding sets at Receiver 1; and the sets Do(1), Do(2), ..., Do(M) are the

same decoding sets at Receiver 2 as in the (n, M)-broadcast code C.

Given an (n,C, M )-induced code denoted by C and described by , the Transmitter uses
the codeword v (i, j) to transmit the common message index i € W and the private message index
j € W. At channel use t, with t € {1,2,...,n}, the Transmitter inputs the symbol v (7, j) to the
channel. At the end of n channel uses, Receiver k observes the output y;, = (Y1, Yk, 25 - - - > Yk,n),
with k € {1,2}. Receiver 1 declares that the pair (i, j) € W x W was transmitted if (¢, j) satisfies
the decoding rule:

y1 € D1(i,J). (12)
Alternatively, the decoding rule of Receiver 2 remains being that in @, with & = 2, i.e., the
same as in the broadcast code C.

RR n°® 9249
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The average decoding error probability associated to the induced code C at receiver k is denoted
by \x € [0,1], with k € {1,2}. That is,

“ 1
A= [Y1 € DS(i,5)| X =v(i,j)], and (13)
MM =1 j=1
M N
A 1 . .
Ao=—— 51X = (i, )], (14)
MM = j=1

where the probability operators apply with respect to the conditional marginals Py |x and
Py, x of the joint distribution in (2b), respectively. The sets D§(i, j) and D(i) represent the
complement of D;(4,5) and Ds (i) with respect to YVi* and )7, respectively. Using this notation,
the definition of an (n,C, M ,€)-induced code is presented hereunder.

Definition 4 ((n,C, M é)-induced code). Let é € [0,1] be fived. Consider an (n, M)-broadcast
code C described by @) and an (n,C, M)-induced code C described by (L0). The induced code ¢
is said to be an (n,C, M, é)-induced code if max(Ai, Ag) < €.

In order to guarantee that for all y, € V;, with k € {1,2}, there always exists a message

index ¢ € W that satisfies the decoding rule @, the inclusion in is assumed with equality.
Note that in the case in which the set Y}’ \ (Dx(1) UDy(2) U ... UDy(M)) is not empty, the
channel output vectors therein always induce a decoding error at receiver k. Therefore, given
any j € W, replacing the set Dy(j) by Di(j) = Dr(5) U (Vi \ (Dr(1) UDk(2) U...UDg(M))
does not increase the average decoding error probability. Thus, there is no loss of generality in
studying a system in which holds with equality. Without any loss of generality, the inclusion
in is assumed with equality for an analogous reason.
One of the central parameters to characterize an (n,C, M )-induced code C described by . is
the number of times a component of a codeword w(i) from C differs from that of the induced
codeword (i, j) from C, with (i,j) € W x W. This quantity is referred to as the weight of the
codeword v (i, 7).

Definition 5 (Welght of the codeword v(i,j)). Given an (n, M)-broadcast code C represented
by the system in (@), consider an (n,C, M)-induced code C represented by the system n
For all (i,7) e W x W the weight of the codeword v(i,7), denoted by w(i, j), @

n
3 =Y Lo i) - (15)

t=1

Another parameter is the number of times that a given symbol x is observed at a given
component of a codeword from C and at the same component of a codeword from C another
symbol is observed. This quantity is referred to as the weight of the symbol x.

Definition 6 (Weight of the Symbol z). Given an (n, M)-broadcast code C represented by the
system in , consider an (n,C, M)-induced code C represented by the system in . For all
x € X, the weight of the symbol x, denoted by w(x), is

M M n

iy =2} Lu, (5) v, (i)} (16)
MM =1 j=1t=1

The codes C and C induce several empirical probability mass functions that are relevant for the
analysis of covert codes. These functions are defined hereunder.

RR n°® 9249
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Definition 7 (Empirical Probability Distributions). Given an (n, M)-broadcast code C repre-
sented by the system in , consider an (n,C, M)-induced code C represented by the system in
[10). For all (x,2) € X2,

o the empirical channel input probability distribution induced by the broadcast code C, denoted

by Px, is
| M
Px(@)® 57 3 Nielu(): (1)
e the empirical joint probability distribution induced by the two codes C and C on X2, denoted
by Py ¢, is
M N
P, o (x, é z, T|u( ; 18
(2 3L N (006 ) (13)

e the empirical probability with which a symbol x in a codeword from C is changed into a
symbol & # x in a codeword from C, denoted by PX\X’ 18:

M M n
DD Mamu () La=vi )} Laria)
ra N =1 1t=1
PX\X(CU|$) Ivj T
DN Ty L2000}
i=1j=1t=1
(19)
and R
supp Py x_, = X\ {z}; (20)

e the empirical probability with which a symbol x in a codeword from C is changed to any
other symbol to generate a codeword in C, denoted by 0(x), is

B(x) 21— Py y(a]a), (21)

where PXlX(x|x) is such that

Py (x,x) = PX(x)PX‘X(ﬂx). (22)
The next lemma establishes an expression of the empirical probability PX ¢ in in terms

of Py in , pX|X in and 6 in .

Lemma 1. Given an (n,M)-broadcast code C represented by the system in , consider an
(n,C, M)-induced code C represented by the system in . For all (z,2) € X2, it holds that

Py (x,2) = Px(x) (1 = 0(x)) 1 as) + 0(2) Py x (2]2).
(23)
Proof: The proof of Lemma [I] is presented in Appendix Bl ]

The next lemma relates for all € X, the parameter 6(z) in . ) to the average weight w(x) in

(L6)-

RR n°® 9249
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Lemma 2. Given an gn,M)—broadcast code C represented by the system in , consider an
(n,C, M)-induced code C represented by the system in . For all x € X, it holds that

w(z)= nPx(z)0(z). (24)

Proof: The proof of Lemma [2] is presented in Appendix [C] [ |
The following lemma is an immediate consequence of Lemma [2] and both Definition [5| and
Definition [Gl

Lemma 3. Given an (n M)-broadcast code C represented by the system in , consider an
(n,C, M) induced code C represented by the system in . Then, it holds that

M M

nZPX(x)H(x):Z ZZ w(i, 7).
zeX reX =1 j=1

3.3 Covert Codes

Consider an (n, M, €)-code described by (@) and denoted by C. Consider also an (n,C, M, é)-
induced code denoted by € and described by (10| . For all k£ € {1,2}, let Qy, and Ry, be
respectively the probability distribution functions of the channel output vector Y, when the
broadcast code C is used and when the induced code C is used. That is, for all y € V7,

Qv (y é ZPYHX (y|u(i ))7 and (25)

|>

+9)); (26)

lljl

where Py, |x is the marginal obtained from (2b). Using this notation a covert code is defined
hereunder.

Definition 8 ((n,C, M, ¢, §)-covert code). Given 6 € [0,1] and an (n, M, €)-broadcast code C
described by (4), an (n,C, M, é)-induced code described by is said to be an (n,C, M, €, d)-
covert code if

||QY2 - RY2||TV < 57 (27)

where Qy, and Ry, are respectively defined in and (26)).
Let Qwy, and Ry, be two distributions such that, for all (i,y) € W x VI,

Qv (i,9)2 1 Qv (yl), and (28)
Ry, (i, 9)2 S Ry (), (29)
with
Qv yw (yli) HPYQ\X Yelue(i)), and (30)
tll 0o
Ry, \w(yli)= Mz;tl_[lpmx ye|ve (4, 7)) (31)
i

RR n°® 9249
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Note that the marginal distributions Qy, and Ry, are respectively in and (26)).
Using this notation, the following lemma highlights that replacing the constraint

1Qy., — Ry,|lpy < d in by the constraint ||Qwy, — Rwy.,|lpy < ¢ is equivalent up to
an additive constant.

Lemma 4. Given an (n, M, ¢)-broadcast code C described by , any (n,C,M,é)-induced code
described by satisfies

Qwy, — Rwy, ”TV < ||Qy, — Ry, HTV +eté, (32)

where the distributions Qy,, Ry,, Qwy, and Ryy, are defined in , , and ,

respectively.

Proof: The proof of Lemma [ is presented in Appendix [E] [ ]

In the remainder of this work, it is assumed that the induced codes satisfy Ry, < Qy,-

Otherwise, a covert transmission of private messages is impossible for some values of § € [0, 1].
This is illustrated by the following lemma.

Lemma 5. Consider the random transformation in (2), an (n,M)-broadcast code C and an
(n,C, M)-induced code respectively described in and (10) such that Qy, € Ry,. Then,

1

HQYZ - RY2 HTV > 5 (1 —Pr [Y2 € supp QYz])v (33)

where the probability is calculated under the assumption that Yo ~ Ry, and where Qy, and
Ry, are respectively defined in and .

The proof of Lemma [5|is presented in Appendix

Given that Pr[Y' € supp Qy,] > 0 in (33)), it follows that covert communications can not be
achieved for values of § < 3 (1 — Pr[Y5 € supp Qy,)).
Finally, the analysis is restricted to induced-codes that satisfy Ry, # Qy,. This guarantees
that there exists no induced-code that can perfectly mimic the channel output distribution Qy-,
induced by the broadcast code at Receiver 2. Otherwise, the problem is trivial and covert
communications are always achievable.

The information rate at which information can be covertly transmitted to Receiver 1 using

an (n,C, M, €, 0)-covert code is logs (1) bits per channel use. Thus, given the broadcast code C,

a fundamental limit on the rate at which information can be covertly transmitted is given by the
largest possible M for which an (n,C, M, é€,d)-covert code exists. This notion is formalized by
the following definition.

Definition 9 (Largest covert code’s size). Fiz a pair (¢,0) € [0,1]* and consider an (n, M, e)-
broadcast code C. The largest covert code’s size induced by C, denoted by M*(n,C,€,J), is:

]\Z*(n,c7 €, 5):max{M€]N :3(n,C, M, e, 0)-covert code}.
4 Examples of Impossible Covert Communications

This section provides two examples in which covert communications can not be achieved for
arbitrary values of 6 € [0, 1]. Later, a more general impossibility result is presented.

RR n°® 9249
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X, 0el"" o0 Vi
Tx o Rx 1
1 e e 1
1-p

1-p.

0 e e 0| Yy,

¢e . ¢ Rx 2

1e e 1
1—p.

Figure 2: Degraded erasure broadcast channel at channel use ¢t € {1,2,...,n}.

Example 1. Assume that the random transformation in is such that X = {0,1}; Y1 = Vo =
{0,€,1}; and for all v € X, the conditional probability distributions Py, x and Py,|y, respectively
satisfy:

PY1|X($|J;) =1- PY1|X(€|x) =1 — D1, (34&)

Py, x(z|]l —2) =0, (34b)
and

PY2\Y1(37|$) =1- PY2|Y1 (f‘l‘) =1-p, (35a)

PY2\Y1 (‘T|1 - .’I}) =0, (35b)

PYz\Yl (5'5) = 17 (35C)

with (p1,p2) € [0, 3]%.

Figure [2| depicts the channel in Example Note that the probability distribution Py, x
verifies that for all z € X:

Py, x (z]z) = 1 = Py, x (§|z)= 1 — p1 — p2 + p1p2
=1-p, (36)

with
P =p1 +p2 — pipe. (37)

Given an (n, M, €)-broadcast code C described by and an (n,C,M,Aé)—induced code de-
scribed by (10), let 7;; and T;; be respectively defined for all (i, j) € W x W by

Tii=A{t€{1,2,...,n} :u (i) #v(4,5)}, and (38)
Ti={t€{1,2,...,n} u(i) = v (i, j)} . (39)

Note that the cardinalities of the sets 7;; and 7T;; respectively satisfy

Tol=wli).  and (40
|Tii|=n — w(i. ). (41)
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X, 0e

=

Tx

Rx 1

o o=

You

® 0
o1 — Rx2
e 2

Figure 3: Degraded typewriter broadcast channel at channel use ¢t € {1,2,...,n}.

Within this context, the term Pr[Y s € supp Qy,] in can be upper bounded as follows:
Pr[Y; € supp Qy,]= Pr[Y € supp Qy, Nsupp Ry, ]

1 . .
:WZZ HPY2|X(yt|Ut(Zvj))

1=1 j=1y€supp Qy, t=1

Nsupp Ry,
1 M M
= MMZZ S T Praix@slvs(i5) TT Prajx (welun(4))
1=1 j=1y€Esupp Qvy, s€T;; reTi;
Nsupp Ry,

M M
1 ..
< > D IT Proix (wslvs (i, 5))- (42)
i=1 j=1 y€Esupp Qv , s€T;
N supp Ry,

Note that for all y € supp Qy, Nsupp Ry, and for all t € {1,2,...,n} for which u(i) # v:(4, )
for some (¢, 5) € W x W, it holds that y; = &, which implies that Py, x (y¢|v¢(4,7)) = p. Hence,
it holds from that

1 M N
Pr[Y, € supp Qy,]< ——= Z mej‘
MM ==
@ 1 L
) Z w(2:5)
= — p
MM =5
< pme (43)
where (a) follows from ([40)); and
Wmin = min _ w(i, ). (44)

(i,5) EWXW

Finally, it follows from Lemma [5|that the total variation ||Qy, — Ry, || verifies

1 .
”QYz - RYz HTV > 5 (1 4 mm) . (45)
The above lower bound shows that the constraint in can not be satisfied for values of
0 < % (1 — p¥min),

Example 2. Consider the random transformation in such that X = Y1 = Vo = {0, 1,2}, and
such that for all x € X, the conditional probability distributions Py,|x and Py,|y, respectively
satisfy:

Py x (z]z)=1, (46)
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and

Py,y, (z]z") =0, (47a)
PYz\Yl (.’E|IE) =1- PYQ\Yl (xl‘x) =1- b, (47b>

with &' =z +1 mod |X|, 2’ =z +2 mod |X|, and p € [0, 1].

Figure [3| depicts the channel in Example Given that Py, x(z|z) = 1 for any x € X, it
fOHOWS th&t PYZ‘XZI = Py2|y1:$.

Note that given an arbitrary (n, M, ¢)-broadcast code C of the form in (4)) and any (n,C, M, €)-
induced code, the inequality in holds, which implies

Pr[Y; € supp Qy,] < p*=in. (48)

The above lower bound shows that the constraint in can not be satisfied for values of
§ < % (1 — pemin),

5 Probability of Detecting Covert Communications

Throughout this section, consider a given (n, M, €)-broadcast code C descrlbed by the system in
and an (n,C, M,e, d)-covert code C described by the system in . Section and Section
F):Zl provide respectively a lower bound and an upper bound on the probablhty of incorrectly
determining that the covert code C is used instead of the broadcast code C.

5.1 A Lower Bound

Consider a hypothesis test in which Receiver 2 aims to determine whether the broadcast code C
(hypothesis Hy) or the covert code C (hypothesis H) is used upon the observation of the channel
output Ys:

Hy: Yy ~Qy,
49
{H1:Y2~Ry2, (49)

where Qy, and Ry, are respectively given in and .
Denote by « € [0,1] and 8 € [0, 1] the type-I and type-II error probabilities associated with
a decision rule T : Y — {0, 1} of the form

a [ 0 if Hy is accepted,
T(y) { 1 if H, is accepted. (50)
That is,
a2Pr[T(Y3) = 1], and (51)
BEPr[T(Y2) = 0], (52)

where the probability operator in applies assuming that Yo ~ Qy, and the probability
operator in applies assuming that Y3 ~ Ry, .

Using this notation, the following corollary, which is an immediate consequence of Lemma [3]
in Appendix [A] introduces a property of covert codes.
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Corollary 1. Given an (n, M, ¢)-broadcast code C, any (n,C, M, ¢, d)-covert code satisfies

a+/6 21- ||QY2 - RYQ”TV? (53)

with o and B respectively defined in and , for all decision rules T : Y3 — {0,1} of the
form .

Note that Corollary [I| highlights the relevance of the parameter § in Definition|8] Essentially, the
smaller the parameter §, the higher the probability of failing to determine whether the broadcast
code or the covert code is used.

5.2 An Upper Bound

In this section, given an (n, M, €)-broadcast code C and an (n,C, M, ¢, d)-covert code C, an upper
bound on the type-I and type-II error probabilities at Receiver 2 are presented. The underlying
assumption is that Receiver 2 performs perfect decoding of the common message index i € W.
This assumption is essentially improving the capability of Receiver 2 for detecting a covert
communication. Thus, the upper bound obtained under this assumption is rather loose.

Under these assumptions, the hypothesis test run by Receiver 2 to determine whether or not a
covert communication occurs is the following:

{Ho 1Yo ~ Qv yw=i,

54
Hy : Y2~ Ry, jw=i, (54

where the distributions Qy,jw—; and Ry,|w—; are respectively defined in and .
Denote by «; € [0,1] and 3; € [0,1] the type-I and type-II error probabilities associated with a
decision rule T; : Y3 — {0,1} of the form

o [ 0 if Hy is accepted,
Ti(y)= { 1 if H; is accepted. (55)
That is,
OéiéPI‘ [ﬂ(YQ) = 1] s and (56)
Bi=Pr[T;(Y4) = 0], (57)

where the probability operator in applies assuming that Ys ~ Qy,jw—; and the probability
operator in applies assuming that Y2 ~ Ry, |w—;. The next proposition establishes upper-
bounds on «; in and f; in , under certain conditions.

Proposition 1. Assume that for all pairs (z,x') € X? such that x # ', the random transfor-
mation in satisfies the following conditions:

X2 (Pyy|x =2 Pyy| x =o' )= d, (58)
=/

D(Py, | x=ol|Py; | x=a')= ¢, (59)
where (d,0) € R%.. Let v € N be such that for all (i,5) € W X W,
w(irf) > v (60)

Then, for all i € W, it follows that:

@< Q <;\\/€z> + % (61)
and  B;<Q (;ﬁ) + j% (62)

RR n°® 9249



Broadcast Codes Can Be Enhanced to Perform Covert Communications 17

where c3 and ¢y are constants.

Proof: The proof of Proposition [I]is presented in Appendix [G]
Note that the binary symmetric channel is an example of channel satisfying (58 and ( .
Another example is presented in Section [§]

6 Achievability of Covert Communications

In this section, a lower bound on the largest code’s size (Definition [J)) given an (n, M, €)-broadcast
code, denoted by C, is established. The construction of this result is presented in three parts
using a random coding argument. In the first part, a probability distribution to randomly gen-
erate (n,C, M )-induced codes is chosen. Often, this distribution is referred to as the generating
distribution. This distribution is expressed in terms of some parameters, which are referred to
as the generating parameters. In the second part, the average of the decoding error probability
(denoted by A) over all possible (n,C, M)-induced codes that can be generated by the gener-
ating distribution is upper-bounded. This upper-bound is expressed in terms of the generating
parameters, which proves that there must exist at least one (n,C, M ,€)-induced code for which
¢ < A. In the third part, the generating parameters are chosen in order to satisfy the covertness
constraint in for a fixed §, which allows the construction of an (n,C, M , €, 0)-covert code.

Part I: Generation of Induced Codes

Consider an (n, M, €)-broadcast code C for the random transformation in (2 described by the
system in . Consider also the parameters M € IN; K € [0,/n] and a condltlonal probability
distribution Pg  such that, for all x € &,

supp f’Xlew =X\ {z}. (63)

Using the parameters K and PXl . let PX| « be a conditional probability distribution such that
for all (x,%) € X2,

Pyix (#]2) 2 (1= 0) Lpomsy + 0Py (2]2), (64)

with

K
vn
Often, the parameters M € IN; K € [0, /n]; and Pqu are referred to as the generating parame-
ters. For all i € {1,2,..., M}, generate M codewords

02 (65)

v(i,1),v(i,2),...,v(i, M) (66)

to form the codebook of an (n,C,M)—induced code. For all j € {1,2,... ,M}, the codeword
v(i,7) is the realization of a random variable following the probability distribution PX\ X —u(i)
such that for all x € X",

Py x (#lu(i)) & ] Pgyx (Eeluc(d)) (67)
t=1
where u(1), u(2), ..., u(M) are the codewords of the given broadcast code C. In the following,

the distribution PX| x is referred to as the generating distribution.
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To complete the generation of the (n,C, M )-induced code, the decoding sets must be specified.
Receiver 2 uses the decoding sets

Dy(1), D2(2), ..., Da(M) (68)

of the given broadcast code C, according to the decoding rule in @, with k£ = 2.
For all (z,&,y) € X?" x V7, let 1 (&; y|z), with k € {1,2}, be defined by

Pyk\x(y@)

Z s x (@|2) Py x (y|z')
x'eXxn

(69)

w (@ y|z) < log,

At Receiver 1, upon the reception of the channel output y € Y7, Receiver 1 declares that the
index pair (i,7) € W x W was transmitted according to the decoding rule in 7 with

Da(iij)={y € i 1 (v(i, ), ylu@) ) > nnp \(J Pa k. D),
(k,0)€T'(i,5)
(70)

where 7 € R is a parameter whose exact value is determined later; and
F(ij)é{12...z’}><{12...,j—1}. (71)

Note that the codewords in , the decoding sets in (68]) and the decoding sets in ([70]) form an
(n,C, M)-induced code.

Part II: Decoding Error Probability Analysis

Denote respectively by Ay and Ay the average of A1 in and \o in (14) over all possible
induced codes that can be obtained from the generating distribution in (67]). That is,

M M

A=y o RN, by, ety x=a),

1= 1] leexn
ma A=y 3 T ‘))Pr Y2 €D5(0)| X =4). (722)
M
i=1lgeXn
Let for all k € {1,2} and for all pairs (z,y) € X x Vg, Ryk|X(y\m) be the distribution
Ry, x(ylx) £ ) Pf(|x(i'|x)PYk|X(y“%)' (73)
TEX
Using this notation, the following proposition establishes an upper-bound on Ay and As.

Proposition 2. For all k € {1,2} the average error probability Ay, in satisfies

R . RYQ\X(QW) — Py, x(ylx) \»
< : <
Ar < max (Pr [21 (X, Y1|u(W)) < nn] ,6(1 + (xyylgrgg;yg Py x (v]2) 9) ,(74)

where € is the average decoding error probability of the broadcast code C; n is in ; and the
probability operator in is with respect to the joint distribution Py, gy, for which

Py, (i )= Py x (@luli) Py, 1x (412). (75)

for all (i,&,y) € W x X™ x Y.
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Proof: The proof of Proposition [2]is presented in Appendix [J] [

Remark 1. Proposztzonl suggests that the cwemge probabilities of error over all possible (n,C, M ,€)-
induced codes at Receiver 1 and Receiver 2, A1 and A, respectively, are bigger than the
average decoding error probability € of the given bmadcast code C.

_ Using the result in Proposition [2} it is possible to determine the conditions on ¢, 7, 0, M and
PX| «» such that at least one (n,C, M, €)-induced code exists. The following proposition describes
these conditions.

Proposition 3. There always exists an (n,C, M, €)-induced code for the random transformation

in that satisfies

log
L/ Z ZPX ( X‘X(ILT) (Pyy x=2l|Pyy 1 x=2) — 0°x2 (RY1|X o Py x= x )(76
xeX TEX

if the parameters 6 and PX\X are chosen such that

R — P !
x4 max ToaxOlD)~ Paxule) ) (77)
(2,y)EX X Y2 PYQ\X(y|‘T)
Proof: The proof of Proposition [3]is presented in Appendix [K} [ |

Part III: Generation of Covert Codes

This final part focuses on determining the conditions on the generating parameters to satisfy the
covertness constraint in (27]). The following proposition describes such conditions.

Proposition 4. There always exists an (n,C M,e,§) covert code, with M satisfying (76 .,
and P XX satisfy (77)) and

2@71 (175767max;[[\1,[\2}7ﬁ)

0 < : (78)

Z Px (z)x2(Ry,| x =2 Pry|x=2)

zeX
where ¢ 1s a positive constant.
Proof: The proof of Proposition [f] is presented in Appendix [M] [ |
From Proposition and Proposition [ it follows that the rate at which the covert message is
log, (M

transmitted, i.€., , can be optimized by properly choosing the values of the parameters 6
and PX‘ - Proposition E follows immediately from this observation and can be presented more
compactly by using the following notation:

D(Py,x) & Z Z Px(x X|X (2|2)D(Py; x =21 Py;|x=2) » (79)
reEX TEX

and for all k € {1,2},

X2(Ryk|x7 Py, x) & Z PX(x)XQ(RYk\X:xaPYk|X:w)~ (80)
reX
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Proposition 5. Consider an (n, M, €)-broadcast code C for the random transformation in .

(
Then, there always exists an (n,C, M, €, J)-covert code that satisfies

log, (M) _ 5 =
———= > max 0D(Py,x) — 0°X2(Ry,|x, Pyyx), (81)

n Q»P)’qx

where ¢ a positive constant and the optimization domain is the set of all 8 and all ]55(|X that
jointly satisfy and .

In the asymptotic block-length regime, Proposition [5] leads to the following theorem.

Theorem 1. Consider a sequence Cy, Co, Cs, ..., of (n, My, €,)-broadcast codes for the random
transformation in ([2)), with n € {1,2,...} and
en < exp(—(n), (82)

for some fized positive real (. Then, there always exists a sequence of (n,CmMn,én,é)—covert
codes with lim,_, €, = 0 such that

logy (M*(n,Cr, én, 0) 201 (1=6 -

lim —2 ( ) > max ——2 (5) D(Py, x)- (83)
n—00 \/ﬁ P)"(\x \/X2<RY2|X7PY2|X)

Proof: Consider an infinite sequence of positive reals K; < Ky < K3, ... and an infinite

sequence of reals é; > é; > ... > 0, such that, for all n € N,

1 0—ep—&p——
1 n—én—
A 2Q ( 2 n)

K, = — (84)
\/XQ(RYMXa Py, x)
In particular, for all n € IN,
20~1 (=4
K, < Q~ (%) . (85)
\/)Zz(RYkp(, Py, |x)
Note that if ¢ in satisfies the following condition
20" (52 R ~ P
¢ > Iﬁaxln(l—i— Q~ ( 2 ) max Y2|X(y|x) Y2|X(y|x)>, (86)
%1x Ve Ry, x, Py x) @9 Pryyx(yl)

where the maximization is performed over all possible conditional distributions Pfq . then it
follows that ([77)) is always satisfied. Hence, from Proposition it holds that for a fixed n and ¢
satisfying (86)), there always exists an (n,C,, M,, é,, §)-covert code such that

10g2 (Mn) — K2 ~

— > K,D(Py,x) — 7%)22(RY1|X,PYI\X)- (87)
In the asymptotic block-length regime, the condition in holds for all ¢ > 0, which immedi-
ately implies that

log2(Mn)> 201 (159) Py ). (88)

lim > —
nee \/)Zz(Rmx, Py, x)

The proof is completed by optimizing the right-hand side of over all possible conditional
distributions P x- [ |
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7 Impossibility of Covert Communications

Given an (n, M, e)-broadcast code C, this section introduces an upper bound on the ratio be-

tween the largest covert code’s size M*(n,C, €,0) and the square-root of the block-length, i.e.,
log, (M*(n,C,6,8)) . . . . L
M, in the asymptotic block-length regime. The following section introduces some

preliminary results in the finite block-length regime that are crucial for proving the main result
of this section.

7.1 Preliminary Results

Using Fano’s inequility [9], the following proposition presents for all (n,C, M,é, 0)-covert code ¢
an upper-bound on log, (M ) in terms of the empirical probability mass functions induced by

both the original code C and the covert code C.

Proposition 6. Consider an (n, M, €)-broadcast code C, described by the system in , for the
random transformation in . Then, every (n,C, M, €, d)-covert code satisfies that

logy (M>< 1%@ (1 +n Z Z PX(fE)e(x)pmx(ﬂf)D(Pyl\X:@||Py1|X:z)

rEX TEX
_ O(x)3 N
+Px (x) (6) X3(Ry, | x=a» PY1|X:2:)>' (89)
Proof: The proof of Proposition [6] is presented in Appendix [P] [ ]

A central observation for proving the main result of this section is that given a covert code,
a covert sub-code can be obtained by choosing the codewords whose weight (Definition is
bounded. More importantly, the cardinality of the set of upper-bounded-weight codewords can
be lower-bounded. This result is presented by the following proposition.

Proposition 7. Letn > 0 be arbitrarily small. Consider an (n, M, €)-broadcast code C, described
by the system in , for the random transformation in . Assume that the random transfor-
mation in (2) satisfies and . Then, every (n,C,M,é,é)—covert code described by the
system in (LO)) can be formed by two sub-codes. One sub-code whose codewords are in the set

1—90— R
W= {v(i,j) cw(i, g) <2\/gQ_1 (#),1<i<M, andlgng}, (90)

and another sub-code whose codewords are in the set

1-0— .
We = {v(i,j):w(i,j)}Q\/gQ_l (#),1<i<M, andlgng}. (91)

Moreover,

‘W‘>MM(’27—\/CH—6—&), (92)

where ¢ is a constant.

Proof: The proof of Proposition [7] is presented in Appendix [
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7.2 Main Result

The following theorem introduces the main result of this section.

Theorem 2. Consider a sequence C1, Ca, Cs, ..., of (n, My, €,)-broadcast codes for the random
transformation in (2)), with lim, .o €, = 0. Assume that the random transformation in
satisfies and (b9). Then, for any sequence él, ég, é3, ... of (n, Cn,Mn,én,é)-covert codes
with lim,, o €, = 0, it holds that

logy (M (n,Cpyén, 6 2 1-6—
lim 2 (5 ) P (75 77), (93)
n—oo \/ﬁ \/g 2

with n > 0 arbitrarily small.

_Proof: For all n € N, it follows from Proposition [7] that the covert sub-code of the covert
code C,, with codewords in the set

W, = {w6i.0) 0.0 <2/ (F2071) 1 <i <o, and 1< <AL (00

satisfies

]an‘ > M, M, (g —\/cﬁ—en—én). (95)

From Proposition@ it holds that ‘Wn is upper bounded as follows

W, 1 _ 0@
A < T 1+ n;fPX(x)Q(x) + Px(x) 6 X3(Ry, | x=2> Pyi|x=x) | (96)

log,

that is,

1 <1+nZ€PX(x)0(x)+Px(£B) 5 X3(RY1|X=9¢3PY1X=$)>’ (97)
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which implies that

log, (M, )< : _1 _ <1 +n Y (Px(2)0(x) + Px(x)

(@) 1 3 X3(Ry; | x = Pyy|x=a')
< (1 + Z lw(x) + w(x) max GnQPX(x’)IQ

n C .
-1 (7*7* n n)
Og2 2 \/ﬁ ¢ ¢

2 (et () (e ()

XS(RY1|X_m’aPY1|X—x’)> ) (77
— 108,

. ma’ —
vex 6n2Px (2')?

_ 1 <1+2£\/HQ_1(1—6—77>+ 4)x| Q—1<1_5_”>3

1—é, Vi 2 3 /nvd 2
x3(Ry, 1x=2» Pyi|x=a') n c .
S S “log (5 - e E) (98)

where ¢ is constant that depends only on the parameters of the random transformation in ,
(a) follows from Lemma [3] and (b) follows from the fact that

AN wlid) Vi 1 (120
wla)s Y wlr) =Y 30 LI o Vg (1202,
zeX o1 =1 Mn My, Vd 2
(99)
The proof is completed by dividing both hand-sides of by y/n and taking the limit. [ |
Note that for channels satisfying and , the right-hand side of reduces to

20 (1 — 5)
ikl i 100
\/gQ 5 (100)

Recalling that 7 in can be chosen arbitrarily small, it follows that, for such channels, the
asymptotic bounds in Theorem [5| and Theorem [2[ are tight, i.e., (100) gives the optimal scaling
constant for log, (M,’; (n,Cp, én, 5)) with respect to \/n.

8 Example

This section presents an example to illustrate the results in Theorem [5}

Example 3. Consider the random transformation in such that X = Y1 = Yo = {0,1,2},
and such that for all (z,2') € X? with x # 2’, the conditional probability distributions Py, |x and
Py, |y, respectively satisfy:

Py, x(z|z)=1— 2Py, x(2'|z) =1 —2p1, and (101)
Py, )y, (z|x)=1-— 2Py, v, (2']z) = 1 — 2pa, (102)
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X 0
Tx 1 e
2

Rx 2

Figure 4: Degraded broadcast channel satisfying and at channel use ¢t € {1,2,...,n}.
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Figure 5: Fundamental limit lim,,_, s (\T/Lﬁ n.0)) as a function of the crossover probability

p1, for § = 0.005.

with (plap2) G]Ov %[2

Figure EI depicts the channel in Example El The probability distribution Py, x verifies that
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Figure 6: Fundamental limit lim,,_, oga (M (\T/LE n9)) as a function of the crossover probability

p1, for § = 0.005.

for all (x,2') € X? such that z # 2/

Py, x(z|r) =1~ 2PY2|X(1UI|9U): 1 —2(p1 +p2 — 3pip2)
=1-2p, (103)

with
P =p1+p2 — 3pip2. (104)

The following lemma quantifies the expressions x2(Py,|x =/, Py,|x=z) and D(Py2 1x=2'|| Py, | sz)
for any pair (z,2') € X? with z # 2.

RR n°® 9249



Broadcast Codes Can Be Enhanced to Perform Covert Communications 26

Lemma 6. Consider Example @ For all pairs (z,x') € X2, with x # ', it holds that

(3p—1)%(1—p)

X2 (Pyy|x =2 Pyy| x=2)= o) (105)
1-2
D(Prs ol Prpse=s)= (1 = 3p1) logs (2. (106)
where p is defined in (104).
Proof: The proof of Lemma [6]is presented in Appendix [F] [ |

The following proposition follows immediately from Lemma [6] and Theorem [f].

Proposition 8. Consider Example @ and consider a sequence of (n, M, €,)-broadcast codes,
with n € {1,2,...}, denoted respectively by Ci, Ca, ..., such that limy,_,oc €, = 0. Then, there
always exists a sequence of (n,Cyp, My, €y, 0)-covert codes with lim,_,, &, = 0, such that

log, (Mﬁ(nycm €n,5)) 1-6\ [p(1—2p)1—3p 1—2p
log, .

li >2 —1(
nl—>n<;lo \/’E @ 2 1-p 1-3p 1

The left hand side of (107) is plotted as a function of the probability p; and ps in Figure
and in Figure [6] respectively, with § = 0.005.

(107)

9 Conclusion

So far, a tight converse for general DM-BCs, i.e., those that do not necessarily satisfy the con-
ditions in and is still an open problem. An interesting question is whether the total
variation distance used in the current work can be replaced by the Kullback-Leibler divergence.

Finally, it is interesting to highlight that the problem introduced in this report is an instance of
a more general problem. In multi-user channels, broadcast codes can be altered to perform other
functionalities, e.g., simultaneous energy and information transmission to an energy harvester,
physical-layer secrecy, etc.

A Auxiliary Results

This section introduces some auxiliary results that play a key role in the following appendices.

Theorem 3 (Berry-Esseen Theorem). Let X, Xs, ..., X, be independent random variables such
that for allt € {1,2,...,n},

= Ex, [X¢], (108)
op=Ex, [X}] -7, (109)
o= Ex, [|Xt - ﬂt|3] . (110)
Then, it holds for all A € R that
Pr [th—m 20‘)\] -QW)| < % (111)
t=1 g

where

“:Z“t’ O‘QZZU?, and qb:Zq/)t. (112)
t=1
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The best value of the constant ¢q is ¢o = 0.4748 [10].

Lemma 7. Let Px and Py be two probability distribution functions on a common finite support
Z. Let also X andY be two random variables following the distributions Px and Py, respectively.
Then,

|Px = Pyllgy = Pr[Px(X)> Py (X)]— Pr[Px (V) > Py (V)] (113)
where the probability operators apply with respect to Px and Py, respectively.

Proof: The proof consists in the following algebraic manipulations:

I1Px — Prlly=3 3 1Px(2) = Pr(2)

zEZ
= — Z PX Z PY )
Px(z)>Py(z) PX(Z)<PY(Z)
= 72 Px(2)Lpy ()2 Py (o)) — Z Py (21 (2)2 Py ()
ZEZ zEZ
4= Z Py (2)L(py ()< Py ()} — Z Px (2)L(py(z)<Py (2))
ZEZ zEZ

a2 s

+Pr [P (V) < Py (V)] = Pr[Px(X) < Py(X)] )
= Pr[Px(X)>Py(X)]-Pr [Px(Y)>Py(Y)], (114)

and this completes the proof. ]
Consider a hypothesis test designed to determine whether the distribution Px (hypothesis
Hy) or the distribution @x (hypothesis Hy) is used upon the observation of X:

{HO:XNPX

Hy: X ~Qx. (115)

Denote by « € [0,1] and 8 € [0, 1] the type-I and type-II error probabilities associated with
a decision rule T' : X — {0,1} of the form

a [ 0 if Hy is accepted,
T()= { 1 if H; is accepted. (116)
That is,
a2Pr[T(X) = 1|Hy], and (117)
BEPr [T(X) = 0|H,]. (118)

Given the above hypothesis test, the following lemma establishes a lower bound on the total
variation ||Px — Qx ||y in terms of the type-I and type-II error probabilities.

Lemma 8 (Minimum Total Variation). Given the hypothesis test in (115|), it holds that

”PX_QX”TV l—a-3, (119)

with equality for the optimal decision Tule T'.
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Proof: The proof of Lemma |8 essentially relies on applying the inequality || > z, for
all € R, after judiciously developing the total variation ||Px — Qx||py. Then, identifying the
type-I and type-II error probabilities in the resulting expression yields the lower bound in .

Given the hypothesis test in 7 let A C X be an arbitrary acceptance region for the
hypothesis Hy. That is, the decision rule T in is such that T'(x) = 1 {;g4y. Then, it follows
that

1Px ~ Qxlley= 5 3 IPx(a) - Qx(2)]

zeX

= 1) ~ Q@)+ 5 X IPx(e) — Qx(a)]

reA reA°

> % (Z Px(z) — Qx(x) +Z Qx(z) — PX(JU))

z€A € A°
= ;<1 =3 Px(@) =) Qx(@)+1-) Qx(z)— > PX(J:)>

TEAC z€A €A TEAC

=1-> Qx()— Y Px(x)

z€A rEAC
=1-Pr[T(X)=0|Hy] - Pr[T(X) = 1|Hy)
=1—-a-p, (120)

with « and 3 respectively in and . Note that (120) holds with equality if the acceptance
region is chosen such that A = {z € X|Px(z) > Qx(x)}. Combining the lower-bound in (120))
and the covertness constraint in yields and completes the proof. [ |

Lemma 9. Let (z,a,b) € R3 and n € N. Then, it holds that

T = = VT 2a+b
Q 2,/,734—% <Q( 2 )+4\/27Tn(:13+b). (121)
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Proof: Note that

x—% =Q @ l_ra"
2”95—#% 2 1+w\l’/ﬁ
o2 1+

1——@e_ . /14+ b
1—‘,—%\/5

INE
QO
VRN
e
YN
—
_|_

|
8
3"
+ | !
8 [l
S !
HMQ"
3
~_
~_

T 2a+b
Q<2<12 a ’
T n(l—l—x\/ﬁ)
_|_

(b) VT 2a +b
< y=
Q< 2> 4y/2man (1+ 22=)
T 2a +b
< y=
Q( 2 )+4,/27m(:c+\%)
NG 20+

where (a) follows since /1 +2 < 1+3 for allz > —1; and (b) follows since Q(z—y) < Q(a?)—i—\/%

for all (z,y) € RZ such that 0 <y < z. n
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B Proof of Lemma [1I

Note that from , it follows that

M M n
Py x(z,2)= nMM;;;]l{x we ()} L {a=v, (5,9)}

n

M M
= MZZ La—u, (i)} L{a=v. (i)} L{a=2}

i=1 J—1 t=1

nMM i=1 j=1 t=1
M M N . M M
DY N($7$|U(Z),U(Z’J))ﬂ{ Lyt w(x) » Loy () Lo, (190} Loza)
i=1 j=1 nMM [ | w(@) MM
M M .
@ 3 Nz, x|u(i), v(i, ) L@ s
= = ]]-{x =i} T PX|X(x|x)
i=1 j=1 nMM
M M n
—]la::uti]lzr:vti‘ ~ ~
_ ZZH fr=u (i)} I <,J>}ﬂ{m:£}+wx)P (1)
— = nM M n
i=1 j=
M M n
_ i Yomu@) (1~ Liauie}) w(z) 5
_ZZ VAT Na—ay + — % 1x (£]2)
i=1j=1 n
3 N(2|w(@) = 31 Lo=uii) Lisso i) w) 5
=>.> : Ly + = = Py x (@)
i—1 i—1 nMM n
=1 j=
M M . M M
_ N(z|u(i)) 2ot=1 Ma=u ()} Laztu ()
59 S CIFINNE 3 3> SLIEALIE PN
i=1j=1 " i=1 j=1 n
w(z) A )
iy —er
®) 5 w(@ w(z) &
= I'x x)]l{T,_i} - 7]1{37:32} + n Px\x(x‘x)
5 w(x) w(x) A
= Px(o) (1= 25 ) Lamsy + A Py ol
© 7
= Px(z) (1= 0(2) Ligmsy + 0(2) Py (3]2)) , (123)
where (a) follows from (19); (b) follows from (16); and (c) follows from Lemma[2} This completes
the proof. m
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C Proof of Lemma [2

Given an (n, M)-broadcast code C and an (n,C, M )-induced code, note that any message index
pair (i,7) € W x W satisfies for all z € X:

D Tamuiy = Y Lamui() (Lizmvn(ig)) + Lizsoig)))
t=1 t=1

(124)

Developping the right hand-side of (124) and dividing the two hand-sides by the block-length n
yields

N(zlu(i) _ N(z,x|u(i), v(,j)) +Z": Vomu @t oo i)} (125)
n n — n
Therefore, summing over all pairs of message indices (7, j) € W x W, and normalizing by the
total number of messages M - M yields

-y N(z, zlu(i), v(i,4) 3 Do—uw @} Mazv )}
— nMM P nMM
=1 j= =

w(x)

= XX<$7$)+T' (126)

Thus, it follows that

w(z)=n (Px(z) — Pxx(z,7))
=nPx(x)(1— X|X x|x))
= nPx(z)0(x), (127)

where the last equality follows from the definition of §(z) in . This completes the proof. =

D Proof of Lemma [5

Note that from the triangle inequality, it follows that

1Qv. ~ Ry.lly=5 3 |@v.(v) - Rv.(@)

yéyz
Z |QY2 RY2 Z IQyz RY2 (y)|
yEsupp Qyz yEbUPp sz\
supp Qv ,

1
5 (1 =Pr[Y2 € supp Qy,]| + Pr[Y2 & supp Qy,])
1
5 (1 -Pr[Y, €suppQy,]), (128)

where the random variable Y5 is distributed according to Ry,.
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E Proof of Lemma 4

Let W € W be a random variable that represents the decoded message index at Receiver 2.
Consider the joint distributions Qyj-y-, and Ry, such that, for all pairs (i,y) € W x V3,

Qwy, (1Y) = Qv,(¥)Qw v, (i[y), (129)

and  Ryy,(i,y) = Ry, (y) Ry |y, (i|y), (130)

where Qy, and Ry, are the marginal channel output distributions respectively in (25)) and .,
and

Qwiy,(11y) = Ry )y, (ily) = Liyep, ) - (131)

Consider also the joint distributions Qwy, and Ryy, respectively in and . Note that

M
1By, — Qurly=5 3 3 [Bwv,(9) + Ry, (%) — Ry, (i9)
=1 yeys
—Qwy,(1,Y) + Qwy, (1Y) — Qwy, (i, y)|
< Bwy, = Qwys |y + 1@wys — Qv || oy + | Bwy, — Ry, || £(132)
where the last inequality follows from the triangle inequality. The remainder of the proof consists

in establishing an upper-bound on each of the three terms in the right hand-side of (132).
First, note that

M
1
IRy, = Quyulley =537 DY Liyenaiiyy Ry, (¥) — Qv ()]
=1 yeyy
@15 g
yeYy
= ||Ry, = Qv, Iy (133)

where (a) holds since is assumed with equality.
Note also that

1 M
|Qwy. = Quy,llav=5 2. D Qva®) |Quiv.(ily) — Quiy, (ily)|

i=1ye)yy

=3 Z Z Qv (Y) [Qwy, (ily) — Liyep, (|
) W

=3 Z QYQ (y)(]l{yGDg(i)}(l — Qwy,(ily)) + Lryeps )} @wivs (i|y)>
)Y

(Qyz( Wiyep, i)y — Qv (¥)Qw v, ({lY) L yep, (i)
yeyy

+QY2(y)QW|Y2(iy)]l{ye’Dg(i)}>

y 1
@ 5 1+2Z > QvaW)Qwiv, (1Y) Ly epe )

=1 ye))z
<, (134)
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where (a) holds since (5d) holds with equality. Note that since (11c)) is assumed with equal-
ity, the equality in (131]) ensures that the same steps can be followed with the total variation

||RWY2 — Ry, HTV. This yields
HRWYz - Ry, ||TV< €. (135)

Plugging (133)—(135) into (132)) completes the proof. |

F Proof of Lemma

Note that the probability distribution Py, x verifies for all (z,2') € & 2 such that = # 2’

Py, x(z]z) =1 - QPYQ\X(l"I\x): 1 —2(p1 +p2 — 3p1p2)
—1-92p, (136)

with p = p1 + p2 — 3p1p2.

Note also that due to the nature of the channel, xo(Py,|x=z', Py,|x=z) verifies for all (z,z') €
X2 such that = # '

2
(Py,x (yl2") = Py, x (y]z))
Py, x (y|)

X2(Py, | x =2 Pry|x=2)= Z

YyEY2

(Py x (yl2') = Pyyx (yla))?
- yg;b Py, x (ylr)
_ (Prax@la)) = Pyx(al2))” | (Prax(@'la) = Pyyyx(@'la))’

Py, x (z|x) Py, x (2'|z)
(Pyyjx (z|2') — Py, x(a']2))*
Py, x (2'|z)

_ Bp-1)?  (1-3p)?
T T p
_ Bp-1°(1-p)
— p(l — 2p) , (137)

and D(Pyl\X:z/ | |PY1|X:1’) verifies:

Py, x (y|z')
D(Py, | x =o' | Pyy|x=2)= Z Py, x (y]z") log, (1|

=, Py, x (ylz)
Py 1x (2']) Py, x (z]2")
—p N2V 1 SN ol N N P "1 e
v ix (2|27) logy (Pylx(l“’x) + Py, x (z]2") log, Py, x (@]2)
1—-2p p
:(1—2p1)10g2< 1>+p110g2<1_12p1)
1-2
= (1 — 3p1) log, ( - pl) ) (138)

G Proof of Proposition

Given a fixed block-length n € IN, an (n, M, ¢)-broadcast code C and an (n,C,M,é,(S)—covert
code, consider for all message indices ¢ € W the set W; defined in (299)).
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Consider the distribution Ryk‘ x such that for all pairs (z,y) € X x Vs and k € {1,2},

Ry, x (ylz)= " P x(&x) Py, x (y]x), (139)
TEX

with Py y is in (T9).

Define also for all y € V3

n

B(y)="_ Au(i), vi(i, %), 01), (140)
t=1
with
P ) — P,
Alw, &, y) = YQ\X(Z/LT) YQ\X(y|$)' (141)
Py, x (y|x)
and j* € argmax; ;, Pr [B(Yg) < T|W = j].
Consider the decision rule T': Y3 — {0, 1} of the form in such that for all y € V7,
T(y)= LiB(y)>r} (142)

with 7 € Ry an arbitrary threshold.
Consider first the type-I error probability «; in . It follows from the choice of T in (142)
that

a;=Pr (B (YQ) 7]

Z HPYQ\X Yilue (1)1 {B(y)>r- (143)

yeYy t=1

For all i € W and t € {1,2,...,n}, define the random variable
Z’Lt: A(Ut(i),vt(i,j*),Y), (]‘44)

where Y is distributed accordlng 50 Pyy| X =u, ()
Then, it follows from and the definition of the random variable Z;; in ) that

Z Zip > T] . (145)
t=1

Denote by ¢, 05+ and ¢;; the first, second and third absolute moments of the random variable
Zii, respectively, i.e.,

=Y Pryix (ylue() Alu (i), 0e(i,5). y), (146)

YEV2

U?t: Z PY2|X(y|ut(i))A(ut(i)7Ut(iaj*)a y)2 - l%zt» (147)
YEY2
and

ie=»_ Praix (ylue() [ ACur(), 006, 5°),y) = pael” (148)

YyEY2

ai:Pr
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Lemma 10. Consider the random variables Z; in withi € W andt € {1,2,...,n}. Then,
it holds that
pi= 3" pa =0, (149)
t=1
n
of=>_ o} = nd, (150)
t=1
b= > b < ngj, (151)
t=1
with d in and
e it 152
(bz tE{{I}Q%X,n} ¢ t ( )
Proof: The proof of Lemma [T0]is presented in Appendix [H] [ |

It follows from (145) that

=Pr

izzt_uz zT_ul]

l

2@(7;‘“)“0%
(2 Q (\/%d> + %3
©o (\/Ti) + % (153)

where (a) follows from the Berry-Esseen Theorem (Theorem [3)); (b) follows from Lemma[I0} and
(c) follows with

3 2 coptd 3. (154)

Consider now the type-II error probability §; in . It follows from the choice of T" in (142))
that

Bi= Pr [B(Yg) 7]

=| ‘ Pr[B(Y2) < 7|W = j]

JEW;
< max Pr [B(Y2) < 7|W =j] . (155)
JEW;
Let j* be
j* € argmaxPr [B(YQ) < T|W = j] , (156)
JEW;

and define for all ¢ € {1,2,...,n} the random variable

Ziv= Alus(i),ve(i, 57), V), (157)
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where Y is distributed according to Py,|x—y,(,j+)- Then, it follows from (155) and the definition
of the random variable Z;; in (157) that

Bi< Pr

Zn:Zit < 71 . (158)

A Denote by fi;;, 6;+ and (/A)it the first, second and third absolute moments of the random variable
Z;t, respectively, i.e.,

frir=">  Pyyx (ylve(i, 7)) A (i), 04 (3, 5°), ), (159)
YyEY2
6h= Z Py, x (ylve (i, 57)) A(ue (3), ve (i, 57), ) — i, (160)
YyEY2
and

Su= > Pyyix (ylveli, 5°)) [Aue (i), 000, 57), ) — el (161)
YyEY2

Lemma 11. Consider the random variables Zy, in (I57) withi € W and t € {1,2,...,n}. Then,
it holds that

=3 i = w(i, ), (162)
t=1
67=" 65 <nd+w(i,j*)|d], (163)
t=1
67=n(d—paf) +w(i,j*)d’, (164)
b= bi < nj, (165)
t=1
with d in ,
Jra 166
; te{gfn}m, (166)
~Ax A ~2
L , 167
:u‘z te{{I}QE?‘X,n} /th7 ( )
A
d'= max X3(Pyy | x=2> Pyy| X=u: () (168)
and
i gg{l X3(Py; | x=2> Pya| X =u: (1)) - (169)
Proof: The proof of Lemma [11] is presented in Appendix [I} [ |
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It follows from ([158) that

:Q< i&:T) +COZ—)§
®) w(i, j*)d — 7 ) ncod;
< +
Q( nd + w(i, j*) |d'] Vn (d—/lf)-i-w(i,j*)\d/ﬁ
(©) w(i,j*)d — 7 =
s Q( nd + w(i, j*) Id’) T "

where d’ is in , (a) follows from the Berry-Esseen Theorem (Theorem [3); (b) follows from
Lemma [11} and (¢) follows with ¢4 a positive constant

- _3
g 2o (d— ;)2 (171)
Finally, choosing 7 such that
vd
= — 172
r=2 (172)
and plugging it into (153)) and (170]) yields respectively
\f>
;< Q +—= (173)
and
W(Z, J*)d - %d Cyq
i< +
e ( nd +w(i,j)[d])  Vn
vd C4
< 4 174
Q<2 nd+W(i7j*)|d’|> vn .

where the last inequality follows from the fact that by definition of Wi, w(i, j*) > /nv.
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Note that

vd vd
Q(2 nd + w(i, j*) Id’|>_ Q<2\/n(d+ @) )

_Q<1/\/E 1

B 2 w(i,j*)|d’

Vi [Ty S

() ) |d

2 (28 (1 - 141
2v/n 2nd

b) A

© (VA velid) ]
2v/n 4dn/2mnd
vvd v2|d|

< + ;

Q<2\/ﬁ> 4dnv/2mnd
vvd v2|d|

< + ;

Q<2x/ﬁ> 4y/nV2rd

(175)

where (a) follows from the fact that (1 +z)"2 >1— 5 for all z € Ry; and (b) follows from the
fact that for all 0 < y < z, it holds that Q(z — y) < Q(z) + \/%7
Thus, by letting

2 d/l
cs = cq + V] , 176
T 4rd (176)
it follows that

vvd cs
< — . 177
B Q<2 \/ﬁ> t (177)
This completes the proof. ]

H Proof of Lemma 10l

For all (i,j*) € W x argmax;,;, Pr [B(y) < T{W = j} and all t € {1,2,...,n}, note that

=Y Pryix (ylue(D) A(us(), v, 57), 9)

YyEY2
= Y Pryx(lvi(i,5%)) — Pyyjx (ylua(i))
yEY2
=0 (178)
o= Pryix (ylus () Alue (i), ve(i, 5%),y)* — i
YyEY2
_ (Pyix (1o (i, 5%)) = Pryx (ylus(9)))
B y;Q Py, x (y|u(i))
@4 (179)

RR n°® 9249



Broadcast Codes Can Be Enhanced to Perform Covert Communications 39
where (a) follows from (58)). Finally,
dir=>_ Py, x (lus (i) [A(ur (i), ve(i, §%), y) — it
YyEY2
_ Z | Py, x (y|vi (4, 5%)) — Py, jx (ylue(3))]
B Py, x (ylu(i))?
< 7, (180)
with ¢f in (152).
Therefore, it follows that
pim > i =, (181)
t=1
n
oi="_ o} =nd, (182)
t=1
and  ¢i= Y du < nej. (183)
t=1
This completes the proof. [ ]
I Proof of Lemma [11I
For all (i, j*) € W x argmax;,;, Pr [B(y) < T{W = j], and all t € {1,2,...,n}, note that
far= D Py x (ylvei, 5°) Alus (i), ve (i, 57), ), (184)
YyEY2
5= Prax (yloni, 7)) Alue (i), veli, 5°),9)* — iy, (185)
YyEY2
- o ) s .13
and Q=Y Pyyx(ylve(i, %)) | A(ue(i), 023, 57), y) — fra
YyEY2
<9, (186)

with ¢* in (166).
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Therefore, it follows that
n
,EL’L = Z :[l”it
=1

=3 Prx(loni, 5°) Alu (i), 03, 57), y)

t=1y€e)>

D Dgus(iyoi i)y Pratx Wloe (i, 5%)) Alue (i), ve (4, 57), )

n
>
t=1yeY,
n
>

guy ()20, (i) A (2), 06 (1, 57), ) (Pyaix (Wlve (i, 57)) — Py px (ylug (7))

t=1yeY,
— z”: (Praix (ylve(i,5*)) — PY2|X(y|ut(i))>2]1 ) At (i
=1 yeVs Py, x (y|ue(4)) )
W (i, 5)d, "

where (a) follows from (58)). It also follows that,
= Z &

—ZZPYQ\X (yloe (i, 57)) (Alue (@), ve(i, 57), 9)* = f)

t=1yeY>
Z Z Py, x (ylvog (i, 57)) Aue (i), v (3, 57), y)?
t=1ye)>
—Z]l{u, (=vitig)y D Praix Wlue(8) Alu (i), ve (i, %), y)?
yEY2
+Z]]-{ut(i)7évt(i7j)} Z Py, x (ylvoe (i, 5%)) A(ug (3), v (3, 5°), y)?
t=1 yEY2
—Z D Praix (ylus() Aug (i), ve i, 7)., y)?
t=1yed>

A A(ue(8),ve (5, 5%, ) Lug () 200 (i)} (Pratx Wlve (i, 5%)) = Py x (ylue (4)))

(a) e
< nd+w(i,j*)d
< nd+w(i, 7)1, (189)

where (a) follows from (58)), with d’ in (168). In addition, 67 also satisfies:

t=1
n
> nd +w(i,j*)d" = > j3,
t=1
n(d — ;) +w(i,j*)d", (189)
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with ff in (167)). Finally, it also holds that
di= > du < ng}. (190)
t=1
This completes the proof. [ ]

J  Proof of Proposition
From ([724)), it follows that

M~ Prix (@)

A= Z _ Z VIR (Y1 €D5(i,5)| X = 2]

M P x (®[u(i))
ZZ Z Z lj\/[iMPY |X(y|w)]l{yepc(l7])}

S Py x (&[u(i)) Py, x (y|2)
=2 > i Lo @sylu(in<nn}

i=1 BeX™ yeYy
= Pr [(X; Y1 u(W)) < nn). (191)

From ([724)), it follows that
M A .
. Pxx (®|u(i)) 5
B |x ) .
A= T [V € D5(i)| X = ]

=1 geXxn
M Py Tlu(l
- Z Z Z X|X§\4|())PY2X(:‘/SE)]1{1JGD;(¢)}
i=1 €XTyEYVy
> u(i)) _ Py, ix (ylu(i))
- X|X 5 Y2lX
- ; Z;;Zy T e ) Heemo)
M . ~
_ Py, x (ylu(i)) o Pyox(ylE)
= ;y; T Heemsoy 2 Pax @@ gt n
M P u(t P, 121
= Z Z Y2|X]$J| ( ))]l{yEDg(z)} < Z PXIX(QAHul(z))PYYiL)((;iyh'Ll(Z))))
i=1ye)yr T1EX 2

P o) G Y (5 i) S

Py, x (y2|uz (i) S Py, x (Yn|un (7))

3 PY2|X(y| u@) HZ (s (i) 22X WelD)
i=1 yeyy {vers (1}15 licx XX PYQ\X(yt|ut(i))

tlﬂ:

> PY2|X ))]l{yeDc 2 LD (= 0Ly +6P5 (i)

y€y2 t=1zeXx
' Py, x (y:|%)
Py, x (ye|ue(i))

,_.

i=
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i Z PY2\X ylu ())1{ : )}H <1+QRY2X(yt|Ut(i))—PY2|.X(Z/t|Ut(i))>

=~ Py, x (y¢|ue ()

: n'

<y Yy D@y, <1+ - Ry2|x<y|x>—Py2|X<y|x>9)”

i=1 yeyy (z,9)€EXXY2 Py2‘X(y|x)

i —P !
o1y e Prx@le) = Prpx(yle) N (192)
(z,y)EX X Y2 PY2|X(y|‘T)

The proof is completed by verifying that for all k € {1,2},

Ap<max <Pr [11 (X; Yl\u(W)) < nn] 76(1 +  max RYQ‘X(ny) _ PYQX(yx)H)n> (193)

(z,y) EX X V2 PY2|X(y|m)

K Proof of Proposition

Let v € (0,%) and £ > 0 be two parameters Whose exact values will be defined later. Assume
that for all (z j)EW X W, the parameter 7 in is chosen such that

n=sup {b €eR:Pr [11 (X;Yﬂu(W)) <n(b- f)] <U}7
(194)

where the probability operator in (194) applies with respect to the distribution Py, ¢y in (75).
From Proposition [2] it follows that if v is chosen such that

R ~P "
v = e(l + max valx (v]) valx (91) 9) , (195)

(2,y)EX x Vo Py, |x (y]z)

where € is the probability of error of the broadcast code C and 6 is the parameter in , then,
for all k € {1,2}, R
Ap <o (196)

The remainder of the proof consists in calculating the supremum on the right hand-side of (194))
subject to (195]). Consider the following positive constants

A . ~

= min 11 (2, y|x 197
n (2,m,y)€X2 X1 1 (& yl2) (197)

A A~

= max 1 (2, y|x 198
V= A 1(2,y|z) (198)
v &y —m, (199)

which depend only on the parameters of the random transformation in . Note that the ran-
dom variables 11 <X17Y1,1|u1(W)), 1 <X2,}/172|U2(W)>7 ce 11 ()A(n,Y17n|un(W)) are mutually
independent and bounded, i.e., for all t € {1,2,...,n},

71 <1 (X, Vil (W) < e, (200)
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where 71 and 79 are defined in (197) and (198]), respectively. Therefore, these random variables
are also sub-Gaussian with sub-Gaussian parameter v in (199). Note also that the random
variable

lzl (X Y, |u(W ) Zzl (Ze, yt|ue (7)) (201)

exhibits an expectation that satisfies:

n

Ewzy, %Zu (Xt,iﬁtIut(W))
t=1

7MZ Z Z PX‘X (&|u(i)) Py, x (y|&) Z (%4, ye|ue())

1 &exm yeyy t=1

*ZZ SN Py (Fun(i) Py x (yl2)a (&, ylue (i)

t=11i=1 z€X yeY

n M
,%MZZ SN S L Py (Bl2) Pry x (y]2)n (2, yl2)

t=1 i=1 2EX yEVs wEX

Z Z Z Px () Py x (&]2) Py, x (y|2)0 (2, y|2)

TEX TEX yEM

_ 1(XX), (202)

where Py is defined in . Therefore, for all b for which
b—¢—I(X;v1]X) <0, (203)

it holds from Hoeffding’s inequality [I1] that

Pr [0 (X; Y1 [uw(W)) <n(b—¢)]=P %le (Xe, Vigun(W)) <b—¢],
t=1
n (1(X;v1]X) = b+€)
<exp| — 52 . (204)
Alternatively, for all b for which
b—&—I(X;Y1]X) >0, (205)

it follows that:

Pr [21 (X, Y1|U(W)) < TL(b f } [i Y (51 ()A(t,Yl,t|ut(W)) <b-— g]
t=1
>1— exp <—n (JEWIX) b +¢) . (206)
22

From (204)), it holds that for all b such that

[ 221
b< I(X;Y1|X) + 2 og2 (207)
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then

A 2
n (I(X;Y1|X) = b+¢)
exp | — 52 <w, (208)

which implies that Pr [21 (X,Y1|U(W)> <n(b- f)} < v. Alternatively, from (206]), it holds
that for all b, such that

) 2421
b> (XY X) + €+ —%2(”), (209)

then given that 0 < v < %, it follows that
. 2
n (1(X:;Y1|X) = b+¢)

l—exp| — 52 > v, (210)

which implies that Pr [21 (X', Y1|u(W)> <n((b- {)} > v. Hence, the supremum 7 in (194) can
be lower bounded as follows:

2 2721
ﬂ>sup{beR+:b<I(X;Y1|X)+g 7‘;‘32(”)},

=1Vl + g - - 28 ), 1)

where the inequality in (211) follows from the fact that there might exists a b such that
b—¢&— I(X;YﬂX)‘ < \/—M for which Pr [zl (X,Yﬂu(W)) < n(b—{)] < v. Assume
now that £ is chosen such that

n
Hence, under the assumptions on v and & in (212)), it follows from (211)) that
n>I(X;Y1|X). (213)

Assume now that the number of codewords M is chosen such that:

_ log, (M) (214)
—
Then, from (213)), it holds that
log M N
M>1(X; Y 1X). (215)

Finally, note that from the choice of  in (194)), for all & € {1,2}, the probability of error Ak in
(74) satisfies R
Ap <w. (216)

This implies that there always exists an (n,C, M , €)-induced code whose number of codewords M
satisfies (215)) and its decoding error probability satisfies € < v. The following lemma completes
the proof.
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Lemma 12. The mutual information I(X;Y1|X) in [15) satisfies

I(X;V1]X) > Z Z Px(z ( X|X(x|$)D(PY1\X::E||PY1\X:z) — %2 (RY1|X::E7PY1‘X:$> )1

reX zeX
(217)
where the probability distribution Ryl‘X is defined in .
Proof: The proof of Proposition [I2]is presented in Appendix [[] [
|

L  Proof of Lemma 12

The proof of Lemma consists in expressing a lower bound for the mutual information in (215])
in terms of the generating parameters 6 and PX| - Note that the mutual mformatlon in (215)

is with respect to the probability distribution Px Py Py;|x, with Py defined in (17)); Pgix in

and Py, x in . That is,
I[(X;Y1]X)

. Py, 1x (y|©)
= 3 3 3 Pelo) P el o, ()

TEX T€EX yeY

- PPyt (D<PY1|H|PY1|“>

zeX TEeX
) Py, x(y|x)
+ > Py x(yl#)log, —
= Py, x (yle) + 0 (Ryy x (y]2) — Py, x ()
= ZPX ( Z XX (&]x)D PYl\X:iHPYmX:z)
reX TeX
. . RY x (ylz) — Py, x (y|x)
- Z Py x (&|2) Py, x (y]2) log, (1 + 6 Py x (4] 1)|
YyeEN Y1 | X \Y|T

(@

> > > Px ( Py x (&]2) D(Py, x =l Py; x=2)

rEX TEX
Ry, x (ylz) — PY1|X(ZJ|$)>

- Z Py x (2]x) Py, x (y]2)0

yEN Py, x (y]z)
= Z Z Py () (915X|X(i|x)D(PY1Xj||pY1Xz)
TEX TEX
o 2 P i
_y;:h ( (1-6 Pyllx(y|x)+9PX|X(x|w)Py1|X(y\ )) le(E;JYI)lx(yél)x(yl ))

2
_ N o (Byvix (yle) — Py x (ylz)
= > Pxl@) <9PX|X(@|$)D(PY1XE||PY1X R L le?mx(ylifl)x i )

TEX TEX yeEV1
= Z Z pX(m) <9PX|X(§:|x)D(PY1\X:i|‘PYﬂX:w) - 02X2 (RY1|X::M PYﬂX:z) ) (218)
TEX TEX
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where (a) follows from the inequality log, (1 + x) < « for all > —1. This completes the proof.
|

M Proof of Proposition

Let Swy, be a distribution such that, for all (i,y) € W x V&,

) 1 )
Swy, (i, y)= MSY2|W(y|Z)a (219)
with

Syaw(li)2 > Py x (@lu() Py, x (y|#)
TEX™

Z H PX’\X(£t|ut(i))PY2\X(yt|j7t)

zeXn t=1

=TI 32 Py Golua () Py (3 2). (220)

t=1zeX

Consider the distribution Qwy, in . From Lemma [7| (in Appendix |A]), it follows that the
total variation ||Swy, — Qwy, |y verifies

1Swy., — Qwy, Ity
=Pr[Swy,(W,Y2s) > Qwy,(W,Y2s)] — Pr[Swy,(W,Y2q) = Qwy,(W,Y2q)], (221)

where the first probability operator in the left hand-side of applies assuming that (W, Y ag)
follows the joint distribution Sy y,; and the second applies assuming that (W, Y ag) follows the
joint distribution Qwy,.

For all (z,y) € X x Yo let B: X X Yo — R be

B(mv y)é10g2 (1 + 90(1‘, y)) ) (222)
where

RY2|X(y|5C) - PY2|X(?/|33)

Cla) =5 )

(223)

RR n°® 9249



Broadcast Codes Can Be Enhanced to Perform Covert Communications 47

Then, note that

Pr(Swy,(W,.Y2s) 2 Qwy,(W,Y 25)]
[ Swy,(W,Y2s) }
_pr | 2W¥Uh Yas) oy
' LQwy,(W,Y 25)

[ Sy, jw(Yas|W)
— Pr |log, | 222251770 ) 5
! 70g2 (QYQW(YQSWV)

[ /Y Pex (@u(W)) Py, x (Yas|@)

zexn"

= Pr [log, >0

Py, x (Yas|u(W))

[ n Z Py x (@|ue(W)) Pyy x (Yas,|2)
=Pr lo zeX >0
Z 52 Py, x (Yas,t|ut(W))

B 0) Py, ix (Yaslu,(W)) 0 s Prjx(#lue(W)) Py x (Yas il )
- Zlog( Prox Vasalu V) Py (Vas ol (7)) >0
0 (Ry, x( Ya&tmt(vv)) — Py, x (Yas o |us(W)))
— Pr ; log (1 + Prx Vasu V) > 20]

=Pr

En: logy (14 0C (u(W),Yas4)) = O]

t=1

—Pr |3 Blu(W). Yas) > 0 (224)
Following similar steps, it can be shown that
Pr Sty (V. Yag) > Quey, (W, Yag)l= Pr | S Bl (W), Yag) > o] . (225)
t=1
Plugging (224) and into yields
1Swy, — Qwy,llpy = Pr zn:B( (W), Yag.s) > ] zn: W), Yag.s) > 0] .(226)
t=1 t=1

The remainder of the proof consists in obtaining a lower-bound and an upper-bound on the first
and second terms in the right hand-side of -, respectively.

Consider the first term in the right hand-side of ([226)). For all ¢t € {1,2,...,n}, let fi;, 67 and
qﬁt be the first moment, second moment and third absolute moment of the random variable

B(u(W),Yas ) =logy (1 + 0C(ue (W), Yasr)) - (227)
That is,
ﬂt: EWY2S,t [B(ut<W)7 Y?Sﬂf” ’ (228)
0y = EWY2S‘t [B(ut(W)v 1/2»9,15)2] - :atQa and (229)
o1=Bwy,s, [[Bur(W), Yas ) — ul’] . (230)
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Using this notation, let 7, 62 and ¢ be
n n R n .
AR, 622> 67 and g2 4y (231)
t=1 t=1 t=1
The following lemma, characterizes i, 52 and QAS
Lemma 13. The terms i, 62 and ¢ in [231)) satisfy
K3
/~L> ZX x)X2 RYQ\X o Pyy|x=2) — Tn lei] s (232)
K3
°< K z;( T)X2 RY2|X o> Pyy)x= 3:)+ﬁ|c2|a (233)
K3
6*> K? 2 2)X2(Ry, | x=as Pyy|x=2) — NG |eal (234)
. K3
<= 235
i< = (235)
where c1,ca,c3 and cq are constants that depend only on the random transformation in .
Proof: The proof of Lemma [13]is presented in Appendix [ |
From Lemma [13] it follows that
Pr > B(uy(W), Yas) > 0]
=1
=P B(u, (W), Y = -6
r ; (ue(W), Yase) — i UU]
@ 1 5
ZQ (-g) - Co%
4
Z Px (z)x2(Ry,| X =2 Pra| x=a) + o lea
®) zeX \/ﬁ
>
2 K?
K Z Px(z)x2(Ry,|x =z, Pry|x=z) + —= |2
zeX \/>
%0064
2 K? ’
K mZe;(PX Ix2(Ry, | x=2» Pyyx=z) — 7n |ca|
K? _ . K
- Z Px(x)X2(Ry,|x=2» Py x=2) — —= |e1]
© C14 TEX v
> 1- T Q - -
n
K" Px(@)x2(Ry; | x=a» Prajx=2) + —= |c2]
\/ TEX \/E
(236)
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where (a) follows from the Berry-Esseen Theorem (Theorem [3)); () follows from Lemmal[L3} and
(c) follows with

_3

_ - K 2

c1a £ max COC4<ZPX(5E)X2(RY2|X_$7 PYQ\X:x)_ NG |03|> ) (237)
reX

where the maximization is over all possible conditional distributions Pfq y and n € IN subject to

i _ K
> Px(2)x2( Rya x=a Prajx=a ) — —= les| > 0. (238)
zeX \/ﬁ

Note that c¢14 depends only on the random transformation in . Consider the second term in
the right hand-side of (226)). For all t € {1,2,...,n}, let u;, 02 and ¢; be the first, second and
third absolute moments of the random variable

B(us(W),Yaq,t) = logy (1 + 0C(ue(W), Yaqt)) - (239)
That is,
1= Ewyag, [B(u(W), Ya0,)] (240)
O't2é ]EWYZQ,t [B(ut (W)v YQQ,t)Q] - /1'?7 and (241)
312 Brvysg, [|Bud(W), Yags) — wl’] (242)

Using this notation, let p, 02 and ¢ be

,uéZut, aQéZaf, and(béZ(bt. (243)
t=1 =1 t=1

The following lemma characterizes p, 02 and ¢.

Lemma 14. The terms u, 02 and ¢ in (243) satisfy

_K?2 _ - K3
IS —5 > Px(@)x2(Ryy x=a> Pyyx=a) + 7n les| (244)
reX

2_ 12 5 A K?

o< K Z Px(z)x2(Ry, | x=2) Pyy | x=2) + n |cs] (245)
reX

2 2 D B, K3

o2 K J;PX(J:)X2(RY2‘X:J}7 Py, x=2) — T ez, (246)
3

< 2 e, 247
¢ \/ﬁcs (247)

where cs, cg, c7 and cg are constants that depend only on the random transformation in .

Proof: The proof of Lemma [14] is presented in Appendix ]
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From Lemma [14] it follows that

Pr

i B(ui(W), Yaq.1) > O]

Z B(ut(W)7Y2Q,t) —p = O'M‘|
t=1 g
—H

g

<Q ( ) +cCo—3
K2 o ) K3
\ - > Px(2)x2(Ry, x =0 Py x=2) + NG |es|
(®) reEX
<Q =
_ - K
K? x (2)X2(Ryy | x=2> Pyy| x=2) — —= |c7]
T
reX
%C()CS
+ 3
_ N K3
\/KQ x (@) X2 (Ry; | x=2, Py x=2) — 7 ez
n
zeX
K? _ ~ K3
- X () x2(Ryy | x=as Pys|x=2) + —= |c5]
(©) weX v C10
<@ =5 + NG (248)
) _ ~
\/K ;{PX(IE)Xz(RYQ\X:m Py, x=2) — 7n |cz]

where (a) follows from the Berry-Esseen Theorem (Theorem [3)); and (b) follows from Lemma [14}
and (¢) follows with

_3

_ - K 2

c10 = max cocg (ZPX (m)X2<RYz|X:xa PYQ\X:I)— NG |C7|> ; (249)
TEX

where the maximization is over all possible conditional distributions le x and n € IN subject to

_ - K
ZPX(x)XQ(RY2|X:wa PYQ\X:z>— NG |ez] > 0. (250)
TEX

Note that ¢19 depends only on the random transformation in .
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Combining (226), (248), and (236) yields

K2 _ - K?
-5 > Px(@)x2(Ryy x=0 Prajx=s) — —= |1
C10 t+ Ci14 TEX v
ISwy, — QWY2||TV> 1- T -Q K3
\/K2 Z Px () x2(Ry,| x =2 Pry|x=2) + 7n (S
TEX "
K? _ - K?
- Z Px(z)x2(Ry,| x=2s Pry | x=2) + 7n |es|
—Q reX
KS
K? Z Px(2)x2(Ry, | x =2+ Py x=2) — NG ed
reX
K? _ - K?
- > Px(@)x2(Ryyx=0 Prajx=2) — —= lc1]
C10 t+ Ci14 TEX v
VTR i
n
\/K2 Z Px (2)x2(Ry, x=2 Pry|x=2) + 7n |ca]
zeX
(251)
From Definition 8} it follows that the total variation ||Qy, — Sy, ||y verifies
62 Qy, — Sy:lrv
(a) PO
Z |Swy, — Qwy.|lpy — € — max{Ay, Ao}
K? _ = K?
- Z Px (z)x2(Ry, | x =2 Pyy|x=2) — —= lc1]
Q) cio +c¢ PN 2 Vi
>1—M—e—max{/\ A} —20Q reX
= \/ﬁ 1,42 K3
K? Z Px(z)x2(Ry,|x =2, Py, x=2) + —=|c2|
\/ reX \/ﬁ
£ (et + Jeal)
21—%—6—maX{A1,A2}— \/ﬁ
n
4, 2mn (Z K2px($)X2(RY2|X:m Py, x=2) + \/» |02|>
zeX
—2Q ( \/Z Px(x)x2 <RY2X—x7PY2|X—x>> ;
TeX
P K?(4
:1—010}614—e—max{A17A2}— (4]e] + ea)
n
K
4n, | 27 ZPX Z)X2 Ry2|x x,PYQ\X z) + |C2>
<x6X \/ﬁ
—2Q ( Z Px ()x2 <RY2\X o5 Py x= a:)) .
zEX
© Clo+cia Ci5
2 1—7—7—6—max{A1,A2}—2Q \/;{PX XZ (RY2|X TaPYz\X r) ’
(d) c ~
>1- Nl e —max{A;, Ay} —2Q \/Z Px (z)x2 (RYQ\X:x7PY2|X:w> ) (252)
reX
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where (a) is due to Lemma [4} (b) is due to (251)); (c) follows from Lemma [9] with

K?(4
s 2 ( |Cl| + ‘CQI) : (253)

K
4,27 ZPX T)X2 Ryz\x o Pryx= z)+|02|>
(:LEX \/ﬁ

and (d) follows with
c= C19 + Cc14 + C15.- (254)

From ([252)), it follows that

175767111&}({/&17[\2}7%
. ZPX T)X2 (RY2|X o> Pyy| x= r) <Q_1< A (255)

2
reX
that is,
QQ_]‘ (lfﬁfefmaxif\l,f\z}fﬁ>
K < . (256)
ZPX 2)x2(Ry, | x=z: Pyy|x=2)
rEX
This completes the proof. [ ]

N Proof of Lemma 13l

Note that for all t € {1,2,...,n}, it holds that

=30 S S Py () Py (51) Blue(), ),

i=1 yeYs T€X

(257)
M
Z Z Z X|X .’L‘|’U¢ PYQ\X y\l‘ (ut(z)7y)2 - ﬂ?7 (258)
1=1yeYs T€X
M
and ZZZ%NMFWWWM)%W-(M
i=1 y€Ys T€X
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53

Thus, it follows that

=
Il
NE

fit

M
DD 0D Py (@luli) Pryyx (yl2) B(ue(i), y)

i=1yeYs zeX

M
Z DD 0> Uamu 0y Py x (#12) Py x (y]2) B(x, )

i=1 yeYs T€X z€X

=n Z Z 3" Px(2)Pgx (&]2) Pryyx (412) log, (1 + 6C(2,3))

TEX TEX yeEY>

=233 Pya) ( 0) Py, x (y]x) logs (1 + 0C(z, 1))

S

=[-

~ Il
it i

rEX YyeY2
+0'3" Py (@) Py x (y1) logs (1 -+ 6C (. )
zex
=n Z Z Px (2) Py, x (y|z) logy (1 + 6C(z,y))
TEX YyEY2
H0(Ryix 412) — Prajx (ylo) log, (1+ 0C (z. 1))
S .
“n Y Y Pe@Pax )Y T oy
zEX ye)2 k=
R oo k+19k .
+0(Ry, x (ylz) — Py, x (y]2)) Z C(z,y)
k=1
_ > (_1)k+19k N
=n Z Px(x) Z TXk(RYQ\X:zvaﬂX:w)
TeX k=2
B s -1 k:+10k:+1 _
+n Z Px(x) Z %X!ﬁLl(RYQ\X:mv Py,|x=z)
zeX k=1
B 0 (_1)k+1 k -
=nY Px(x)) 5 Xk(Byx=e, Prajx=2)
zeEX k=2
+n Y Py )i(_”kek (R Py xes)
n x\T E—1 Xe\ Yy | X =25 LYy | X =2
zeX k=2
S (DR
=nY Px(x)) ka(RY2|X:m Py, x=z)
IEX k=2
2 (—1)kgk—3
*n*;PX )x2(Ry, | x =2, Pryx=z) + nb? ;PX 2371)

X (Ryy X =+ Pra| X =2)-

(260)

Note that since the random variable B(u, (W), Yas,.) is bounded, its expectation is finite. Thus,
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it follows that the second term in (260]) is also finite. Let ¢; be defined as

o0 kek 3
¢1 £ min Z Px(x Z Wk ch(RY2|X::1:a Py, x=2),
reX =3

(261)

where the minimization is over all possible values of § € (0,1) and all possible conditional
distributions Pfq - Note that ¢; depends only on the parameters of the channel. It follows that

62 =
pzn= Z Px (z)x2(Ry,|x=zs Pyy|x=z) + 18”1
rxeX
0? _ 3
>n— Z Px (2)x2(Ry, | x=2> Pyy|x=2) — n0” |c1]
rxeX
K> -
:TJ;PX( )X2(Ry, | x =2 Pyy| x=2) f|01|

(262)

Similarly, it holds that
-y
t=1
1 n M
i DD Tamuey Py x (8]7) Py x (y12) B(x,y)* — 7

t=1i=1 z€X £EX yeY2

n > "N Px(a)Py x (@]2) Py, x (y]2) B(x,y)?

TEX TEX yeY2

- n Z Z Z Px () Py x (&[x) Py, x (y[2) logs (1 + 0C(a, )’

TEX TEX yeY2

> (—1)k+1gh . 2
=" Z Z Z Px(x Py x (&]2) Py, x (y]#) <Z TC(Ly) )

TEX TEX ye)s k=1

N

oo k+1pk
=n Y > Y Px(x)Pgx (&) Py x (yl2) (90(35 y) +20C(z,y) Z%C(w)’c

TEX TEX YyeY> =2

00 \k+1pk 2
+ (z A cu,w) )
k=2

=n Y Y Px(@) (1= 0)Pryx (o) + 0Ry, x (9l)) 0°Clw,y)? +n >0 D0 > Pxla

TEX yeYo TEX TEX Yy€Y2

oo ( 1)k+19k+1

_ 0 \k+1pk 2
'PX\X(‘%‘Q:)PYQ\X(?JI@) (22 TC(w,y)kH + (Z WC(x’y)k> )
k=2

k=2
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=n Z Z Px(z) (PYQ\X(QVU) + Q(RY2|X(9|$) - PY2|X(ZJ|$)))920(€E,9)2
TEX yeYs
k+10k+1

tn Z Z Z Px (2) P x (&]2) Pyy x (y]2) (22()160(%(@)“1

zEX TEX YyeYo 2

o \ktlpk 2
+<Z( 1)];19 O(m,y>k> )
k=2

”Z Z Px(x (9 X2(Ryy x =2 Prajx=2) + 0°X3(Rys | x =z Pry|x =) >+nz Z Z Px(x)

TEX yeY2 TEX TEX YyEY2
2
A ) O (_1)k+1gk+1 > (—1)k+1gk
Py x (&|2) Py, x (y]2) <22 %C’(az,y)’€+1 + <Z ()kC’(amy)k) )
k=2 k=2
= nh? Z PX X2 Ry2|X a:aPY2|X w +Tl03 Z PX <X3(RY2X—907PY2|X—$)
reX TEX
2
1)k+1gk—2 o (_1)k+lgk—3

+ Z Z ' 1x (&]7) Py, x (y]2) (22%0(3«"&)“1‘?(2 %C(%y)k -

TEX yEY2 k=2 k=2

(263)

Note that since B(z,y) is bounded, the upper-bound in (263 is finite. Thus, the terms in (263])
are also finite. Let ¢y be defined by

Cco®= max Z PX(ﬂC) <X3(RY2X_:,:7 PY2|X:m) + Z Z PX\X(5@|$)PY2\X(?/|@
rzeX TEX YyEY2

k+19k 2

k=2

k1 N (—1)FF1gh-3 k :
22 C(z,y) + ZTC(%?J) ) (264)

where the maximization is over all values of 6 € (0,1) and all possible conditional distributions
PX| - Using this notation, it follows that

< nb? Z Px(z)x2 RY2|X o> Py x=2) +n6%c

rxeX
< n? ZPX 2)X2(Ry,| X =2+ Py x =) + 16° |co
x€EX
2 K®
=K ;{Px )x2(Ryy|x=2» Pryx=2) + ﬁ|62|~ (265)
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It also holds that

RR n°® 9249

n M
%ZZ Z Z Lo=u i)y X\X(ﬂx)PYQ\X(ZU@)B(%9)2 - i

t=1i=1 2€X TEX yEY>

=1 3" > Px(@)Py x(@la) Prayx (412) B Z

TEX TEX ye)Y2

=n 3" NN Px(a)Py x (#l2) Py, x (4]2) Bz, )?

TeX TEX yeyz

_Z( ZZZPXIX Elug (i) Py, x (y]2) B(u (l),y))2

=1 ZEX yeYs

>n Y SN Pa(a)Py x (#l2) Py x (412)B(x, )?

reX TEX yeyz

—Z Z(Z S Py () Prx (018) Blua(i), )

=1 ZEX yYE):

=n Z ST N Px(a) Py (@]x) Py x (y]2) B(a,)?

zeX TEX yEY2

2
_nZPX <Z Z XX (2]x) Py, x (y|2) B (x,y))

reX TEX yeY2
=13 D 3 Px(@)Py x(#le) Pryx (y]#)Ble,y)* —n > Px(a)
TEX TEX ye)Y2 zeX

2
-((Pyx|x<y|x> +0(Rue(ole) — Pryyx o)) ) oy (1 + ec<x,y>>>

"ZZ ZPX X\X x‘I)Pyz\X(yW (z,v) —nZPX
rEX TEX yEY2 rCX

. % (_1yk+1pk 2

.((PYQX(ym) + Q(RYQ\X(:Z/L%) - PYQ‘X(y|x))) Z Wc(x’y)k>

k=1

=n Y 37 37 Py(a) Py x () Py x (4]3) B, )?

zeX TEX yeY2

o \k+1gk ~
—nsz(x)<z(l)k+16Xk(RY2|X—xaPY2X_;E)

reX k=2
~ 2
(—1)k+1gh+1 3
+ Z TXk-H(RYﬂX:m Py, x=z)

=n Z 3 ST Px(e) Py x (a) Pry x (4]#) Bl y)°

TEX TEX yeY2

_ — (-1~ - :
-n Z PX(x> <Z k(k — 1>Xk(RY2|X:$7 PY2X—I)>
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=n6” > Px(x)x2(Ryy|x=c Pryjx=z) + n6° Y Px(x <X3(RY2X—3U7PY2|X—9:)
zeEX zeX

e k+10k 2
+ Z Z Py x (#|z) Py, x (y]Z) <22 ~ — C(x,y)*!

TEX YyEY2
2 2
e -1 k:+1gk77 oo 1 kak
+ (Z %C(m Y) ) >> —n> Px(x ( ]i ) Xk (Ryy|x=a> Prajx— 1))
k=2 reX
= nf? Z Px(z)x2(Ry,|x =z, Py, x=z) + nb? Z Px(x (XS(RYQX_JmPYﬂX—x)
reX zeX
k+19k 2 oy [ (C1)krighd . 2
+> Y Py x(#]2) Py x (y]#) 22 Cx,y)* '+ ZTC(I,y)
TEX YyEY2 k=2
= (CareE :
— R — 0y P _ . 2
(kZ_Q Rk — 1) Xk (Ry, | x=z) Y2|X7:z:)) (266)

Note that since B(x,y) is bounded, 42 is finite. Thus all the terms in (266] are also finite. Let
c3 be defined by

c3= mlnz Px (z (Xs Ry, | xX—u, Pyy|x=2) + Z Z Py x (&|2) Py, x (y]2)
TEX TEX yEY2

k=2
o (_1\kgk—3 ~ )
_(Z(k(;fl)Xk(RmX—x,Pyzx—z)) )), (267)
k=2

where the minimization is over all possible values of # € (0,1) and all possible conditional
distributions PX| - Plugging (267)) into (266) yields

62> no? Z Px () x2(Ry, | x =2 Pry|x =) + n83cs

TeX
> nb? ZPX 2)X2(Ry, | x =2 Pyy|x—s) — 0% |cs]
zeEX
2 K?
=K ;{PX )x2(Ry, | x = Pyy|x= m)—ﬁ|%| (268)
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Finally,

1 « . X X
=M > Lo, () P x (£17) Pyy x (y]2) [logs (1 + 0C (2, y)) — ul’

log, (1 4+ 60C(z,y))

M
Y > om0} Py x (2]2) Py, x (y]2)

3
Py x (& |ue (i) Py x (y/[27) logy (1 + 0C (e (i), y/))

1 — . R
<37 3N Lio—u, ()} P x (2]2) Pry x (y]2) | logy (1 + 0C (2, y))
3 reX

3

M
—1og(ﬂl4 > Py (@ Ju (i) Py x (3 |) (1 + 90<ut<z">,y'>>>

n M
=7 2- 2 Ue=u, ()} P x (2[2) Py x (y]2) | logs (1 + 6C (2, )

92 M N 3
—log (1 t Z X2 ( Ry, | X =u, (i) PY2|X—ut(i’))>

3

n M
1 N A
< i ZZ Z ]1{x:ut(i)}PX|x(z|$)PYQ|X(y|x) log, (1+0C(x,y))

t=11i=1 z€X 2€X y€)>

(269)

3

=n)_, x (2) Py x (£]2) Py x (y2) | log (1 4 0C (2, y))

e k+19k k
=n x (2 )PX‘X(sc|:v Py, x (y|©) Z C(z,y)
zEX TEX yEY2 k=1

3 e (_1)k+10k71 N
=nb Z Z Z Px (2) Py x (2]7) Pry x (y]2) ZTC(%?/)
TEX TEX yEY2

k=1
Note that the upper-bound in (269) is finite since B(x,y) is bounded. Thus, the expression
in (270) is also finite. Let ¢4 be defined by

c4= maxz Z Z Px(z Py x (2]2) Py, x (y]2)

rEX TEX yEY2

(270)

3

k+19k71
) , (271

Y E oy

k=1

where the maximization is over all § and all distributions PX\ - Using this notation, it follows
that

p< nb3cy
KS
= e (272)
This completes the proof. [ ]
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O Proof of Lemma

Note that for all ¢t € {1,2,...,n}, it holds that

M
pe= =50 S P (yfue(i) Blun (), ), (273)
i=1 yedYs
oi= Z S Py (gl () B(un(i), 9)° — 12, (274)
i= 1U€y2
and ZZPYQ\X (ylue (D)) Bur(i), y) — el - (275)
i=1y€Ys

Thus, it follows that

H= Z Ht
p—

n M
MZZZPYz\X ylue () B(uy (i), )

1 yeY:

=M ZZ > Lamwy Praix (yle) B(z, y)

t=11i=1yeYr z€X

=n > 3" Px(2) Py x(ylz) logy (1 + 0C(a, 1)

3

E

TEX yEY>
o0 k+10k
ZNZ ZPX PY2|Xy|l’Z C(z,y)"
TEX yEY> k=1
_qyktlgk
=n )Y Px(x Z ()TQXIC<RY2|X::1:’ Py, |x=z)
reEX k=2
62 _ -
=-n5 Z Px(xz)x2(Ry, | x=2)» Py, | x=2)
reX
5 B > (71)k+19k73 5
+nb Z Px (x) Z TX]C(RYﬂX:m Py, x=z)-
TEX k=3

(276)
Note that since the random variable B(u: (W), Yag +) is bounded, its expectation is finite. Thus,
it follows that the second term in (276)) is also finite. Let c5 be defined as

- < (—1)kgk—3 B
cs 2 maXIEZXPX(x) ; ka(RY2|X:m, Py, |x=2), (277)

where the maximization is over all possible values of # € (0,1) and all possible conditional
distributions Pfq - Using this notation, it follows that

ZPX T)X2 Ryz\x achY2|X z)+”93 |cs ]

reX

KB
Z Px () x2(Ry, | x =z Pry|x=2) + 7n |cs| - (278)
TEX
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Similarly, it holds that

ql\J

I
[
e

#
Il
_

Z Z Lo, (i) Prajx (y|we(8) B(ug(4), ) — pf

zEX yEY2

MZZZ 37 Lo u ) Pralx (Wl2) Bz, y)? (279)

t=1 i=1 z€X ye)s

=nY > Px(x)Pyx(yle)log, (1 +0C(z,y))”

t=1 1

3

il\lH
[]=
= an

//\

TEX YEY2
s k+19k
=n Z Z Px (x) Py, |x (y|z) <Z() )
zeX ye)2 k=1
> k+16k
:nz ZPX z) Py, x (y|z) | *°C(z,y)* +20C(z,y) Z C(z,y)*
TEX yeY2 =2
2
©  1\k+1gk
+ (Z (ij‘gc(m,y)k> )
k=2
, 1)k+1gk+1 ol
=nY_ Y Px(2)Pyx(ylz)| 0°C(z,y) +2Zf0(;ﬂ,y) +
TEX YyeEYo k=2
2
S A
+ (kZZ T Cl@y)
=n0” Y Px(2)x2(Ry,|x=0> Prajx=z) + n6° Y > Px(x)Py,x(ylz)
TeX TEX YyEY2
k+19k+1 - 0 (~1)kt+1gh—} . 2
22 Cloy) 24| > —F——Cly"| | (280)
k=2

Note that since B(z,y) is bounded, the upper-bound in (279) is finite. Hence, the terms in (280))
are also finite. Let cg be defined by

k+19k+1 -
< max Z Z Px (z) Py, x (y|z) Z Cl(z,y)"~
TEX yEYs k=2
5 2
=y
+ T Oyt |, 281
<kz_2 2 (z,y) (281)

where the maximization is over all possible values of § € (0,1) and all possible conditional
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distributions Pfq - Using this notation, it follows that

’I’LQQ Z PX X2 RY2|X xaPY2|X m) + n93c6

reX
< nb? Z Px(x)x2 Ry2|x o Prajx=o) + 10 |cg|
TxeEX
KS
< K? Z Px(z)x2(Ry, | x=s, Pry|x=z) + 7 [ (282)
reX

On the other hand, it also holds that

n M
1
=27 2.2 2 YemwanPraix (wla) B, y)* — pif
t=1 i=1 z€X yeYs

>n Y Y Px()Prpx(ln)Blr.y)* =i

TEX yeY2 t=1

_”Z Z Px () Py, x (ylz) B(z, y)?

TEX yEYs

—Z ZZ L Prix (lus(i)) Togy (1 + 6C (ue(i), )

t=1 i= 1y€3/2
>nY Y Px(z)Pyx(ylx)Bx,y)?
reX yeY2
n M 1 2
- Z Z i ( Z Py, x (ylue (i) - logy (1 + HC(ut(i),y))>
t=1 i=1 YEVs
2
=nY > Px(z)Pyx(yle)Bx,y)* —n Y Px(@) | Y Pyx(ylz)log, (14 6C(x,y))
TEX yEYs zeX yEY2
=n Z Z Px (z) Py, x (y|z)B(x, y)*
TEX YyEYs
& ( )k+19k 2
—n Z Px () Z Py, x (y|z) Z A C(z,y)
zeX YEY2 k=1
:nz Z Px(x z) Py, x (y|z)B(x y)?
reX yeYo
2
- o (_q)k+lgk
-n Z Px(z) (Z D e )k Xk (Ry, | x =2 PYQlX—I))
zeX k=2
=n6” > Px(x)x2(Ryy)x=0» Pryjx=z) +n6° Y Y Px(x)Py,x(ylr)
reX TEX yEY2
. 2
k+19k 2 s (_1)k+19k7%
2 z, k+1 + ALY, z, k
( Z Cla,y) 1;2 - («,9)

_ L (—1)ktlgk ’
—n Z Px(x) <Z TXIC(RYQ\X:M PY2|X—:E)>

zeX k=2
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= nf? ZPX 2)x2(Ryy x=0» Pra|x=o Jr"‘g&Z Z Px (2) Py, x (ylr)

reX zEX yEY2
‘ 2
1)k 1k 0O (_1\k+lgh-2
(22 CU T a4 (Z (”kecu,y)k)
k=2
2
&0 -1 k+10k—§ N
_<Z()]§Xk(RY2|X—m7PY2|X—w)> > (283)
k=2

Note that since B(z,y) is bounded, o2 is finite. Thus all the terms in (283]) are also finite. Let
c7 be defined by

s mlnz Px(x <X3 Ry, xX—u, Pyy|x=a) + Z Z % 1x (2]7) Py x (y|2)
rEX TEX yEY2

1 2 0o 1 7% 2
(az D2 s (Z w@:ekcm)ﬂ
k=2
o (_1\kgk—32 . 5
_(Z(If(]i_el)Xk(RYﬂX—w,PYgX—x)) >, (284)
k=2

where the minimization is over all possible values of # € (0,1) and all possible conditional
distributions P RIX Plugging (284)) into ( . yields

2> nh? Z Px(x X2(RY2|X o Pyy|x=2) +nb3e;
zeX

KS
K2ZPX 2)X2(Ry, | x =2, Pyy|x= 1)*ﬁ|07|- (285)
reX
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Finally,

3

M
5 S>3 Ly Praix W) B, y) — el

t=1i=1 z€X yeYs

1 n M
M Z Z Z Lomu (i) Pra x (y|2) B

t=1 i=1 z€X ye)s

M
Z D Prix(y'[us(i') logy (1 + 00 (us(i'), )

1
M

(x,y) -

3

=1y’ €Y2
1 n M
S DD ey Prajx (y]2) Bz, y)—
t 1i=1 2€X yEYs
3
-log, 1+9*Z > Pryix (0 [un(i)C (i), ')
=1y €Y
1 n M
< MZZ D> Tamuin Praix (o) Bz, )| (286)
t=1 i=1 z€X yeYs
=nY " > Px(@)Py,x(ylz)llogs (1 +0C(z,y))|”
TEX yeY2
o0 k+19k . 3
:nz ZPX PY2|Xy|xZ xy)
zeX ye)2 k=1
3 _ 0 k+19k 1 . 3
=n6> > > Px(x)Py,x (ylz) Z C(z,y)
TEX yEYs k=1

(287)

Note that the upper-bound in (286) is finite since B(x,y) is bounded. Thus, the expression in
(287) is also finite. Let cg be defined by

cg= maxz Z Px(x x) Py, x (y|r)

TEX YEY2

k+19k 1

Z ————C(z,y)*

k=1

; (288)

where the maximization is over all possible values of # € (0,1) and all possible conditional
distributions PX| - Using this notation, it follows that

p< nbcs
KS
This completes the proof. [ ]
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P Proof of Proposition [6]

Note that

log, (M)

= H(W)

@ g w)

® .
< I(W; Y1 |[W) + 1+ élog, (M)

D I(X; Y1 X) + 1+ log, (M)

= H(Y1|X) — H(Y1|X,X) +1+ élog, (M)

= HE|X, Y11, Yig, oo, Yie) —H(Vie| X, X, Y1y, Yig,. ., Yigo1)+ 1+ élog, (M)

t=1

d) . X .
@ ZH(Yl,t\Xt) — H(Y1,.4]|Xt, X¢) + 1+ €log, (M)
=1

=nI(X;Y1|X) + 1+ élog, (M), (290)

where (a) follows from the independence between W and W; (b) follows from Fano’s inequality
[9]; (c¢) follows from the fact that the mapping from the set of message indices to the codewords
is deterministic and bijective in both the broadcast code C and the covert code C; and (d) follows
from the fact that the channel is memoryless.

Note that the mutual information in is computed with respect to a joint distribution
Qx xy,» where for all triplets (z,#,y) € X* x Vi,

Qxxv, (z,2,y) éPX(x)p)‘qX(£|17)PY1\X(TU|53); (291)

the empirical conditional distribution PX  is obtained from both and ; and Py, |x is
the marginal of the joint distribution in .

In order to calculate the mutual information in , let Qy,|x be the conditional marginal
of the joint distribution @y . in , that is, for all pairs (z,y) € X x Yi:

Qv |x (ylz) = Z Py x (#]2) Py, x (y]2)

TeEX
@ (1 6(x) Py, x (o) + 02) 3 Py x(@le) Py, x (4]2)
TeEX
Y (12 0(2)) Py x (y]2) + 0(2) Ry, x (v]2), (292)

where (a) follows from Lemma |l| and (b) follows with ]A%yl‘ x(ylx) in (139).
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Using (291) and (292)), the mutual information in (290) satisfies
I(X; V1] X)

Py, x (y2)
=337 3" Pr() Py x (i) Py x () - logy (Cm)

TEX TEX yeY
Pylx(y@)PYlX(ym)

P P 7)1

2 szyz x(@)Psx (#l2) P x (412) logs (QmX(mx)Pm.X(mx)
Py, x(y|2) Qv x (ylz)

= P P log, [ DalxXWIEY o Cnix W)

m;{;{y;l x () Py x (2]2) Py x (y|2) ( gy (me oz ) gy <Py1|x(y|x) >>

(
P
= Z Z Z Px (x X\X JU|33)PY1|X(Z/|9U)<1Og2 (%

zeX zeX yeYr

g, <<1 —0(x)) P x (yl) + 9(CU)RY1|X(Q|$)) )

Py, 1 x (y|r)

— Z Z Px () Pg 5 (2|x) <D(PY1X—2||PY1X—$)

reEX TEX
~ R i y|x — P : ylx
~ D Prix(yld) log (1+9(x) Y'X(P| ) : |Y)|X( | )))
yeyl Y1‘X yaj

(293)

The last term in (293 can be approximated using a Taylor expansion of log, (1 + z) at = 0.
For all k € {1,2}, let Ay : X x Vi = R be defined by

Ry x(le) — P x (yle) (294)

Au(@,y)= Py, x (y]z)

Then, the second term in the right hand-side of (293) can be written as follows:

Z Z Z Px(x x (2]7) Py, x (y|2) logy (1 + 0(z) A1 (2, y))

TEX TEX ye

-V Y Pl ((1 — 0@))1 sy + 0(2) Py (]2)) Py x (y]) logs (1 + 0(2) As (2, ))

zeX T€X ye)1

-3 % Pxa) (PYI.XW log, (1 + 0(2) Ay (x, )

X yeV1

(Z % 1x (&]2) Py x (y|2) — PY1|X(?J$)> log, (1 +‘9($)A1($ay))>

TeEX

=> > Px() (PY1|X(y|~%) logy (14 0(x) Ay (2, y)) + 0(z) (Rmx(?ﬂw) - PY1\X(3/|$)>

rEX yeY:
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o0 k+1 .
- Pyl )(PY1X i) Y- CL O 4 o)+ 00a) (g x (k) — Py olo)

TEX yEV1 k=1
2 (—1)FHLg(2)F ,
. Z ﬂAl(‘x’y)k
k
k=1
_ 5 — (=DF@)r
= X(@(Z TXk(RmX:umX:m)
zeX k=2
O (=1)F L) +1 N
+ Z (=1 k’( ) Xk’+1<RY1|X_a:aPY1X_z)>
K=1
_ 5 — (Do)
= Z X(x)<Zka(RY1|Xz>PY1|Xm)
zeX k=2
(=) g(a)F .
+ Z U6 ]2/ _(1 ) Xk (RY1|X—:mPY1X—z)>
k=2
N
= Z Px () Z ka(RYl\ngmPYﬂX:x)
reX k=2
_ 0(x C (=1)*0(x .
= Z PX(@( (2) X2(Ry, | x =z, Pry|xX=z) Z)(l))Xk(RYlX_mPY1|X_m)>
zeX k=3
_ 0(x)? . .
> ZPX($)< (2) X2(Ry, |x=2) Py, |x=2) — (6) Xs(RY1|X_mPY1X_z)>
zeX
- 0(x)3 -
z - Z Px () (6) X3(Ry, | x=zs Pyy|x=2)- (295)
reX

Therefore, from (293) and (295)) it follows that

I(X;Y1]X)
(a) 0(z)? N
S Z Z Px (x ( X|X($|9C) (PYl\X:iHPYﬂX:z) + (6) XS(RYlX_mPYﬂX_r))
rzeX TeEX
(b) 5
= ZPX(J?)(l— ))D(PY1|X ;EHPY1|X :r)"’PX ZPX\X Jf|$ PY1|X:§:||PY1\X:a:)
TeEX TEX
_ 0(z)3 .
+Px (x) (6) X3(Ry, | x=2s Pyi|x=z)

z)3 ~
= 3 S Pl@)0) Py ) D (PP ) + Pr(e) 2 (B s P (296)
reX zeX

Finally, from and 7 it follows that
g (V1)< - <1 Y Pt ( )3 Py (i) D(Pr, sl Prox—s)

reX

TeX
O(x)3
+ (6) X3(Ry; | x—as Pry | X—0) )) (297)

This completes the first part of the proof.
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Q Proof of Proposition

From Lemma [4] it follows that given an (n, M, ¢)-broadcast code, any (n,C, M, ¢, d)-covert code
satisfies:

0> HRYZ - QYz HTV

> HRWY2 - QWY2||TV —€e—¢

~ oM Z Z ZPYzIX ylv(i,j))— Py, x (ylu(i)| —e—¢€

=1 yeyy 7 1

1 ~
M Z HRY2|W:’L - QY2|WZ’LHTV —€—€, (298)

where the distributions Qy,|w—; and Ry, |w—; are respectively defined in and . For all
message indices ¢ € W, consider the set

Wi={jeW: wi,j)>v}, (299)

where v will be specified later. Note that W; and Wc form a partition of the set W. Let Rg, “)/V

and Rgv \‘)’V be respectively defined by
ROV, (yli)2 > T Praix (welve(is 5)), and (300)
i jew; t=1
WC
ROV (wli)2 —— x Welvii, ). (301)
jEWCt 1

Consider that the transmission of covert communications occurs by using the sub-code whose
codewords have lower-bounded weight, i.e., v(i,j) with ¢ € W and j € W;. Under this consid-
eration, the test run by Receiver 2 to determine whether or not private messages are being sent
is

{Ho Yy~ QY2|W:ia (302)

Hl Y2 NRFY U)/V i’

where the distributions Qy,jw—; and Rg;) TI)/V:i are respectively defined in and (1300)).

Denote by d; € [0,1] and §; € [0,1] the type-I and type-II error probabilities associated with a
decision rule T; : V3 — {0,1} of the form

0 if Hy is accepted,

A
Ti(y)= { 1 if H; is accepted. (303)
That is,
&;=Pr[Ty(Y2) = 1], and (304)
@émung:m7 (305)

where the probability operator in ([304) applies assuming that ¥Y'» ~ Qy,|w—; and the probability
operator in (305)) applies assuming that Y5 ~ R;, “),V _
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Note also that for all message indices i € W, it follows that

HRY2\W:i - QY2\W:Z'HTV

5 Z Py, x (ylu(i)) 1x (Yl (i, J))‘
y€y2 J 1

-3 = 2 (Praix (wlu(®) = P, x (ylv(i,9)))
yeyy jEWi

Y (Pyax(@lo(id) - Prajx(yluli)
M

JEWS
(@) 1 1 . N
> 5 2 |5 2 (Prax(@lu() ~ Prox (@lo(i. )
yeyy ]€W7
1 . . .
-l 2 (PYzIX(ZIW(Z»J))—PY2|X(y|u(l))'
JjEWS
i V(1
2;( )W Py (ylu(i) - |W| x(wloli. )
Wel| 1 N .
_| il | — Z PY2|X<y’U(’L,]))—PY2|X(y|u(Z))‘>
Wil JEWS
© V) WEL || i)
= M HRYQ\Wﬁ*QYz\Wzi vaiAHRYﬂW:i*QYgIW:i .
L] A%
> 7 I L4
M HRY2|W =i~ Qvaw=i||,, I
@ | Az‘ A 5 |Wc|
>z — (1—-a&; - Bi) — —=
M ( “ B) M
M — iy L]
= ' (1- :
2L(-6-5) -
> (1—@1‘—51‘)—2%
(E) vVd 15 V|
2 ) i a 306
< Q( f) vn N (306)

where v will be specified later, ci5 is a constant,A( a) is a consequence of the triangle inequality;
(b) follows from the definition of Rg, i and Rg;} |c1)/V in (300) and (301]) respectively; (c¢) follows

since HR%{I)/V:Z — Qy,|w=i oy S < 1; (d) follows from Lemmain Appendix and (e) follows

from Proposition I

Plugging (298) into (306) yields

M A~
vd cis Na%d .
0>1-2 — -2 L. —e—¢.
? (2\/ﬁ> D ;MM e

(307)
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Choosing v in (299) such that

V:2\/HQ,1(1—5—77), (308)

with n € (0,1 — 4), it follows that

M 3 ire
23" |W1‘A|>1_2Q<;\/g> a5 s,

:171+5+n*%*5767€

S —— (309)

which implies

P&
i vl Ce R
722 Z)M(f———e—e), (310)
M &~ M 2 Vn
with cg = “4*. This completes the proof. [ |
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